The present disclosure relates to an expiratory treatment device, and in particular, to an oscillating positive expiratory pressure (“OPEP”) device.
Each day, humans may produce upwards of 30 milliliters of sputum, which is a type of bronchial secretion. Normally, an effective cough is sufficient to loosen secretions and clear them from the body's airways. However, for individuals suffering from more significant bronchial obstructions, such as collapsed airways, a single cough may be insufficient to clear the obstructions.
OPEP therapy represents an effective bronchial hygiene technique for the removal of bronchial secretions in the human body and is an important aspect in the treatment and continuing care of patients with bronchial obstructions, such as those suffering from chronic obstructive lung disease. It is believed that OPEP therapy, or the oscillation of exhalation pressure at the mouth during exhalation, effectively transmits an oscillating back pressure to the lungs, thereby splitting open obstructed airways and loosening the secretions contributing to bronchial obstructions.
OPEP therapy is an attractive form of treatment because it can be easily taught to most hospitalized patients, and such patients can assume responsibility for the administration of OPEP therapy throughout their hospitalization and also once they have returned home. To that end, a number of portable OPEP devices have been developed.
A portable OPEP device and a method of performing OPEP therapy is described herein. In one aspect, a portable OPEP device includes a housing defining a chamber, a chamber inlet configured to receive exhaled air into the chamber, a chamber outlet configured to permit exhaled air to exit the chamber, a deformable restrictor member positioned in an exhalation flow path between the chamber inlet and the chamber outlet, and an oscillation member disposed within the chamber. The deformable restrictor member and the oscillation member are moveable relative to one another between an engaged position, where the oscillation member is in contact with the deformable restrictor member and a disengaged position, where the oscillation member is not in contact with the deformable restrictor member. The deformable restrictor member and the oscillation member are also configured to move from the engaged position to the disengaged position in response to a first exhalation pressure at the chamber inlet, and move from the disengaged position to an engaged position in response to a second exhalation pressure at the chamber inlet. The first exhalation pressure is greater than the second exhalation pressure.
In another aspect, the deformable restrictor member deforms in response to an intermediate exhalation pressure at the chamber inlet, and returns to a natural shape in response to the first exhalation pressure at the chamber inlet.
In another aspect, the OPEP device has a biasing member positioned to bias the deformable restrictor member and the oscillation member to the engaged position. The biasing member may be a spring. Alternatively, the biasing member may have at least one pair of magnets, wherein a first magnet of the at least one pair of magnets is connected to the oscillation member and a second magnet of the at least one pair of magnets is connected to the housing. The position of the biasing member may also be selectively moveable to adjust the amount of bias
In yet another aspect, the OPEP device includes a glide surface extending from the housing into the chamber, such that the glide surface is in sliding contact about the oscillation member, and movement of the oscillation member is substantially limited to reciprocal movement about an axis of the oscillation member.
In another aspect, the oscillation member includes at least one channel adapted so that the exhalation flow path is not completely restricted when the deformable restrictor member and the oscillation member are in the engaged positioned.
In another aspect, the OPEP device includes a mouthpiece connected to the housing that is in fluid communication with the chamber inlet. The mouthpiece may have a cross-sectional area greater than a cross-sectional area of the chamber inlet.
In yet another aspect, the housing has a first portion and a second portion, with the second portion being removably connected to the first portion.
In another aspect, the OPEP device includes a respiratory portal for receiving an aerosol medicament. Additionally, the oscillation member may comprise a one-way valve configured to permit the aerosol medicament to enter the chamber through the respiratory portal, the respiratory portal being in fluid communication with the chamber inlet when the one-way valve is open.
In another aspect, a method of performing oscillating positive expiratory pressure therapy is provided. The method includes passing a flow of exhaled air along an exhalation flow path defined between an inlet and an outlet of a chamber in an oscillating positive expiratory pressure device. The method also includes restricting the flow of exhaled air by maintaining a deformable restrictor member and an oscillation member disposed within the chamber in an engaged position, where the oscillation member is in contact with the deformable restrictor member, until a first exhalation pressure is reached at a chamber inlet. The method further includes unrestricting the flow of exhaled air by moving the deformable restrictor member and the oscillation member to a disengaged position, where the oscillation member is not in contact with the deformable restrictor member, until a second exhalation pressure is reached at the chamber inlet. The method also includes returning the deformable restrictor member and the oscillation member to the engaged position with a biasing force when the second exhalation pressure is reached at the chamber inlet. The first exhalation pressure may be greater than the second exhalation pressure. Finally, the method may also include deforming the deformable restrictor member in response to an intermediate exhalation pressure at the chamber inlet, and returning the deformable restrictor member to a natural shape in response to the first exhalation pressure at the chamber inlet.
In another embodiment, a system for providing oscillating positive expiratory pressure therapy in combination with aerosol therapy is provided. The system includes an oscillating positive expiratory pressure apparatus having a housing defining a chamber, a chamber inlet configured to receive exhaled air into the chamber, and a chamber outlet configured to permit exhaled air to exit the chamber. The oscillating positive expiratory pressure apparatus also has an exhalation flow path defined between the chamber inlet and the chamber outlet, and an oscillation member disposed within the chamber and configured to operatively restrict a flow of exhaled air along the exhalation flow path. The oscillation member is moveable relative to the flow path between a restrictive position, where the flow of exhaled air is substantially restricted and an unrestrictive position, where the flow of exhaled air is substantially unrestricted. The oscillating positive expiratory pressure apparatus may also have a respiratory portal for receiving an aerosol medicament. The respiratory portal may be in fluid communication with the chamber inlet. The system also includes an aerosol therapy apparatus removably connected to the respiratory portal of the oscillating positive expiratory pressure apparatus. The aerosol therapy apparatus includes an aerosol housing having an aerosol chamber for holding an aerosol medicament, and an aerosol outlet communicating with the aerosol chamber for permitting the aerosol medicament to be withdrawn from the aerosol chamber.
OPEP therapy is very effective within a specific range of operating conditions. For example, an adult human may have an exhalation flow rate ranging from 10 to 60 liters per minute, and may maintain a static exhalation pressure in the range of 10 to 20 cm H2O. Within these parameters, OPEP therapy is believed to be most effective when changes in the exhalation pressure range from 5 to 20 cm H2O oscillating at a frequency of 10 to 40 Hz. In contrast, an infant may have a much lower exhalation flow rate, and may maintain a lower static exhalation pressure, thereby altering the operating conditions most effective for OPEP therapy. As described below, the present invention is configurable so that ideal operating conditions may be selected and maintained.
Referring to
The OPEP device 100 also includes a mouthpiece 112 which may either be formed as an integral part of the housing 102 or removably attached to the housing 102. Although the mouthpiece 112 is shown as being cylindrical in shape, the mouthpiece 112 could be any number of alternative sizes or shapes to accommodate various users of the OPEP device 100, such as children or adults. A chamber inlet 114 positioned within the mouthpiece 112 is configured to receive exhaled air into the chamber 108. In view of the description below, it should be apparent that the cross sectional area of the chamber inlet 114 is an important variable affecting the exhalation pressure generated at the mouth of a user, and may be modified or selectively replaced according to the desired operating conditions.
A side perspective view of the OPEP device 100 is shown in
Referring to
A cross-sectional perspective view of the inlet insert 118 is shown in
The inlet insert 118 is configured to be snap or compression fit within the front portion 104 of the housing 102, which may be accomplished while the front portion 104 and the rear portion 106 are detached. The inlet insert 118 includes an annular recess 128 for receiving a corresponding annular protrusion 130, which may be located on a rim 131 connected to either the mouthpiece 112 or the housing 102, as shown in
Referring to
The deformable restrictor member 120 generally includes an upper portion 134, a lower portion 136, and a reinforcing band 138 of elastic material. As shown in
The deformable restrictor member 120, and in particular, the lower portion 136, is configured to deform as the exhalation pressure at the chamber inlet 114 increases. Preferably, the lower portion 136 of the deformable restrictor member 120 should be curved inward so that, as the deformable restrictor member 120 deforms, the lower portion 136 expands in a direction away from the upper portion 134. To improve the elasticity and rigidness of the deformable restrictor member 120, a reinforcing band 138 of elastic material may be added to the deformable restrictor member 120. Depending on the shape of the deformable restrictor member 120 and the desired elasticity, the reinforcing band 138 may be omitted or located elsewhere on the deformable restrictor member 120.
Referring to
The contact surface 140 shown in
Although the contact surface 140 is shown in
A rear perspective view of the oscillation member 122 is shown in
Referring to
To administer OPEP therapy using the OPEP device 100 descried above, a user begins by exhaling into the mouthpiece 112. In doing so, an exhalation flow path 148 is defined between the chamber inlet 114 and the at least one chamber outlet 116. The exhalation pressure at the chamber inlet 114 represents a function of the flow of exhaled air permitted to traverse the exhalation flow path 148 and exit the OPEP device 100 through the chamber outlet 116. As the exhalation pressure at the chamber inlet 114 changes, an equal back pressure is effectively transmitted to the respiratory system of the user.
As shown in
At the maximum point of expansion, the increasing exhalation pressure causes the deformable restrictor member 120 to quickly retract, ultimately returning to its natural shape. As the deformable restrictor member 120 retracts, the deformable restrictor member 120 and the oscillation member 122 move to a disengaged position, where the deformable restrictor member 120 is not in contact with the oscillation member 122. At that time, exhaled air is permitted to flow substantially unrestricted along the exhalation flow path 148 from the chamber inlet 114 to the chamber outlet 116. Because the retraction of the deformable restrictor member 120 is quicker than the movement of the oscillation member 122 under the biasing force of the coil spring 124, the deformable restrictor member 120 and the oscillation member 122 remain in the disengaged position for a short period of time, during which the exhalation pressure at the chamber inlet 114 decreases. Depending on multiple variables, including the elasticity of the deformable restrictor member 120, the biasing force of the coil spring 124, and the exhalation flow rate, the deformable restrictor member 120 and the oscillation member 122 may remain in the disengaged position for only a fraction of a second.
After the deformable restrictor member 120 returns to its natural shape, the oscillation member 122, under the biasing force of the coil spring 124, moves back into an engaged position with the deformable restrictor member 120. Then, as a user continues to exhale, the exhalation pressure at the chamber inlet 114 begins to increase, and the cycle described above is repeated. In this way, the exhalation pressure at the chamber inlet 114 oscillates between a minimum and a maximum so long as a user continues to exhale into the OPEP device 100. This oscillating pressure is effectively transmitted back to the respiratory system of the user to provide OPEP therapy.
A cross-sectional side view of a second embodiment of an OPEP device 200 is shown in
The OPEP device 200 further comprises an adjustment plate 254 for selectively moving an end of a biasing member, such as the coil spring 224, to adjust the amount of bias. The adjustment plate 254 is connected to at least one thumb screw 256 extending from the adjustment plate 254 to a location outside the housing 202. In this way, a user may rotate the at least one thumb screw 256 in one direction to move both the adjustment plate 254 and an end of the coil spring 224 toward the oscillation member 222, thereby increasing the bias. A user may rotate the at least one thumb screw 256 the opposite direction to decrease the bias. By changing the amount of bias, a user may selectively increase or decrease the resistance the oscillation member 222 applies against the deformable restrictor member 220 while in the engaged position. A change in the bias also changes the rate at which the oscillation member 222 moves from the engaged position to the disengaged position, and back to the engaged position, during the administration of OPEP therapy.
The OPEP device 200 shown in
Referring to
In this configuration, a user receives aerosol therapy upon inhalation. As seen in
A cross-sectional perspective view of a third embodiment of an OPEP device 300 is shown in
The OPEP device 300 is different from the OPEP device 200 in that it includes a biasing member comprised of at least one pair of magnets 362. For each pair of the at least one pair of magnets 362, one magnet is positioned on the oscillation member 322 and another magnet is positioned on the adjustment plate 354. The magnets in each pair have opposing polarities. As such, the oscillation member 322 is biased by the at least one pair of magnets 362 into the engaged position with the deformable restrictor member 320.
During the administration of OPEP therapy, the at least one pair of magnets 362 functions in the same manner as the coil spring, as discussed above. Specifically, as a user exhales into the OPEP device 300 and the deformable restrictor member 320 expands, the at least one pair of magnets 362 resist the movement of oscillation member 322. After the deformable restrictor member 320 has reached its maximum point of expansion and quickly returned to its natural shape, the at least one pair of magnets 362 bias the oscillation member 322 from the disengaged position back to the engaged position. Furthermore, like the OPEP device 200, the amount of bias supplied by the at least one pair of magnets 362 may be adjusted by rotating the at least one thumb screw 356, thereby moving the adjustment plate 354 and the magnets positioned thereon closer to the magnets positioned on the oscillation member 322.
The foregoing description of the inventions has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the inventions to the precise forms disclosed. It will be apparent to those skilled in the art that the present inventions are susceptible of many variations and modifications coming within the scope of the following claims.
This application is a continuation of U.S. application Ser. No. 15/651,706, filed on Jul. 17, 2017, which is a continuation of U.S. application Ser. No. 13/959,293, filed on Aug. 5, 2013, now U.S. Pat. No. 9,737,677, which is a continuation of U.S. application Ser. No. 13/674,340, filed on Nov. 12, 2012, now U.S. Pat. No. 8,985,111, which is a continuation of U.S. application Ser. No. 12/607,496, filed on Oct. 28, 2009, now U.S. Pat. No. 8,327,849, which claims the benefit of U.S. Provisional Application No. 61/109,075, filed on Oct. 28, 2008, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
393869 | Warren | Dec 1888 | A |
938808 | Yount | Nov 1909 | A |
2670739 | NcNeill | Mar 1954 | A |
2918917 | Emerson | Dec 1959 | A |
3710780 | Milch | Jan 1973 | A |
3908987 | Boehringer | Sep 1975 | A |
4054134 | Kritzer | Oct 1977 | A |
4062358 | Kritzer | Dec 1977 | A |
4182366 | Boehringer | Jan 1980 | A |
4198969 | Virag | Apr 1980 | A |
4221381 | Ericson | Sep 1980 | A |
4226233 | Kritzer | Oct 1980 | A |
4231375 | Boehringer et al. | Nov 1980 | A |
4267832 | Hakkinen | May 1981 | A |
4275722 | Sorensen | Jun 1981 | A |
4298023 | McGinnis | Nov 1981 | A |
4327740 | Shuman | May 1982 | A |
4403616 | King | Sep 1983 | A |
4436090 | Darling | Mar 1984 | A |
4470412 | Nowacki et al. | Sep 1984 | A |
4601465 | Roy | Jul 1986 | A |
4611591 | Inui et al. | Sep 1986 | A |
4635631 | Izumi | Jan 1987 | A |
4651731 | Vicenzi et al. | Mar 1987 | A |
4739987 | Nicholson | Apr 1988 | A |
4770413 | Green | Sep 1988 | A |
4951661 | Sladek | Aug 1990 | A |
4973047 | Norell | Nov 1990 | A |
4981295 | Belman et al. | Jan 1991 | A |
5018517 | Liardet | May 1991 | A |
5042467 | Foley | Aug 1991 | A |
5065746 | Steen | Nov 1991 | A |
5193529 | Labaere | Mar 1993 | A |
5345930 | Cardinal et al. | Sep 1994 | A |
5372128 | Haber et al. | Dec 1994 | A |
5381789 | Marquardt | Jan 1995 | A |
5451190 | Liardet | Sep 1995 | A |
5479920 | Piper et al. | Jan 1996 | A |
5540220 | Gropper et al. | Jul 1996 | A |
5569122 | Cegla | Oct 1996 | A |
5570682 | Johnson | Nov 1996 | A |
5598839 | Niles et al. | Feb 1997 | A |
5613489 | Miller | Mar 1997 | A |
5645049 | Foley et al. | Jul 1997 | A |
5647345 | Saul | Jul 1997 | A |
5655520 | Howe | Aug 1997 | A |
5658221 | Hougen | Aug 1997 | A |
5727546 | Clarke et al. | Mar 1998 | A |
5791339 | Winter | Aug 1998 | A |
5829429 | Hughes | Nov 1998 | A |
5848588 | Foley et al. | Dec 1998 | A |
5862802 | Bird | Jan 1999 | A |
5890998 | Hougen | Apr 1999 | A |
5893361 | Hughes | Apr 1999 | A |
5899832 | Hougen | May 1999 | A |
5910071 | Hougen | Jun 1999 | A |
5925831 | Storsved | Jul 1999 | A |
5988166 | Hayek | Nov 1999 | A |
6026807 | Puderbaugh et al. | Feb 2000 | A |
6029661 | Whaley et al. | Feb 2000 | A |
6044841 | Verdun et al. | Apr 2000 | A |
6058932 | Hughes | May 2000 | A |
6066101 | Johnson | May 2000 | A |
6067984 | Piper | May 2000 | A |
6083141 | Hougen | Jul 2000 | A |
6089105 | Ricciardelli | Jul 2000 | A |
6102038 | DeVries | Aug 2000 | A |
6167881 | Hughes | Jan 2001 | B1 |
6176235 | Benarrouch et al. | Jan 2001 | B1 |
6182657 | Brydon et al. | Feb 2001 | B1 |
D440651 | Foran | Apr 2001 | S |
6240917 | Andrade | Jun 2001 | B1 |
6253766 | Niles | Jul 2001 | B1 |
6269839 | Wickham et al. | Aug 2001 | B1 |
6293279 | Schmidt et al. | Sep 2001 | B1 |
6340025 | Van Brunt | Jan 2002 | B1 |
6345617 | Engelbreth et al. | Feb 2002 | B1 |
6412481 | Bienvenu et al. | Jul 2002 | B1 |
6446629 | Takaki et al. | Sep 2002 | B1 |
6447459 | Larom | Sep 2002 | B1 |
6500095 | Hougen | Dec 2002 | B1 |
6557549 | Schmidt et al. | May 2003 | B2 |
6581595 | Murdock et al. | Jun 2003 | B1 |
6581596 | Truitt | Jun 2003 | B1 |
6581598 | Foran et al. | Jun 2003 | B1 |
6581600 | Bird | Jun 2003 | B2 |
6595203 | Bird | Jul 2003 | B1 |
6606989 | Brand | Aug 2003 | B1 |
6607008 | Yoshimoto et al. | Aug 2003 | B1 |
6615831 | Truitt | Sep 2003 | B1 |
6631721 | Salter et al. | Oct 2003 | B1 |
6659100 | O'Rourke | Dec 2003 | B2 |
6681768 | Haaije de Boer et al. | Jan 2004 | B2 |
6702769 | Fowler-Hawkins | Mar 2004 | B1 |
6708690 | Hete et al. | Mar 2004 | B1 |
6708691 | Hayek | Mar 2004 | B1 |
6726598 | Jarvis | Apr 2004 | B1 |
D490519 | Pelerossi et al. | May 2004 | S |
6776159 | Pelerossi et al. | Aug 2004 | B2 |
6848443 | Schmidt et al. | Feb 2005 | B2 |
6851425 | Jaffre | Feb 2005 | B2 |
6904906 | Salter | Jun 2005 | B2 |
6923181 | Tuck | Aug 2005 | B2 |
6929007 | Emerson | Aug 2005 | B2 |
6984214 | Fowler-Hawkins | Jan 2006 | B2 |
7059324 | Pelerossi et al. | Jun 2006 | B2 |
7096866 | Be'eri et al. | Aug 2006 | B2 |
7134434 | Truitt et al. | Nov 2006 | B2 |
7165547 | Truitt et al. | Jan 2007 | B2 |
7188621 | DeVries | Mar 2007 | B2 |
7191776 | Niles | Mar 2007 | B2 |
7191780 | Faram | Mar 2007 | B2 |
7214170 | Summers et al. | May 2007 | B2 |
7383740 | Krasilchikov et al. | Jun 2008 | B2 |
7617821 | Hughes | Nov 2009 | B2 |
7699054 | Pelerossi et al. | Apr 2010 | B2 |
7717847 | Smith | May 2010 | B2 |
7771472 | Hendricksen | Aug 2010 | B2 |
7779841 | Dunsmore et al. | Aug 2010 | B2 |
7798148 | Doshi | Sep 2010 | B2 |
7856979 | Doshi | Dec 2010 | B2 |
7905228 | Blacker et al. | Mar 2011 | B2 |
7909033 | Faram | Mar 2011 | B2 |
8006922 | Katzer | Aug 2011 | B2 |
8025051 | Dagsland | Sep 2011 | B2 |
8025054 | Dunsmore et al. | Sep 2011 | B2 |
8043236 | Goldshtein et al. | Oct 2011 | B2 |
8051854 | Faram | Nov 2011 | B2 |
RE43174 | Schmidt et al. | Feb 2012 | E |
8118024 | DeVries et al. | Feb 2012 | B2 |
8118713 | Foley et al. | Feb 2012 | B2 |
8225785 | Richards et al. | Jul 2012 | B2 |
8327849 | Grychowski et al. | Dec 2012 | B2 |
8360061 | Brown | Jan 2013 | B2 |
8460223 | Huster et al. | Jun 2013 | B2 |
8469029 | Brown et al. | Jun 2013 | B2 |
8485179 | Meyer | Jul 2013 | B1 |
8528547 | Dunsmore | Sep 2013 | B2 |
8539951 | Meyer et al. | Sep 2013 | B1 |
8985111 | Grychowski et al. | Mar 2015 | B2 |
8993774 | Kanbara et al. | Mar 2015 | B2 |
D731050 | Meyer | Jun 2015 | S |
9149589 | Meyer et al. | Oct 2015 | B2 |
9220855 | Meyer | Dec 2015 | B2 |
9358417 | Meyer | Jun 2016 | B2 |
9517315 | Meyer | Dec 2016 | B2 |
D776804 | Meyer | Jan 2017 | S |
D778429 | Engelbreth et al. | Feb 2017 | S |
D780906 | Engelbreth et al. | Mar 2017 | S |
9636473 | Meyer | May 2017 | B2 |
9737677 | Grychowski | Aug 2017 | B2 |
9808588 | Meyer et al. | Nov 2017 | B1 |
9849257 | Meyer et al. | Dec 2017 | B2 |
9913955 | Grychowski | Mar 2018 | B2 |
9950128 | Meyer et al. | Apr 2018 | B2 |
9981106 | Meyer et al. | May 2018 | B2 |
10039691 | Von Hollen | Aug 2018 | B2 |
10076616 | Meyer et al. | Sep 2018 | B2 |
10272224 | Costella et al. | Apr 2019 | B2 |
10363383 | Alizoti et al. | Jul 2019 | B2 |
10413698 | Meyer et al. | Sep 2019 | B2 |
10449324 | Meyer et al. | Oct 2019 | B2 |
20030234017 | Pelerossi | Dec 2003 | A1 |
20060032607 | Wisniewski | Feb 2006 | A1 |
20070089740 | Baumert et al. | Apr 2007 | A1 |
20070259759 | Sumners et al. | Nov 2007 | A1 |
20080078383 | Richards | Apr 2008 | A1 |
20080257348 | Piper | Oct 2008 | A1 |
20090241949 | Smutney et al. | Oct 2009 | A1 |
20100139655 | Genosar | Jun 2010 | A1 |
20100307487 | Dunsmore et al. | Dec 2010 | A1 |
20120097164 | Rozario et al. | Apr 2012 | A1 |
20150374939 | Meyer et al. | Dec 2015 | A1 |
20170049979 | Meyer et al. | Feb 2017 | A1 |
20170128683 | Meyer et al. | May 2017 | A1 |
20170312461 | Grychowski et al. | Nov 2017 | A1 |
20180154093 | Meyer et al. | Jun 2018 | A1 |
20180214662 | Meyer et al. | Aug 2018 | A1 |
20180256839 | Meyer et al. | Sep 2018 | A1 |
20190240533 | Alizoti | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
0 372 148 | Jun 1990 | EP |
0 678 306 | Oct 1995 | EP |
1 464 357 | Oct 2004 | EP |
1 435 251 | Jun 2006 | EP |
1 103 287 | Jun 2007 | EP |
1 897 576 | Mar 2008 | EP |
1 908 489 | Apr 2008 | EP |
2444114 | Apr 2012 | EP |
2455137 | May 2012 | EP |
2 425 488 | Nov 2006 | GB |
WO 198903707 | May 1989 | WO |
WO 199640376 | Dec 1996 | WO |
WO 199916490 | Apr 1999 | WO |
WO 200027455 | May 2000 | WO |
WO 2007061648 | May 2007 | WO |
WO 2007119104 | Oct 2007 | WO |
WO 2008063966 | May 2008 | WO |
WO 2008122045 | Oct 2008 | WO |
WO 2009131965 | Oct 2009 | WO |
WO 2011058470 | May 2011 | WO |
WO 2012038864 | Mar 2012 | WO |
WO 2016012740 | Jan 2016 | WO |
Entry |
---|
U.S. Appl. No. 14/674,494, filed Mar. 31, 2015, Meyer et al. |
Web page entitled Bronchial Hygiene, acapella Vibratory PEP Therapy System accessed from http://www.smiths-medical.com/catalog/bronchial-hygiene/acapella/acapella.html on Jul. 7, 2009. |
Web page entitled Thayer Quake accessed from http://www.thayermedical.com/quake.htm on Jul. 7, 2009. |
Human growth hormone, cortisol, and acid-base balance changes after hyperventilation and breath-holding; PubMed—indexed for MEDLINE; Int J Sports Med., Dec. 1986; 7(6):311-5, Djarova T. |
Bosco C, Cardinale M. & Tsarpela O (1999). Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol 79, 306-311. |
David Sumners; Power Breathing and Strength; http://EzineArticles.com/972576 Published: Feb. 7, 2008. |
Good Vibrations blog; http://vibrotraining.blogspot.com, Earliest posting Jan. 17, 2008. |
Breathtaking News; More Youbreathe; Aug. 10, 2007. |
PCT International Search Report for PCT/IB2012/001089, dated Oct. 5, 2012. |
PCT International Written Opinion for PCT/IB2012/001089, dated Oct. 5, 2012. |
Preliminary Report on Patentability, PCT/IB2012/001089, dated Dec. 10, 2013. |
PCT/IB2012001089 European Search Report dated Nov. 6, 2014. |
D R Burton Healthcare LLC v. Trudell Medical International; “Petition for Inter Partes Review of Claims 1-26 Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 et seq.”;U.S. Pat. No. 9,808,588; May 4, 2018; 94 pages. |
D R Burton Healthcare LLC v. Trudell Medical International; “Declaration of Dr. William W. Durgin, Ph.D., In Support of Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588; Trudell Medical Exhibit 2001-00001-2001-00217; Sep. 6, 2018; 217 pages. |
D R Burton Healthcare LLC v. Trudell Medical International; “Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588; Sep. 7, 2018; 107 pages. |
D R Burton Healthcare LLC v. Trudell Medical International; “Petitioner's Reply to Patent Owner Preliminary Response”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588 B1; Oct. 9, 2018; 16 pages. |
D R Burton Healthcare LLC v. Trudell Medical International; “Decision Denying Institution of Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588 B1; Nov. 29, 2018; 32 pages. |
Number | Date | Country | |
---|---|---|---|
20200297952 A1 | Sep 2020 | US |
Number | Date | Country | |
---|---|---|---|
61109075 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15651706 | Jul 2017 | US |
Child | 16853089 | US | |
Parent | 13959293 | Aug 2013 | US |
Child | 15651706 | US | |
Parent | 13674340 | Nov 2012 | US |
Child | 13959293 | US | |
Parent | 12607496 | Oct 2009 | US |
Child | 13674340 | US |