The present invention relates to fishing lures; in particular, lures that incorporate an oscillating motion. Specifically, the invention is a fishing lure having a blade member uniquely attached to a weighted body to provide an intense vibrating action as movement through water controllably displaces the blade in three dimensions.
It is desirable for a fishing lure to include a blade or other feature to create motion, reflect light and give the lure a simulated natural swimming motion resembling a minnow or other food source for the sport fish being sought. While many lures are designed to attract fish in novel ways, none achieve a controlled or controllable oscillating action that is also erratic and can be altered by the user to change the motion of the lure. Thus, there is a need for a lure which produces an underwater movement that is attractive to fish.
U.S. Pat. No. 10,085,432 issued Oct. 2, 2018, and U.S. Pat. No. 9,572,331 issued Feb. 21, 2017, both to A. Reyment describe a variable-depth fishing lure that wherein the depth is controlled by a spring-loaded indexing mechanism which alters the angle of the blade with respect to the body in fixed, locked increments.
U.S. Pat. No. 9,265,239 issued Feb. 23, 2016, and U.S. Pat. No. 8,429,847, issued Apr. 30, 2013, both to R. Ford describes a fishing lure with a lure-positioning arm attached to the forward-protruding blade. The lure-positioning arm's position controls the ability of the lure to dive.
U.S. Pat. No. 9,253,967, issued Feb. 9, 2016, U.S. Pat. No. 7,726,062, issued Jun. 1, 2010, and U.S. Pat. No. 7,627,978, issued Dec. 8, 2009, all to J. R. Davis describe a fish lure having a jig and a blade attached in a configuration which limits the side-to-side movement of the blade. The blade is limited in its side-to-side motion by contact between the blade edge and either the jig body or the eyelet, of which the blade must pass through via a hole in the blade. The uncontrolled but limited side-to-side movement of the blade creates a quick, oscillating blade action that imparts a natural swimming motion to the lure, emulating prey species movements.
U.S. Pat. No. 8,146,288 issued Apr. 3, 2012 to J. Barczak, et al., describes a fishing lure with a fixed but rotatable head member, wherein the orientation of the head (and its attached blade) along the center line causes the lure to move in a particular direction when retrieved.
U.S. Pat. No. 7,621,068 issued Nov. 24, 2009 to J. Renosky describes a fishing lure with a blade coupled to the nose of the lure, wherein the blade is uncontrollably free to move in three dimensions save for contact with the body, or limitations imposed by the fit of the blade hole and eyelet.
U.S. Pat. No. 7,107,720 issued Sep. 19, 2006, to R. Burggrabe, et al., describes a fishing lure with a shaped blade protruding from the forward edge of the body wherein the fishing line is attached near the middle of the blade. The shape of the blade and the location of the line attachment mechanism control the depth the lure will run.
U.S. Pat. No. 5,351,433 issued Oct. 4, 1994 to J. Ellis describes a fishing lure with a replaceable bib (front blade). The blades may have different shapes/sizes such that changing out the blade will allow the user to alter the depth the lure will run.
U.S. Pat. No. 5,337,508 issued Aug. 16, 1994 to C. Pfeiffer describes a fishing lure with a moveable front blade. Although the blade can move laterally, this lateral motion is uncontrolled and limited solely by the blade impinging upon the body or via contact with internal members, which also serve to affix the blade to the body. Although there are mechanisms expressed to limit the lateral (yaw) motion of the blade, there are no mechanisms expressed to limited the roll or pitch motion of the blade, nor to suggest that the blade has any ability to move in those other directions.
U.S. Pat. No. 4,777,761 issued Oct. 18, 1988 to R. Renaud describes a fishing lure having a moveable front blade. As in the '508 patent to Pfeiffer, the blade is allowed to move laterally until it impinges on the body or upon a spring stop located within the “mouth” of the body. As in the Pfeiffer patent, although there are mechanisms expressed to limit the lateral (yaw) motion of the blade, there are no mechanisms expressed to limited the roll or pitch motion of the blade, nor to suggest that the blade has any ability to move in those other directions.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the instant invention as claimed.
The invention comprises several general aspects. Each of those can, if desired, be combined with additional features, including features disclosed and/or not disclosed herein, the resultant combinations representing more detailed optional embodiments of these aspects.
The following discussion of advantages is not intended to limit the scope of the invention, nor to suggest that every form of the invention will have all of the following advantages. As will be seen from the remainder of this disclosure, the present invention provides a variety of features. These can be used in different combinations. The different combinations are referred to as embodiments. Most embodiments will not include all of the disclosed features. Some simple embodiments can include a very limited selection of these features. Those embodiments may have only one or a few of the advantages described below. Other preferred embodiments will combine more of these features and will reflect more of the following advantages. Particularly preferred embodiments, which incorporate many of these features, will have most if not all of these advantages. Moreover, additional advantages, not disclosed herein, that are inherent in certain embodiments of the invention will become apparent to those who practice or carefully consider the invention.
This invention overcomes problems inherent in fishing lures, in particular, in fishing lures that oscillate in an attempt to mimic the natural swimming motion of prey fish.
Previous attempts have significant limitations in motions and deficiencies in both manufacturability and operation, which the present invention overcomes.
In a first aspect, the invention comprises a fishing lure comprising:
a body with a longitudinal axis, an uppermost surface, at least one hook, said first hook including a shank and a hook end, said shank being coupled to said body; a blade having an edge proximal to said body, wherein, during retrieval, a majority of said blade is oriented below said uppermost surface of said body; a joining mechanism whereby said blade is moveably coupled to said body, wherein said blade has freedom to move with respect to the roll, pitch and yaw axes within strict limits; a line attachment mechanism, through which a fishing line is attached to the lure; and whereby retrieval of the lure causes the blade to randomly oscillate in at least one dimension, and thereby causing the lure to erratically hunt. The oscillating-blade action imparts a natural swimming motion to the lure, emulating prey species movements.
The blade can be configured to allow multiple degrees of freedom of motion, depending on the style and/or form the joining mechanism takes. In general, all forms and styles should allow the blade limited and controlled freedom of motion about one or more of the roll, pitch and yaw axes.
The body may take various sizes, shapes and geometries, depending on the type of baitfish being emulated. The body may be short and fat, long and fat, long and thin, or short and thin.
The blade may be coupled to the body in various locations, have various orientations, and have various sizes, lengths and geometries and/or features. The blade may be shallow- or deep-set within the body, may be mounted nearly parallel to the longitudinal line of the body or may be at a depressed angle relative to that line, and may be mounted at the nose/mouth of the body, or in back and/or below the nose/mouth.
In certain embodiments of the foregoing general aspect, the blade may have length and width relative to the lure body. The blade width at its widest may be 25%, 100% or 200% the width of the body at its widest; the blade length, measured as the amount of blade protruding past the forward-most point of the body, may be 10%, 50%, or 200% the length of the body. The geometry of the blade, irrespective of its relative length or width, may comprise sides and/or leading edges that may be convex, concave or straight, or some combination of convex, concave and straight. The blade structure may be straight (planar), comprise a curve in one or more dimensions, be bent/angled, or have a stepped structure. Additionally, the blade may incorporate various features, such as raised edges, which may be continuous or interrupted, and wherein these features may be symmetrical or non-symmetrical, and/or identical or non-identical.
In one embodiment of the foregoing general aspect, the strict limits of motion along the roll axis may be 0 degrees, less than 5 degrees, or less than 12 degrees.
In another embodiment of the foregoing general aspect, the strict limits of motion along the pitch axis may be 0 degrees or less than 10 degrees.
In still another embodiment of the foregoing general aspect, the strict limits of motion along the yaw axis may be 0 degrees or less than 45 degrees.
In yet another embodiment of the foregoing general aspect, the total angular displacement of the blade in the combined values of roll, pitch and yaw may be less than 60 degrees.
In various embodiments of the first mentioned general aspect, the hunting action of the lure may be erratic and/or may be off bore. Additionally, the erratic and/or off-bore hunting action may be achievable while the lure is retrieved at low speed, high speed, or any combination of low and high speeds, and is in fact independent of the retrieval speed of the lure.
In still other embodiments of the foregoing general aspect, the line attachment mechanism may comprise an eyelet attached to the lure body or the lip, a through hole, within the lure body or the lip, or may comprise a clip, said clip being coupled to the lure body or the lip.
The invention will be described in detail with reference to the accompanying drawings. Each of the figures is a schematic diagram more fully described below.
The present invention is a fishing lure with an oscillating blade, designated generally as 10 in the drawings. Referring to
In
If the blade was fixed, as in most prior inventions and nearly all currently available devices, and the lure was retrieved slowly, a steady laminar flow regime develops over the blade, allowing these past lures to move in a linear fashion with little if any hunting action. However, as the retrieval speed is increased, the fixed blade-body combination would eventually face uneven forces typically causing the lure to rotate about its longitudinal axis until it was belly up.
Attempts to stop this from happening and create a more natural hunting motion were proposed by Pfeiffer (U.S. Pat. No. 5,337,508) and Renaud (U.S. Pat. No. 4,777,761). Their proposed solutions comprised a blade that was allowed to swivel laterally. However, both of these solutions fail because they failed to appreciate the hydrodynamic forces impacting the blade (and blade-body combination) upon retrieval. While the swiveling blade does create some limited hunting action, because the lateral motion is uncontrolled, the designs have inherent hydrodynamic instability—the blade gets locked into it farthest left or right position, causing lift on only one side of the lure, which causes the lure to rotate over its longitudinal axis, and the lure goes belly up.
In order to stop their inherent hydrodynamic instability, both attempted to limit the lateral range of motion of their blades by physical contact with the lure body, or with internal structures in the mouth of the lure. The greater the reduction in yaw allowed, the lower the chance of dynamic instability. However, the greater the reduction in yaw allowed, the lower the chance of achieving actual hunting action. Thus, regardless of their efforts to randomly physically limit yaw, any increase in speed above bare minimum headway speed would result in dynamic instability, the blade would lock into its farthest left or right position, the lure would rotate, and eventually, the lure would be belly up. As such, the designs expressed in their patents, attempting to blindly limit yaw without understanding the hydrodynamic forces at play, fail to operate with the hunting motion they describe, and more often than not, result in their lures rotating belly up and failing to hunt at all.
The present invention overcomes these deficiencies by strictly limiting the motion of the blade with respect to roll, pitch and yaw within prescribed boundaries. While the prior art discusses somewhat random (i.e., uncontrolled) limitations solely with respect to yaw based on physical interference with the blade, the present invention controls the freedom of motion of the blade within strict 3-dimensional boundaries. Although various mechanisms for achieving this control are well known, the need for strictly limiting the 3-dimensional freedom of motion of the blade within prescribed boundaries, and the boundaries themselves, were not known prior to the present invention.
While the general boundary limits are expressed within the present invention, they can be tailored depending on various physical features of the body and blade. Doing so allows the lure of the present invention to mimic not only the size and shape of various baitfish, but the motions typically expressed.
Examples of some of the sizes and shapes of bodies 30 are shown in
Different blades with different geometries and features can be used with a particular body style, giving the lure a different hunting action. The differences in the size, length, width, and geometries of the blade can be more readily observed in
As has been seen, the length and width of blade 20 can be changed in order to accommodate different hunting actions. Likewise, as in
Aside from the various 3-dimensional shapes and edge geometries already expressed, blade 20 can incorporate various surface features, which can change the flow regime over the blade, and thus alter the hunting path and action of the lure.
The lure must be pulled by a line to be retrieved. The location of the attachment of the line can alter the flow regime over the blade due to the angle of the force imparted from the line during retrieval. As shown in
Although these control mechanisms are well known in the art, the precise limits expressed within this invention are the key to overcoming the failures of previous designs, and creating a lure which can actually hunt in a random, erratic off-bore fashion, regardless of retrieval speed.
As noted above, each of the roll angle Θr, the pitch angle Θp, and the yaw angle Θy is governed in part by the attachment mechanism within the mouth 50 of the body 30. The blade 20 may be connected to the body 30 through any conventional means, such as use of a pin 60 as illustrated. For example, the blade 20 includes a bore through which the pin 60 extends. Openings within the mouth 50 of the body 30 are sized and positioned to receive opposing ends of the pin 60 in order to retain the blade 20 in position relative to the body 30.
Lastly, it is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims, individually, or in variations combinations.
This application comprises a continuation-in part of application of U.S. application Ser. No. 16/524,005 filed Jul. 26, 2019, which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16524005 | Jul 2019 | US |
Child | 17950466 | US |