Oscillating positive expiratory pressure device

Information

  • Patent Grant
  • 11865254
  • Patent Number
    11,865,254
  • Date Filed
    Monday, April 20, 2020
    4 years ago
  • Date Issued
    Tuesday, January 9, 2024
    8 months ago
Abstract
An oscillating positive expiratory pressure apparatus having a housing defining a chamber, a chamber inlet, a chamber outlet, a deformable restrictor member positioned in an exhalation flow path between the chamber inlet and the chamber outlet, and an oscillation member disposed within the chamber. The deformable restrictor member and the oscillation member are moveable between an engaged position, where the oscillation member is in contact with the deformable restrictor member and an disengaged position, where the oscillation member is not in contact with the deformable restrictor member. The deformable restrictor member and the oscillation member move from the engaged position to the disengaged position in response to a first exhalation pressure at the chamber inlet, and move from the disengaged position to an engaged position in response to a second exhalation pressure at the chamber inlet.
Description
TECHNICAL FIELD

The present disclosure relates to an expiratory treatment device, and in particular, to an oscillating positive expiratory pressure (“OPEP”) device.


BACKGROUND

Each day, humans may produce upwards of 30 milliliters of sputum, which is a type of bronchial secretion. Normally, an effective cough is sufficient to loosen secretions and clear them from the body's airways. However, for individuals suffering from more significant bronchial obstructions, such as collapsed airways, a single cough may be insufficient to clear the obstructions.


OPEP therapy represents an effective bronchial hygiene technique for the removal of bronchial secretions in the human body and is an important aspect in the treatment and continuing care of patients with bronchial obstructions, such as those suffering from chronic obstructive lung disease. It is believed that OPEP therapy, or the oscillation of exhalation pressure at the mouth during exhalation, effectively transmits an oscillating back pressure to the lungs, thereby splitting open obstructed airways and loosening the secretions contributing to bronchial obstructions.


OPEP therapy is an attractive form of treatment because it can be easily taught to most hospitalized patients, and such patients can assume responsibility for the administration of OPEP therapy throughout their hospitalization and also once they have returned home. To that end, a number of portable OPEP devices have been developed.


BRIEF SUMMARY

A portable OPEP device and a method of performing OPEP therapy is described herein. In one aspect, a portable OPEP device includes a housing defining a chamber, a chamber inlet configured to receive exhaled air into the chamber, a chamber outlet configured to permit exhaled air to exit the chamber, a deformable restrictor member positioned in an exhalation flow path between the chamber inlet and the chamber outlet, and an oscillation member disposed within the chamber. The deformable restrictor member and the oscillation member are moveable relative to one another between an engaged position, where the oscillation member is in contact with the deformable restrictor member and a disengaged position, where the oscillation member is not in contact with the deformable restrictor member. The deformable restrictor member and the oscillation member are also configured to move from the engaged position to the disengaged position in response to a first exhalation pressure at the chamber inlet, and move from the disengaged position to an engaged position in response to a second exhalation pressure at the chamber inlet. The first exhalation pressure is greater than the second exhalation pressure.


In another aspect, the deformable restrictor member deforms in response to an intermediate exhalation pressure at the chamber inlet, and returns to a natural shape in response to the first exhalation pressure at the chamber inlet.


In another aspect, the OPEP device has a biasing member positioned to bias the deformable restrictor member and the oscillation member to the engaged position. The biasing member may be a spring. Alternatively, the biasing member may have at least one pair of magnets, wherein a first magnet of the at least one pair of magnets is connected to the oscillation member and a second magnet of the at least one pair of magnets is connected to the housing. The position of the biasing member may also be selectively moveable to adjust the amount of bias


In yet another aspect, the OPEP device includes a glide surface extending from the housing into the chamber, such that the glide surface is in sliding contact about the oscillation member, and movement of the oscillation member is substantially limited to reciprocal movement about an axis of the oscillation member.


In another aspect, the oscillation member includes at least one channel adapted so that the exhalation flow path is not completely restricted when the deformable restrictor member and the oscillation member are in the engaged positioned.


In another aspect, the OPEP device includes a mouthpiece connected to the housing that is in fluid communication with the chamber inlet. The mouthpiece may have a cross-sectional area greater than a cross-sectional area of the chamber inlet.


In yet another aspect, the housing has a first portion and a second portion, with the second portion being removably connected to the first portion.


In another aspect, the OPEP device includes a respiratory portal for receiving an aerosol medicament. Additionally, the oscillation member may comprise a one-way valve configured to permit the aerosol medicament to enter the chamber through the respiratory portal, the respiratory portal being in fluid communication with the chamber inlet when the one-way valve is open.


In another aspect, a method of performing oscillating positive expiratory pressure therapy is provided. The method includes passing a flow of exhaled air along an exhalation flow path defined between an inlet and an outlet of a chamber in an oscillating positive expiratory pressure device. The method also includes restricting the flow of exhaled air by maintaining a deformable restrictor member and an oscillation member disposed within the chamber in an engaged position, where the oscillation member is in contact with the deformable restrictor member, until a first exhalation pressure is reached at a chamber inlet. The method further includes unrestricting the flow of exhaled air by moving the deformable restrictor member and the oscillation member to a disengaged position, where the oscillation member is not in contact with the deformable restrictor member, until a second exhalation pressure is reached at the chamber inlet. The method also includes returning the deformable restrictor member and the oscillation member to the engaged position with a biasing force when the second exhalation pressure is reached at the chamber inlet. The first exhalation pressure may be greater than the second exhalation pressure. Finally, the method may also include deforming the deformable restrictor member in response to an intermediate exhalation pressure at the chamber inlet, and returning the deformable restrictor member to a natural shape in response to the first exhalation pressure at the chamber inlet.


In another embodiment, a system for providing oscillating positive expiratory pressure therapy in combination with aerosol therapy is provided. The system includes an oscillating positive expiratory pressure apparatus having a housing defining a chamber, a chamber inlet configured to receive exhaled air into the chamber, and a chamber outlet configured to permit exhaled air to exit the chamber. The oscillating positive expiratory pressure apparatus also has an exhalation flow path defined between the chamber inlet and the chamber outlet, and an oscillation member disposed within the chamber and configured to operatively restrict a flow of exhaled air along the exhalation flow path. The oscillation member is moveable relative to the flow path between a restrictive position, where the flow of exhaled air is substantially restricted and an unrestrictive position, where the flow of exhaled air is substantially unrestricted. The oscillating positive expiratory pressure apparatus may also have a respiratory portal for receiving an aerosol medicament. The respiratory portal may be in fluid communication with the chamber inlet. The system also includes an aerosol therapy apparatus removably connected to the respiratory portal of the oscillating positive expiratory pressure apparatus. The aerosol therapy apparatus includes an aerosol housing having an aerosol chamber for holding an aerosol medicament, and an aerosol outlet communicating with the aerosol chamber for permitting the aerosol medicament to be withdrawn from the aerosol chamber.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front perspective view of a first embodiment of an OPEP device;



FIG. 2 is a side perspective view of the embodiment of FIG. 1;



FIG. 3 is a cross-sectional side view of the embodiment of FIG. 1, showing a deformable restrictor member and an oscillation member in an engaged position;



FIG. 4 is a cross-sectional perspective view of an inlet insert shown in the embodiment of FIG. 1;



FIG. 5 is a cross-sectional perspective view of a deformable restrictor member shown in the embodiment of FIG. 1;



FIG. 6 is a front perspective view of an oscillation member shown in the embodiment of FIG. 3;



FIG. 7 is a rear perspective view of the oscillation member shown in the embodiment of FIG. 3;



FIG. 8 is a cross-sectional side view of a second embodiment of an OPEP device, showing a deformable restrictor member and an oscillation member in an engaged position;



FIG. 9 is a cross-sectional side view of the embodiment of FIG. 8, showing the flow of air upon a user's inhalation;



FIG. 10 is a cross-sectional side view of the embodiment of FIG. 8, showing the flow of air upon a user's exhalation;



FIG. 11 is a cross-sectional side view of an OPEP device connected to a nebulizer, showing the flow of an aerosol medicament upon a user's inhalation;



FIG. 12 is a cross-sectional side view of the OPEP device and nebulizer of FIG. 11, showing the flow of air upon a user's exhalation; and,



FIG. 13 is a cross-sectional rear perspective view of a third embodiment of an OPEP device having a biasing member comprised of at least one pair of opposing magnets.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

OPEP therapy is very effective within a specific range of operating conditions. For example, an adult human may have an exhalation flow rate ranging from 10 to 60 liters per minute, and may maintain a static exhalation pressure in the range of 10 to 20 cm H2O. Within these parameters, OPEP therapy is believed to be most effective when changes in the exhalation pressure range from 5 to 20 cm H2O oscillating at a frequency of 10 to 40 Hz. In contrast, an infant may have a much lower exhalation flow rate, and may maintain a lower static exhalation pressure, thereby altering the operating conditions most effective for OPEP therapy. As described below, the present invention is configurable so that ideal operating conditions may be selected and maintained.


Referring to FIG. 1, a first embodiment of an assembled OPEP device 100 is shown. The OPEP device 100 comprises a housing 102 having a front portion 104 and a rear portion 106 which together defines a chamber 108 (see FIG. 3). The housing 102 may be constructed of any durable material, such as a plastic or a metal. The OPEP device 100 shown in FIG. 1 is substantially spherical in shape, which provides for an easy grasp of the OPEP device 100 in the hands of a user, as well as portability. It should be appreciated, however, that the OPEP device 100 could be any shape, so long as it defines a chamber 108 capable of housing the necessary components, as described herein. Preferably, the housing 102 is openable so the chamber 108 may be accessed for cleaning and replacing components contained therein. As shown, the front portion 104 and the rear portion 106 of the housing 102 are removably connected along a joint 110, such as by a snap fit or a threaded screw connection.


The OPEP device 100 also includes a mouthpiece 112 which may either be formed as an integral part of the housing 102 or removably attached to the housing 102. Although the mouthpiece 112 is shown as being cylindrical in shape, the mouthpiece 112 could be any number of alternative sizes or shapes to accommodate various users of the OPEP device 100, such as children or adults. A chamber inlet 114 positioned within the mouthpiece 112 is configured to receive exhaled air into the chamber 108. In view of the description below, it should be apparent that the cross sectional area of the chamber inlet 114 is an important variable affecting the exhalation pressure generated at the mouth of a user, and may be modified or selectively replaced according to the desired operating conditions.


A side perspective view of the OPEP device 100 is shown in FIG. 2. The OPEP device 100 further comprises at least one chamber outlet 116 configured to permit exhaled air to exit the chamber 108. The at least one chamber outlet 116 may comprise any number of apertures, having any shape or size. Furthermore, the at least one chamber outlet 116 may be located elsewhere on the housing 102. The OPEP device 100 may also include a grate 117 to prevent unwanted objects from entering housing 102.


Referring to FIG. 3, a cross-sectional side view of the OPEP device 100 shows the internal components of the OPEP device 100. The minimal number of components contained in the OPEP device 100, and its relatively simple operation, make the OPEP device 100 particularly suitable for single patient use. In general, the housing 102 of the OPEP device 100 encloses an inlet insert 118, a deformable restrictor member 120, an oscillation member 122, a coil spring 124, and a glide surface 126. As explained below, the various alternatives for each of the inlet insert 118, the deformable restrictor member 120, the oscillation member 122, and the coil spring 124 provide of a highly configurable OPEP device 100.


A cross-sectional perspective view of the inlet insert 118 is shown in FIG. 4. The inlet insert 118 is removably connectable to the housing 102 and/or mouthpiece 112 of the OPEP device 100, and includes the chamber inlet 114. The chamber inlet 114 may be a single narrow aperture, or alternatively, may comprise any number of apertures having any size or shape. Because the inlet insert 118 is removably connectable to the OPEP device 100, a user may select an inlet insert 118 having the appropriate sized chamber inlet 114 for the prescribed OPEP therapy. It is important, however, that the mouthpiece 112 have a cross-sectional area greater than the cross-sectional area of the chamber inlet 114.


The inlet insert 118 is configured to be snap or compression fit within the front portion 104 of the housing 102, which may be accomplished while the front portion 104 and the rear portion 106 are detached. The inlet insert 118 includes an annular recess 128 for receiving a corresponding annular protrusion 130, which may be located on a rim 131 connected to either the mouthpiece 112 or the housing 102, as shown in FIG. 4. Furthermore, the inlet insert 118 is shaped to fit within the spherically shaped OPEP device 100; however, the inlet insert 118 could be modified to fit within any other shaped OPEP device. Alternatively, the inlet insert 118 and the chamber inlet 114 may be formed as an integral part of the housing 102 or the mouthpiece 112. The inlet insert 118 further includes an annular mounting surface 132 for supporting the deformable restrictor member 120, as described below.


Referring to FIG. 5, a cross-sectional perspective view of the deformable restrictor member 120 is shown. The deformable restrictor member 120 operates as a regulator of the exhalation pressure at the chamber inlet 114. The deformable restrictor member 120 may be constructed of an elastic material, preferably having an elasticity of at least 40 durometers (A scale). Like the inlet insert 118, the deformable restrictor member 120 may be any number of shapes, but is shown in FIG. 5 as being circular to fit within the spherically shaped OPEP device 100.


The deformable restrictor member 120 generally includes an upper portion 134, a lower portion 136, and a reinforcing band 138 of elastic material. As shown in FIG. 3, the upper portion 134 is configured for mounting the deformable restrictor member 120 on the mounting surface 132 and about the rim 131, as explained above. When the front portion 104 and the rear portion 106 of the housing 102 are detached, the upper portion 134 of the deformable restrictor member 120 is mountable about the rim 131 of the inlet insert 118, and the inlet insert 118 may be snapped into place within the housing 102. Once the inlet insert 118 is connected to the housing 102, the deformable restrictor member 120 is retained by the rim 131, the mounting surface 132, and the front portion 104 of the housing 102. Alternatively, the housing 102 or the mouthpiece 112 may be configured to provide the rim 131 and the mounting surface 132 for mounting and retaining the deformable restrictor member 120.


The deformable restrictor member 120, and in particular, the lower portion 136, is configured to deform as the exhalation pressure at the chamber inlet 114 increases. Preferably, the lower portion 136 of the deformable restrictor member 120 should be curved inward so that, as the deformable restrictor member 120 deforms, the lower portion 136 expands in a direction away from the upper portion 134. To improve the elasticity and rigidness of the deformable restrictor member 120, a reinforcing band 138 of elastic material may be added to the deformable restrictor member 120. Depending on the shape of the deformable restrictor member 120 and the desired elasticity, the reinforcing band 138 may be omitted or located elsewhere on the deformable restrictor member 120.


Referring to FIG. 6, a front perspective view of an oscillation member 122 is shown. In general, the oscillation member 122 includes a contact surface 140 connected to the end of a post 142. The contact surface 140 is configured to engage the lower portion 136 of the deformable restrictor member 120. As shown in FIGS. 3 and 6, the contact surface 140 may be hemispherically shaped to fit within a correspondingly shaped portion of the inlet insert 118, or a correspondingly shaped portion of the housing 102 or mouthpiece 112 if the inlet insert 118 is omitted. Alternatively, the contact surface 140 may be substantially flat.


The contact surface 140 shown in FIG. 6 includes at least one channel 143 which traverses a portion of the contact surface 140 where the deformable restrictor member 120 and the oscillation member 122 engage one another. In this embodiment, the channels 143 are sized such that an air passage from the chamber inlet 114 to the chamber outlet 116 is maintained during both inhalation and exhalation via the space defined by the restrictor member 120 and the channels 143. This air passage, or collection of air passages, is sized to prevent complete restriction of air flow but selected to allow sufficient build-up of pressure to provide oscillating pressure upon patient exhalation.


Although the contact surface 140 is shown in FIG. 6 as having seven separate channels 143, the contact surface 140 could include any number of channels 143. Furthermore, the one or more channels 143 may have a variety of sizes, depending upon the desired restriction of exhaled air received from the user. Alternatively, the contact surface 140 may be fabricated without any channels 143. Because the oscillation member 122 is removably enclosed within the housing 102 of the OPEP device 100, a user may select an oscillation member 122 having the appropriate shape, size, or number of channels for the prescribed OPEP therapy.


A rear perspective view of the oscillation member 122 is shown in FIG. 7. The post 142 is configured for positioning about the glide surface 126, as shown in FIG. 3, so that the post 142 is in sliding contact with the glide surface 126. When the post 142 is positioned about the glide surface 126, the oscillation member 122 is substantially limited to reciprocal movement about the central axis of the oscillation member 122. As shown in FIGS. 3 and 7, the glide surface 126 and the post 142 are shaped as hollow cylinders, and the post 142 is sized to fit within the glide surface 126. However, the glide surface 126 and the post 142 may have any shape, and the glide surface 126 may be alternatively sized to fit within the post 142. The oscillation member 122 also includes a skirt 144 for aligning a biasing member, such as the coil spring 124, about the oscillation member 122 when the OPEP device 100 is assembled.


Referring to FIG. 3, the coil spring 124 is positioned to extend from the housing 102 and contact a lower surface 146 of the oscillation member 122. The coil spring 124 is positioned to bias the oscillation member 122 into engagement with the deformable restrictor member 120. Similar to the deformable restrictor member 120 and the oscillation member 122, the coil spring 124 may be selectively replaced with other springs have a different rigidity or number of coils to achieve the desired operating conditions for the prescribed OPEP treatment.


To administer OPEP therapy using the OPEP device 100 descried above, a user begins by exhaling into the mouthpiece 112. In doing so, an exhalation flow path 148 is defined between the chamber inlet 114 and the at least one chamber outlet 116. The exhalation pressure at the chamber inlet 114 represents a function of the flow of exhaled air permitted to traverse the exhalation flow path 148 and exit the OPEP device 100 through the chamber outlet 116. As the exhalation pressure at the chamber inlet 114 changes, an equal back pressure is effectively transmitted to the respiratory system of the user.


As shown in FIG. 3, prior to using the OPEP device 100, the oscillation member 122 is biased to an engaged position, where the deformable restrictor member 120 is in contact with the oscillation member 122. In the engaged position, the exhalation flow path 148 is substantially restricted by the deformable restrictor member 120 and the oscillation member 122. As a user exhales into the OPEP device 100, an initial exhalation pressure at the chamber inlet 114 begins to increase, as only a fraction of the exhaled air is permitted to flow along the exhalation flow path 148 through the at least one channel 143 on the oscillation member 122. As the exhalation pressure increases at the chamber inlet 114 to an intermediate pressure, the deformable restrictor member 120 begins to expand under the force of the increased pressure. As the deformable restrictor member 120 expands, the lower portion 136 moves in an outward direction, toward the oscillation member 122. In the engaged position, however, the outward movement of the lower portion 136 is resisted by the oscillation member 122, which is biased against the deformable restrictor member 120 by the coil spring 124. As the exhalation pressure continues to increase, the deformable restrictor member 120 continues to deform until a maximum point of expansion is obtained. When the deformable restrictor member 120 obtains its maximum expansion, the exhalation pressure is also at a maximum pressure.


At the maximum point of expansion, the increasing exhalation pressure causes the deformable restrictor member 120 to quickly retract, ultimately returning to its natural shape. As the deformable restrictor member 120 retracts, the deformable restrictor member 120 and the oscillation member 122 move to a disengaged position, where the deformable restrictor member 120 is not in contact with the oscillation member 122. At that time, exhaled air is permitted to flow substantially unrestricted along the exhalation flow path 148 from the chamber inlet 114 to the chamber outlet 116. Because the retraction of the deformable restrictor member 120 is quicker than the movement of the oscillation member 122 under the biasing force of the coil spring 124, the deformable restrictor member 120 and the oscillation member 122 remain in the disengaged position for a short period of time, during which the exhalation pressure at the chamber inlet 114 decreases. Depending on multiple variables, including the elasticity of the deformable restrictor member 120, the biasing force of the coil spring 124, and the exhalation flow rate, the deformable restrictor member 120 and the oscillation member 122 may remain in the disengaged position for only a fraction of a second.


After the deformable restrictor member 120 returns to its natural shape, the oscillation member 122, under the biasing force of the coil spring 124, moves back into an engaged position with the deformable restrictor member 120. Then, as a user continues to exhale, the exhalation pressure at the chamber inlet 114 begins to increase, and the cycle described above is repeated. In this way, the exhalation pressure at the chamber inlet 114 oscillates between a minimum and a maximum so long as a user continues to exhale into the OPEP device 100. This oscillating pressure is effectively transmitted back to the respiratory system of the user to provide OPEP therapy.


A cross-sectional side view of a second embodiment of an OPEP device 200 is shown in FIG. 8. Like the OPEP device 100, a housing 202 of the OPEP device 200 encloses a deformable restrictor member 220, an oscillation member 222, a coil spring 224, and a glide surface 226. The OPEP device 200 also includes a mouthpiece 212, a chamber inlet 214, a chamber outlet 216, and has an exhalation flow path 248 defined therebetween.


The OPEP device 200 further comprises an adjustment plate 254 for selectively moving an end of a biasing member, such as the coil spring 224, to adjust the amount of bias. The adjustment plate 254 is connected to at least one thumb screw 256 extending from the adjustment plate 254 to a location outside the housing 202. In this way, a user may rotate the at least one thumb screw 256 in one direction to move both the adjustment plate 254 and an end of the coil spring 224 toward the oscillation member 222, thereby increasing the bias. A user may rotate the at least one thumb screw 256 the opposite direction to decrease the bias. By changing the amount of bias, a user may selectively increase or decrease the resistance the oscillation member 222 applies against the deformable restrictor member 220 while in the engaged position. A change in the bias also changes the rate at which the oscillation member 222 moves from the engaged position to the disengaged position, and back to the engaged position, during the administration of OPEP therapy.


The OPEP device 200 shown in FIG. 8 further comprises a respiratory portal 250 and a one-way valve 252 positioned on the oscillation member 222. The oscillation member 222 shown in FIG. 8 omits the at least one channel and has a substantially flat contact surface 240 to accommodate the one-way valve 252. The one-way valve 252 is configured to open as a user inhales, and permit air to enter the chamber 208 from the respiratory portal 250, as shown in FIG. 9. In contrast, the one-way valve 252 is closed during exhalation, as seen at one point during the administration of OPEP therapy in FIG. 10, when the deformable restrictor member 220 and the oscillation member 222 are in the disengaged position.


Referring to FIG. 11, the respiratory portal 250 of the OPEP device 200 is also configured to receive an aerosol outlet 260 of a nebulizer 258. The nebulizer 258 may be removably connected to the OPEP device 200 by any suitable means for the combined administration of OPEP and aerosol therapies. Any of a number of commercially available nebulizers may be used with the OPEP device 200. One suitable nebulizer is the AeroEclipse® II breath actuated nebulizer available from Trudell Medical International of London, Canada. Descriptions of suitable nebulizers may be found in U.S. Pat. No. 5,823,179, the entirety of which is hereby incorporated by reference herein.


In this configuration, a user receives aerosol therapy upon inhalation. As seen in FIG. 11, when a user inhales, the one-way valve 252 opens, and an aerosol medicament is drawn from the aerosol output 260, through the respiratory portal 250 and the chamber 208, and into the respiratory system of the user. In contrast, OPEP therapy is delivered upon exhalation. As seen in FIG. 12, when a user exhales, the one-way valve 252 closes, the aerosol medicament is contained within the respiratory portal 250, and the OPEP device 200 is able to deliver OPEP therapy in accordance with the method described above.


A cross-sectional perspective view of a third embodiment of an OPEP device 300 is shown in FIG. 13. In general, a housing 302 of the OPEP device 300 encloses a deformable restrictor member 320, an oscillation member 322 having a one-way valve 352, a glide surface 326, and an adjustment plate 354. The OPEP device 300 also includes a mouthpiece 312, a chamber inlet 314, a chamber outlet 316, and a respiratory portal 350.


The OPEP device 300 is different from the OPEP device 200 in that it includes a biasing member comprised of at least one pair of magnets 362. For each pair of the at least one pair of magnets 362, one magnet is positioned on the oscillation member 322 and another magnet is positioned on the adjustment plate 354. The magnets in each pair have opposing polarities. As such, the oscillation member 322 is biased by the at least one pair of magnets 362 into the engaged position with the deformable restrictor member 320.


During the administration of OPEP therapy, the at least one pair of magnets 362 functions in the same manner as the coil spring, as discussed above. Specifically, as a user exhales into the OPEP device 300 and the deformable restrictor member 320 expands, the at least one pair of magnets 362 resist the movement of oscillation member 322. After the deformable restrictor member 320 has reached its maximum point of expansion and quickly returned to its natural shape, the at least one pair of magnets 362 bias the oscillation member 322 from the disengaged position back to the engaged position. Furthermore, like the OPEP device 200, the amount of bias supplied by the at least one pair of magnets 362 may be adjusted by rotating the at least one thumb screw 356, thereby moving the adjustment plate 354 and the magnets positioned thereon closer to the magnets positioned on the oscillation member 322.


The foregoing description of the inventions has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the inventions to the precise forms disclosed. It will be apparent to those skilled in the art that the present inventions are susceptible of many variations and modifications coming within the scope of the following claims.

Claims
  • 1. An oscillating positive expiratory pressure apparatus comprising: a housing defining a chamber,a chamber inlet configured to receive exhaled air into the chamber;a chamber outlet configured to permit exhaled air to exit the chamber;a respiratory portal configured to receive an aerosol medicament into the chamber from a nebulizer configured to deliver aerosol therapy; and,a one-way valve configured to permit the aerosol medicament to enter the chamber;an inhalation flow path defined between the one-way valve and the chamber inlet; and,a moveable oscillation member positioned in the inhalation flow path;wherein the one-way valve is configured to remain closed during administration of oscillating positive expiratory pressure therapy, and is configured to open when the aerosol medicament is received into the chamber, thereby allowing a user to perform both oscillating positive expiratory pressure therapy and aerosol therapy during a respiratory cycle.
  • 2. The oscillating positive expiratory pressure apparatus of claim 1, wherein the one-way valve is configured to remain closed during a period of exhalation.
  • 3. The oscillating positive expiratory pressure apparatus of claim 1, wherein the one-way valve is configured to open during a period of inhalation.
  • 4. The oscillating positive expiratory pressure apparatus of claim 1, wherein the inhalation flow path defined between the one-way valve and the chamber inlet is substantially unobstructed.
  • 5. The oscillating positive expiratory pressure apparatus of claim 1, wherein the one-way valve is positioned on the oscillation member.
  • 6. The oscillating positive expiratory pressure apparatus of claim 1, wherein the moveable oscillation member comprises a substantially flat contact surface.
  • 7. The oscillating positive expiratory pressure apparatus of claim 1, wherein the moveable oscillation member comprises a hemispherical contact surface.
  • 8. The oscillating positive expiratory pressure apparatus of claim 1, further comprising a mouthpiece in fluid communication with the chamber inlet, wherein the mouthpiece has a cross-sectional area greater than the cross-sectional area of the chamber inlet.
  • 9. The oscillating positive expiratory pressure apparatus of claim 1 further comprising a restrictor member, wherein the restrictor member and the oscillation member are configured to move relative to one another between an engaged position, where the oscillation member is in contact with the restrictor member and a disengaged position, where the oscillation member is not in contact with the restrictor member.
  • 10. The oscillating positive expiratory pressure apparatus of claim 9 further comprising a biasing member positioned to bias the restrictor member and the oscillation member to the engaged position.
  • 11. The oscillating positive expiratory pressure device of claim 10, wherein the biasing member comprises a spring.
  • 12. The oscillating positive expiratory pressure device of claim 10, wherein the biasing member comprises at least one pair of magnets, a first magnet of the at least one pair of magnets being connected to the oscillation member and a second magnet of the at least one pair of magnets being connected to the housing.
  • 13. The oscillating positive expiratory pressure apparatus of claim 10, wherein the position of the biasing member is selectively moveable to adjust the amount of bias.
  • 14. The oscillating positive expiratory pressure apparatus of claim 9, wherein the oscillation member further comprises at least one channel adapted to permit air to flow past the restrictor member when the oscillation member and the restrictor member are in the engaged position.
  • 15. An oscillating positive expiratory pressure apparatus comprising: a housing defining a chamber;a chamber inlet configured to receive exhaled air into the chamber;a chamber outlet configured to permit exhaled air to exit the chamber;a mouthpiece in fluid communication with the chamber inlet,a one-way valve configured to permit air outside the chamber to enter the chamber;an inhalation flow path defined between the one-way valve and the mouthpiece;an exhalation flow path defined between the chamber inlet and the chamber outlet;a restrictor member; and,a moveable oscillation member positioned in the inhalation flow path;wherein the restrictor member and the oscillation member are configured to move relative to one another during a period of exhalation repeatedly between an engaged position, where the flow of exhaled air along the exhalation flow path is restricted and a disengaged position, where the flow of exhaled air along the exhalation flow path is less restricted; and,wherein the one-way valve is configured to open during a period of inhalation, and close during the period of exhalation.
  • 16. The oscillating positive expiratory pressure apparatus of claim 15, wherein the air that enters the chamber through the one-way valve comprises an aerosol medicament.
  • 17. The oscillating positive expiratory pressure apparatus of claim 16, wherein the one-way valve is positioned on the oscillation member.
  • 18. The oscillating positive expiratory pressure apparatus of claim 16, wherein the inhalation flow path is substantially unobstructed between the one-way valve and the chamber inlet.
  • 19. The oscillating positive expiratory pressure device of claim 15, wherein a cross-sectional area of the mouthpiece is greater than a cross-sectional area of the chamber inlet.
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/651,706, filed on Jul. 17, 2017, which is a continuation of U.S. application Ser. No. 13/959,293, filed on Aug. 5, 2013, now U.S. Pat. No. 9,737,677, which is a continuation of U.S. application Ser. No. 13/674,340, filed on Nov. 12, 2012, now U.S. Pat. No. 8,985,111, which is a continuation of U.S. application Ser. No. 12/607,496, filed on Oct. 28, 2009, now U.S. Pat. No. 8,327,849, which claims the benefit of U.S. Provisional Application No. 61/109,075, filed on Oct. 28, 2008, all of which are incorporated herein by reference.

US Referenced Citations (180)
Number Name Date Kind
393869 Warren Dec 1888 A
938808 Yount Nov 1909 A
2670739 NcNeill Mar 1954 A
2918917 Emerson Dec 1959 A
3710780 Milch Jan 1973 A
3908987 Boehringer Sep 1975 A
4054134 Kritzer Oct 1977 A
4062358 Kritzer Dec 1977 A
4182366 Boehringer Jan 1980 A
4198969 Virag Apr 1980 A
4221381 Ericson Sep 1980 A
4226233 Kritzer Oct 1980 A
4231375 Boehringer et al. Nov 1980 A
4267832 Hakkinen May 1981 A
4275722 Sorensen Jun 1981 A
4298023 McGinnis Nov 1981 A
4327740 Shuman May 1982 A
4403616 King Sep 1983 A
4436090 Darling Mar 1984 A
4470412 Nowacki et al. Sep 1984 A
4601465 Roy Jul 1986 A
4611591 Inui et al. Sep 1986 A
4635631 Izumi Jan 1987 A
4651731 Vicenzi et al. Mar 1987 A
4739987 Nicholson Apr 1988 A
4770413 Green Sep 1988 A
4951661 Sladek Aug 1990 A
4973047 Norell Nov 1990 A
4981295 Belman et al. Jan 1991 A
5018517 Liardet May 1991 A
5042467 Foley Aug 1991 A
5065746 Steen Nov 1991 A
5193529 Labaere Mar 1993 A
5345930 Cardinal et al. Sep 1994 A
5372128 Haber et al. Dec 1994 A
5381789 Marquardt Jan 1995 A
5451190 Liardet Sep 1995 A
5479920 Piper et al. Jan 1996 A
5540220 Gropper et al. Jul 1996 A
5569122 Cegla Oct 1996 A
5570682 Johnson Nov 1996 A
5598839 Niles et al. Feb 1997 A
5613489 Miller Mar 1997 A
5645049 Foley et al. Jul 1997 A
5647345 Saul Jul 1997 A
5655520 Howe Aug 1997 A
5658221 Hougen Aug 1997 A
5727546 Clarke et al. Mar 1998 A
5791339 Winter Aug 1998 A
5829429 Hughes Nov 1998 A
5848588 Foley et al. Dec 1998 A
5862802 Bird Jan 1999 A
5890998 Hougen Apr 1999 A
5893361 Hughes Apr 1999 A
5899832 Hougen May 1999 A
5910071 Hougen Jun 1999 A
5925831 Storsved Jul 1999 A
5988166 Hayek Nov 1999 A
6026807 Puderbaugh et al. Feb 2000 A
6029661 Whaley et al. Feb 2000 A
6044841 Verdun et al. Apr 2000 A
6058932 Hughes May 2000 A
6066101 Johnson May 2000 A
6067984 Piper May 2000 A
6083141 Hougen Jul 2000 A
6089105 Ricciardelli Jul 2000 A
6102038 DeVries Aug 2000 A
6167881 Hughes Jan 2001 B1
6176235 Benarrouch et al. Jan 2001 B1
6182657 Brydon et al. Feb 2001 B1
D440651 Foran Apr 2001 S
6240917 Andrade Jun 2001 B1
6253766 Niles Jul 2001 B1
6269839 Wickham et al. Aug 2001 B1
6293279 Schmidt et al. Sep 2001 B1
6340025 Van Brunt Jan 2002 B1
6345617 Engelbreth et al. Feb 2002 B1
6412481 Bienvenu et al. Jul 2002 B1
6446629 Takaki et al. Sep 2002 B1
6447459 Larom Sep 2002 B1
6500095 Hougen Dec 2002 B1
6557549 Schmidt et al. May 2003 B2
6581595 Murdock et al. Jun 2003 B1
6581596 Truitt Jun 2003 B1
6581598 Foran et al. Jun 2003 B1
6581600 Bird Jun 2003 B2
6595203 Bird Jul 2003 B1
6606989 Brand Aug 2003 B1
6607008 Yoshimoto et al. Aug 2003 B1
6615831 Truitt Sep 2003 B1
6631721 Salter et al. Oct 2003 B1
6659100 O'Rourke Dec 2003 B2
6681768 Haaije de Boer et al. Jan 2004 B2
6702769 Fowler-Hawkins Mar 2004 B1
6708690 Hete et al. Mar 2004 B1
6708691 Hayek Mar 2004 B1
6726598 Jarvis Apr 2004 B1
D490519 Pelerossi et al. May 2004 S
6776159 Pelerossi et al. Aug 2004 B2
6848443 Schmidt et al. Feb 2005 B2
6851425 Jaffre Feb 2005 B2
6904906 Salter Jun 2005 B2
6923181 Tuck Aug 2005 B2
6929007 Emerson Aug 2005 B2
6984214 Fowler-Hawkins Jan 2006 B2
7059324 Pelerossi et al. Jun 2006 B2
7096866 Be'eri et al. Aug 2006 B2
7134434 Truitt et al. Nov 2006 B2
7165547 Truitt et al. Jan 2007 B2
7188621 DeVries Mar 2007 B2
7191776 Niles Mar 2007 B2
7191780 Faram Mar 2007 B2
7214170 Summers et al. May 2007 B2
7383740 Krasilchikov et al. Jun 2008 B2
7617821 Hughes Nov 2009 B2
7699054 Pelerossi et al. Apr 2010 B2
7717847 Smith May 2010 B2
7771472 Hendricksen Aug 2010 B2
7779841 Dunsmore et al. Aug 2010 B2
7798148 Doshi Sep 2010 B2
7856979 Doshi Dec 2010 B2
7905228 Blacker et al. Mar 2011 B2
7909033 Faram Mar 2011 B2
8006922 Katzer Aug 2011 B2
8025051 Dagsland Sep 2011 B2
8025054 Dunsmore et al. Sep 2011 B2
8043236 Goldshtein et al. Oct 2011 B2
8051854 Faram Nov 2011 B2
RE43174 Schmidt et al. Feb 2012 E
8118024 DeVries et al. Feb 2012 B2
8118713 Foley et al. Feb 2012 B2
8225785 Richards et al. Jul 2012 B2
8327849 Grychowski et al. Dec 2012 B2
8360061 Brown Jan 2013 B2
8460223 Huster et al. Jun 2013 B2
8469029 Brown et al. Jun 2013 B2
8485179 Meyer Jul 2013 B1
8528547 Dunsmore Sep 2013 B2
8539951 Meyer et al. Sep 2013 B1
8985111 Grychowski et al. Mar 2015 B2
8993774 Kanbara et al. Mar 2015 B2
D731050 Meyer Jun 2015 S
9149589 Meyer et al. Oct 2015 B2
9220855 Meyer Dec 2015 B2
9358417 Meyer Jun 2016 B2
9517315 Meyer Dec 2016 B2
D776804 Meyer Jan 2017 S
D778429 Engelbreth et al. Feb 2017 S
D780906 Engelbreth et al. Mar 2017 S
9636473 Meyer May 2017 B2
9737677 Grychowski Aug 2017 B2
9808588 Meyer et al. Nov 2017 B1
9849257 Meyer et al. Dec 2017 B2
9913955 Grychowski Mar 2018 B2
9950128 Meyer et al. Apr 2018 B2
9981106 Meyer et al. May 2018 B2
10039691 Von Hollen Aug 2018 B2
10076616 Meyer et al. Sep 2018 B2
10272224 Costella et al. Apr 2019 B2
10363383 Alizoti et al. Jul 2019 B2
10413698 Meyer et al. Sep 2019 B2
10449324 Meyer et al. Oct 2019 B2
20030234017 Pelerossi Dec 2003 A1
20060032607 Wisniewski Feb 2006 A1
20070089740 Baumert et al. Apr 2007 A1
20070259759 Sumners et al. Nov 2007 A1
20080078383 Richards Apr 2008 A1
20080257348 Piper Oct 2008 A1
20090241949 Smutney et al. Oct 2009 A1
20100139655 Genosar Jun 2010 A1
20100307487 Dunsmore et al. Dec 2010 A1
20120097164 Rozario et al. Apr 2012 A1
20150374939 Meyer et al. Dec 2015 A1
20170049979 Meyer et al. Feb 2017 A1
20170128683 Meyer et al. May 2017 A1
20170312461 Grychowski et al. Nov 2017 A1
20180154093 Meyer et al. Jun 2018 A1
20180214662 Meyer et al. Aug 2018 A1
20180256839 Meyer et al. Sep 2018 A1
20190240533 Alizoti Aug 2019 A1
Foreign Referenced Citations (22)
Number Date Country
0 372 148 Jun 1990 EP
0 678 306 Oct 1995 EP
1 464 357 Oct 2004 EP
1 435 251 Jun 2006 EP
1 103 287 Jun 2007 EP
1 897 576 Mar 2008 EP
1 908 489 Apr 2008 EP
2444114 Apr 2012 EP
2455137 May 2012 EP
2 425 488 Nov 2006 GB
WO 198903707 May 1989 WO
WO 199640376 Dec 1996 WO
WO 199916490 Apr 1999 WO
WO 200027455 May 2000 WO
WO 2007061648 May 2007 WO
WO 2007119104 Oct 2007 WO
WO 2008063966 May 2008 WO
WO 2008122045 Oct 2008 WO
WO 2009131965 Oct 2009 WO
WO 2011058470 May 2011 WO
WO 2012038864 Mar 2012 WO
WO 2016012740 Jan 2016 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 14/674,494, filed Mar. 31, 2015, Meyer et al.
Web page entitled Bronchial Hygiene, acapella Vibratory PEP Therapy System accessed from http://www.smiths-medical.com/catalog/bronchial-hygiene/acapella/acapella.html on Jul. 7, 2009.
Web page entitled Thayer Quake accessed from http://www.thayermedical.com/quake.htm on Jul. 7, 2009.
Human growth hormone, cortisol, and acid-base balance changes after hyperventilation and breath-holding; PubMed—indexed for MEDLINE; Int J Sports Med., Dec. 1986; 7(6):311-5, Djarova T.
Bosco C, Cardinale M. & Tsarpela O (1999). Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol 79, 306-311.
David Sumners; Power Breathing and Strength; http://EzineArticles.com/972576 Published: Feb. 7, 2008.
Good Vibrations blog; http://vibrotraining.blogspot.com, Earliest posting Jan. 17, 2008.
Breathtaking News; More Youbreathe; Aug. 10, 2007.
PCT International Search Report for PCT/IB2012/001089, dated Oct. 5, 2012.
PCT International Written Opinion for PCT/IB2012/001089, dated Oct. 5, 2012.
Preliminary Report on Patentability, PCT/IB2012/001089, dated Dec. 10, 2013.
PCT/IB2012001089 European Search Report dated Nov. 6, 2014.
D R Burton Healthcare LLC v. Trudell Medical International; “Petition for Inter Partes Review of Claims 1-26 Under 35 U.S.C. §§ 311-319 and 37 C.F.R. § 42.100 et seq.”;U.S. Pat. No. 9,808,588; May 4, 2018; 94 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Declaration of Dr. William W. Durgin, Ph.D., In Support of Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588; Trudell Medical Exhibit 2001-00001-2001-00217; Sep. 6, 2018; 217 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588; Sep. 7, 2018; 107 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Petitioner's Reply to Patent Owner Preliminary Response”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588 B1; Oct. 9, 2018; 16 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Decision Denying Institution of Inter Partes Review”; Case No. IPR2018-01025, U.S. Pat. No. 9,808,588 B1; Nov. 29, 2018; 32 pages.
Related Publications (1)
Number Date Country
20200297952 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
61109075 Oct 2008 US
Continuations (4)
Number Date Country
Parent 15651706 Jul 2017 US
Child 16853089 US
Parent 13959293 Aug 2013 US
Child 15651706 US
Parent 13674340 Nov 2012 US
Child 13959293 US
Parent 12607496 Oct 2009 US
Child 13674340 US