Oscillating positive respiratory pressure device

Information

  • Patent Grant
  • 12138388
  • Patent Number
    12,138,388
  • Date Filed
    Tuesday, September 22, 2020
    4 years ago
  • Date Issued
    Tuesday, November 12, 2024
    12 days ago
  • CPC
  • Field of Search
    • CPC
    • A61M15/00
    • A61M15/0085
    • A61M15/0098
    • A61M15/08
    • A61M16/0006
    • A61M16/0009
    • A61M16/0057
    • A61M16/0066
    • A61M16/0069
    • A61M16/0096
    • A61M16/06
    • A61M16/0616
    • A61M16/0633
    • A61M16/0666
    • A61M16/0816
    • A61M16/0825
    • A61M16/0866
    • A61M16/0875
    • A61M16/1045
    • A61M16/106
    • A61M16/109
    • A61M16/1095
    • A61M16/12
    • A61M16/16
    • A61M16/20
    • A61M16/201
    • A61M16/205
    • A61M16/206
    • A61M16/208
    • A61M2016/0027
    • A61M2016/103
    • A61M2016/1035
    • A61M2021/0088
    • A61M21/02
    • A61M2202/0085
    • A61M2202/0208
    • A61M2202/0225
    • A61M2202/0275
    • A61M2205/3365
    • A61M2205/42
    • A61M2205/50
    • A61M2205/52
    • A61M2205/8206
    • A61M2209/086
    • A61M2210/0625
    • A61M2230/04
    • A61M2230/205
    • A61M2230/30
    • A62B18/10
    • A62B9/02
    • A63B2071/0694
    • A63B21/00069
    • A63B21/00196
    • A63B2208/14
    • A63B2209/08
    • A63B2225/20
    • A63B2230/40
    • A63B23/18
    • F04D25/06
    • F04D29/083
    • F04D29/281
    • F04D29/4226
    • F04D29/4233
    • F04D29/441
    • F04D29/665
  • International Classifications
    • A61M16/00
    • A61M16/20
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      1063
Abstract
A respiratory treatment device includes a housing enclosing a chamber, a chamber inlet configured to receive a flow of air into the chamber, a first chamber outlet configured to permit the flow of air to exit the chamber, and a second chamber outlet configured to permit the flow of air to exit the chamber. A vane mounted within the chamber is configured to rotate between a first position where the flow of air is directed to exit the chamber through the first chamber outlet, and a second position where the flow of air is directed to exit the chamber through the second chamber outlet. A blocking member disposed on the vane is moveable relative to the chamber inlet between a closed position where the flow of air through the chamber inlet is restricted, and an open position where the flow of air through the chamber inlet is less restricted.
Description
TECHNICAL FIELD

The present disclosure relates to a respiratory treatment device, and in particular, to an oscillating positive respiratory pressure device.


BACKGROUND

Each day, humans may produce upwards of 30 milliliters of sputum, which is a type of bronchial secretion. Normally, an effective cough is sufficient to loosen secretions and clear them from the body's airways. However, for individuals suffering from more significant bronchial obstructions, such as collapsed airways, a single cough may be insufficient to clear the obstructions.


One type of therapy, utilizing oscillating positive expiratory pressure (“OPEP”), is often used to address this issue. OPEP therapy represents an effective bronchial hygiene technique for the removal of bronchial secretions in the human body and is an important aspect in the treatment and continuing care of patients with bronchial obstructions, such as those suffering from chronic obstructive lung disease. It is believed that OPEP therapy, or the oscillation of exhalation pressure at the mouth during exhalation, effectively transmits an oscillating back pressure to the lungs, thereby splitting open obstructed airways and loosening the secretions contributing to bronchial obstructions.


OPEP therapy is an attractive form of treatment because it can be easily taught to most hospitalized patients, and such patients can assume responsibility for the administration of OPEP therapy throughout their hospitalization and also once they have returned home. To that end, a number of portable OPEP devices have been developed.


BRIEF SUMMARY

In one aspect, a respiratory treatment device includes a housing enclosing a chamber, a chamber inlet configured to receive a flow of air into the chamber, a first chamber outlet configured to permit the flow of air to exit the chamber, and a second chamber outlet configured to permit the flow of air to exit the chamber. A vane mounted within the chamber is configured to rotate between a first position where the flow of air is directed to exit the chamber through the first chamber outlet, and a second position where the flow of air is directed to exit the chamber through the second chamber outlet. A blocking member disposed on the vane is moveable relative to the chamber inlet between a closed position where the flow of air through the chamber inlet is restricted, and an open position where the flow of air through the chamber inlet is less restricted.


In another aspect, the vane may be configured to rotate in response to the flow of air into the chamber. The vane may be configured to repeatedly reciprocate between the first position and the second position in response to the flow of air into the chamber. The vane may also be prohibited from completing a complete revolution.


In another aspect, a size of the blocking member may be greater than a size of the chamber inlet. Alternatively, a size of the blocking member may be less than a size of the chamber inlet.


In another aspect, an axis of rotation of the vane may be offset from a center of the vane.


In another aspect, the respiratory treatment also includes a mouthpiece, wherein a cross sectional area of the mouthpiece is larger than a cross sectional area of the chamber inlet. In addition, an inhalation port may be in communication with the mouthpiece, the inhalation port having a one-way valve configured to open upon inhalation and close upon exhalation.


In yet another aspect, a respiratory treatment device includes a housing enclosing a chamber, an inlet configured to receive a flow of air into the chamber, and an outlet configured to permit the flow of air to exit chamber. A blocking member mounted in the chamber is moveable relative to the chamber outlet between a closed position where the flow of air through the exit is restricted, and an open position where the flow of air through the chamber outlet is less restricted. At least one vane rotatably mounted in the chamber is configured to move the blocking member between the closed position and the open position in response to the flow of air into the chamber.


In another aspect, the blocking member may be connected to the at least one vane by a shaft and at least one linkage. The shaft and the at least one linkage may cooperate to move the blocking member in linear reciprocating motion.


In another aspect, the blocking member may be configured to move between the open position and the closed position in response to contact from an arm connected to the at least one vane.


In another aspect, the blocking member may be biased toward the open position.


In another aspect, the at least one vane comprises a turbine having a plurality of vanes.


In another aspect, the chamber comprises a first portion enclosing the at least one vane and a second portion enclosing the blocking member. The first portion may be in communication with the second portion.


In another aspect, the respiratory treatment also includes a mouthpiece, wherein a cross sectional area of the mouthpiece is larger than a cross sectional area of the chamber inlet. In addition, an inhalation port may be in communication with the mouthpiece, the inhalation port having a one-way valve configured to open upon inhalation and close upon exhalation.


In yet another aspect, a method of performing respiratory treatment includes receiving a flow of air into a device having an inlet configured to receive a flow of air into the device, a first outlet configured to permit the flow air to exit the device, and a second outlet configured to permit the flow of air to exit the device. The method further includes rotating a vane mounted within the device repeatedly between a first position where the flow of air is directed to exit the chamber through the first chamber outlet, and a second position where the flow of air is directed to exit the chamber through the second chamber outlet. The method also includes moving a blocking member disposed on the vane relative to the chamber inlet between a closed position where the flow of air through the chamber inlet is restricted, and an open position where the flow of air through the chamber inlet is less restricted.





BRIEF DESCRIPTION


FIG. 1 is a front perspective view of a first embodiment of an OPEP device;



FIG. 2 is a rear perspective view of the OPEP device of FIG. 1;



FIG. 3 is a cross-sectional perspective view of the OPEP device of FIG. 1;



FIG. 4 is a perspective view of a blocking member disposed on a vane mountable within the OPEP device of FIG. 1;



FIGS. 5A-5E are cross-sectional views illustrating the operation of the OPEP device of FIG. 1;



FIGS. 6A-6F are cross-section views illustrating exemplary modifications to the OPEP device of FIG. 1;



FIG. 7 is a front perspective view of a second embodiment of an OPEP device;



FIG. 8 is a rear perspective view of the OPEP device of FIG. 7;



FIG. 9 is a perspective view of the OPEP device of FIG. 7, shown with a font cover of the device removed;



FIG. 10 is a cross-sectional view of the OPEP device of FIG. 7;



FIG. 11 is a perspective view of the OPEP device of FIG. 7, shown with the front cover of the device removed;



FIG. 12 is a perspective view of the OPEP device of the FIG. 7, shown with a rear cover of the device removed, and with a blocking member in an open position;



FIG. 13 is a perspective view of the OPEP device of FIG. 7, shown with the rear cover of the device removed, and with the blocking member in a closed position;



FIG. 14 is a front perspective view of a third embodiment of an OPEP device;



FIG. 15 is a rear perspective view of the OPEP device of FIG. 14;



FIG. 16 is an exploded view of the OPEP device of FIG. 14;



FIG. 17 is a perspective view of an assembly of the internal components of the OPEP device of FIG. 14;



FIG. 18 is a cross-sectional view of the OPEP device of FIG. 14; and,



FIG. 19 is a perspective view of a one-way valve usable in the OPEP device of FIG. 14.





DETAILED DESCRIPTION

Referring to FIGS. 1-4, a first embodiment of an OPEP device 100 is shown. In general, the OPEP device 100 includes a housing 102 enclosing a chamber 104, a chamber inlet 106, a first chamber outlet 108, a second chamber outlet 110, a mouthpiece 112 in communication with the chamber inlet 106, a vane 114 mounted within the chamber 104, and a blocking member 116 disposed on the vane 114.


The housing 102 and OPEP device 100 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include a front section 103 and a rear section 105 that are removably attachable such that the chamber 104 may be periodically accessed for cleaning and/or replacement of the vane 114. In addition, although the mouthpiece 112 is shown as being fixedly attached to the housing 102, it is envisioned that the mouthpiece 112 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 112 is greater than the size or cross-sectional area of the chamber inlet 106. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 102.


As shown in FIG. 3, the vane 114 is rotatably mounted within the chamber 104 about a shaft 118. The shaft 118 may be supported by bearings 120a, 120b formed in the housing 102. As shown in FIG. 4, the vane 114 is formed as a generally planar member adapted for rotation about the shaft 118 positioned at the center of the vane 114. Alternatively, the vane 114 could be formed with any number of curves or contours. A blocking member 116 is disposed on an end of the vane 114 and is adapted to move relative to the chamber inlet 106 between an closed position, where the flow of air through the chamber inlet 106 is restricted by the blocking member 116, and an open position where the flow of air through the chamber inlet 106 is less restricted. As shown, the blocking member 116 is curved, such that it may travel in close proximity to the chamber inlet 106. The blocking member 116 is also sized and shaped such that the flow of air through the chamber inlet 106 may be completed restricted when the blocking member 116 is in a closed position. As discussed below, it is envisioned that the blocking member 116 and/or the chamber inlet 106 could be any number of shapes and sizes, and that the blocking member 116 may only partially restrict the flow of air through the chamber inlet 106 when the blocking member 116 is in a closed position.


The operation of the OPEP device 100 will now be described with reference to the illustrations shown in FIGS. 5A-5E. In FIGS. 5A-5E, the flow of air through the device 100 is illustrated by dashed lines. However, it should be appreciated that the dashed lines are exemplary and provided for purposes of illustration. The actual flow air through the device 100 may traverse any number of flow paths.


As shown in FIG. 5A, administration of OPEP therapy using the OPEP device 100 begins with the vane 114 in a first position, and the blocking member 116 in an open position. With the vane 114 in this position, exhaled air flowing into the mouthpiece 112 enters the chamber 104 through the chamber inlet 106, where it is directed by the vane 114 toward the rear portion of the of the chamber 104, denoted in FIG. 5A by “X”, and generally toward the first chamber outlet 108. Although some of the exhaled air exits the OPEP device 100 through the first chamber outlet 108, as a user continues to exhale, the pressure in the rear portion of the chamber 104 increases, causing the vane 114 to begin to rotate in a clockwise direction.


As a user continues to exhale, the vane 114 rotates from the position shown in FIG. 5A to the position shown in FIG. 5B. In this position, exhaled air flowing into the chamber 104 may exit the chamber 104 through the first chamber outlet 108, or flow around the vane 114 and exit the chamber 104 through the second chamber outlet 110. The blocking member 116 in this position is also partially restricting the flow of air through the chamber inlet 106, thereby causing the pressure in the mouthpiece 112 to increase. In this position, some of the exhaled air exits the OPEP device 100 through the first chamber outlet 108. However, as a user continues to exhale, pressure in the rear of the chamber 104, along with the flow of air around the vane 114, cause the vane 114 to continue to rotate in a clockwise direction.


As a user continues to exhale, the vane 114 rotates from the position shown in FIG. 5B to the position shown in FIG. 5C. In this position, the blocking member 116 is in a closed position, and exhaled air is completely restricted from flowing through the chamber inlet 106 into the chamber 104, thereby causing the pressure in the mouthpiece 112 to rapidly increase. In this position, the momentum of the vane 114 and the blocking member 116 continue to drive the vane 114 in a clockwise direction.


As the vane 114 continues to rotate in a clockwise direction, the vane 114 rotates from the position shown in FIG. 5C to the position shown in FIG. 5D. In this position, exhaled air flowing into the chamber 104 may exit the chamber 104 through the second chamber outlet 110, or flow around the vane 114 and exit the chamber 104 through the first chamber outlet 108. In this position, the momentum of the vane 114 and the blocking member 116 is sufficient to overcome any opposing forces and continue rotating the vane 114 in a clockwise direction.


As the vane 114 continues to rotate in a clockwise direction, the vane 114 rotates from the position shown in FIG. 5D to the position shown in FIG. 5E. Additional rotation of the vane 114 is prevented if the vane 114 contacts the housing 102. With the vane 114 in this position, exhaled air flowing into the mouthpiece 112 enters the chamber 104 through the chamber inlet 106, where it is directed by the vane 114 toward the rear portion of the of the chamber 104, denoted in FIG. 5E by “X”, and generally toward the second chamber outlet 110. Although some of the exhaled air exits the OPEP device 100 through the second chamber outlet 110, as a user continues to exhale, the pressure in the rear portion of the chamber 104 increases, causing the vane 114 to begin to rotate in a counter clockwise direction, repeating the cycle described above, although in reverse order.


During a period of exhalation, the vane 114 rotates repeatedly between the first position and the second position in clockwise and counter-counterclockwise directions. As this movement is repeated, the blocking member 116 moves repeatedly between a closed position, where the flow of air through the chamber inlet 106 is restricted by the blocking member 116, and an open position, where the flow of air through the chamber inlet 106 is less restricted. Consequently, the pressure in the mouthpiece 112, or user interface, oscillates between a higher pressure and a lower pressure, which pressures are in turn transmitted to the user's airways, thereby administering OPEP therapy.


Turning to FIGS. 6A-6F, various modifications to the OPEP device 100 are shown. As shown in FIGS. 6A and 6B, exemplary modifications to the chamber inlet 106 are shown. Whereas the chamber inlet 106 shown in FIG. 3 is sized and shaped as a long and narrow horizontal opening, as shown in FIG. 6A, a chamber inlet 106′ may be sized and shaped as a long and narrow opening, or as shown in FIG. 6B, a chamber inlet 106″ may be sized and shaped as two narrow openings. It is also envisioned that the opening could be shaped as a cross, a circle, a square, or any other number of shapes, or combination of shapes. In this way, the shape and size of the chamber inlet 106 may be selected to achieve the desired performance of the OPEP device 100.


As shown in FIGS. 6C-6F, exemplary modification to the vane 114 and the blocking member 116 are shown. For example, as compared to the blocking member 116 shown in FIGS. 3-4, a blocking member 116′ shown in FIG. 6C is larger, thereby restricting the flow of air through the chamber inlet 106 for a longer period while the blocking member 116′ is in a closed position. Similarly, as compared to the vane 114 shown in FIGS. 3-4, a vane 114′ and a vane 114″ are shorter in length, thereby changing the speed or frequency at which the vanes rotate, and the pressures at which the OPEP device 100 operates. In general, a shorter vane will oscillate faster, while a longer vane will oscillate slower. Finally, as shown in FIG. 6F, a vane 114′″ is configured to have an axis of rotation, or the position of the shaft 118, offset from a center of the vane 114′″. It is also envisioned that the total rotation of a vane may be selected or adjusted, for example, by changing the length of the vane while maintaining the size of the housing, or by providing a stop in the housing that limits the rotation of the vane. In general, an increase in the amount of rotation will result in a decreased frequency, while a decrease in the amount of rotation will result in an increased frequency.


Referring to FIGS. 7-13, a second embodiment of an OPEP device 200 is shown. In general, the OPEP device 200 includes a housing 202 enclosing a chamber 204 having a first portion 207 and a second portion 209 joined by a passage 211, a chamber inlet 206, a chamber outlet 208, a mouthpiece 212 in communication with the chamber inlet 206, a turbine 214 rotatably mounted within the chamber 204 via a shaft 218, a blocking member 216, a first linkage 220, and a second linkage 222.


The housing 202 and OPEP device 200 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include a front cover 203 and a rear cover 205 that are removably attachable such that the chamber 204 may be periodically accessed for cleaning and/or replacement of the turbine 214 and/or linkages 220, 222. In addition, although the mouthpiece 212 is shown as being fixedly attached to the housing 202, it is envisioned that the mouthpiece 212 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 212 is greater than the size or cross-sectional area of the chamber inlet 206. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 202.


As shown in FIGS. 9-11, the turbine 214 is rotatably mounted via the shaft 218 within the first portion 207 of the chamber 204 and is configured to rotate in response to a flow of air through the chamber inlet 206. As shown, the turbine 214 includes a plurality of vanes, although it is envisioned that the turbine could have as few as one vane, or many more vanes. The size and shape of the vanes may also vary.


As shown in FIGS. 12-13, the first linkage 220, the second linkage 222, and the blocking member 216 are mounted within the second portion 209 of the chamber 204. The first linkage 220 is fixed about one end to the shaft 218, and as such, is configured to rotate in unison with the turbine 214. The second linkage 222 is hinged to the other end of the first linkage 220, as well as the blocking member 216. The blocking member 216 is surrounded by and in sliding engagement with a first pair and a second pair of guide rails 224, 226. In this way, rotation of the turbine 214 and shaft 218 causes rotation of the first linkage 220, translation and rotation of the second linkage 222, and ultimately, linear translation or reciprocation of the blocking member 216 between the position shown in FIG. 12 and the position shown in FIG. 13. In the position shown in FIG. 13, the blocking member 216 is in a closed position, where the flow of air through the chamber outlet 208 (seen in FIG. 8) is restricted by the blocking member 216, whereas, in the position shown in FIG. 12, the blocking member 216 is in a closed position, where the flow of air through the chamber outlet 208 is less restricted. It should be appreciated that the blocking member 216 may completely or partially restrict the flow of air through the chamber outlet 208 when the blocking member 216 is in a closed position.


The operation of the OPEP device 200 will now be described with reference to the illustrations shown in FIGS. 9-13. In FIGS. 9-13, the flow of air through the device 200 is illustrated by dashed lines. However, it should be appreciated that the dashed lines are exemplary and provided for purposes of illustration. The actual flow air through the device 200 may traverse any number of flow paths.


In general, administration of OPEP therapy using the OPEP device 200 begins with the blocking member 216 in an open position, as shown in FIG. 12. With the blocking member 216 in this position, as a user exhales into the mouthpiece 212, or user interface, exhaled air flows into the chamber 204 through the chamber inlet 206. In response to the flow of air through the chamber inlet 206, the turbine 214 begins to rotate, allowing the air to flow between the chamber inlet 206 and the passage 211 connecting the first portion 207 of the chamber with the second portion 209 of the chamber 204. Because the first linkage 220 is operatively connected to the turbine 214 via the shaft 218, rotation of the turbine 214 results in rotation of the first linkage 220, which in turn causing the second linkage 222 to rotate relative to the first linkage 220 and the blocking member 216, as the blocking member 216 is driven between an open position, shown in FIG. 12, and a closed position, shown in FIG. 13. As the blocking member 216 is moved from an open position shown in FIG. 12 to a closed position shown in FIG. 13, the air flowing from the passage 211 through the second portion 209 of the chamber 204 is restricted from exiting the chamber 204 through the chamber outlet 208, thereby causing the pressure throughout the device 200 to increase. As a user continues to exhale, and the turbine 214 continues to rotate, the blocking member 216 returns to an open position, allowing the air in the chamber 204 to exit the chamber 204 through the chamber outlet 208, resulting in a decrease in pressure throughout the device 200. During a period of exhalation, the blocking member 216 reciprocates repeatedly between an open position and a closed position, causing the pressure in the device to oscillate between a lower pressure and a higher pressure, which is in turn transmitted to the user's airways, thereby administering OPEP therapy.


Turning to FIGS. 14-19, a third embodiment of an OPEP device 300 is shown. In general, the OPEP device 300 includes a housing 302 enclosing a chamber 304, a chamber inlet 306, a chamber outlet 308, a vent 338, a mouthpiece 312 in communication with the chamber inlet 306, a turbine 314 rotatably mounted within the chamber 304 via a shaft 318, a blocking member 316, and a pair of arms 320, 322 operatively connected to the shaft 318.


The housing 302 and OPEP device 300 components may be constructed of any durable material, such as a low friction plastic or polymer, and may include an upper section 303, an inner section 301, and a lower section 305 that are removably attachable such that the chamber 304 may be periodically accessed for cleaning and/or replacement of the turbine 314. In addition, although the mouthpiece 312 is shown as being fixedly attached to the housing 302, it is envisioned that the mouthpiece 312 may be removeable and replaceable with a mouthpiece of a different shape or size. Preferably, the size or cross-sectional area of the mouthpiece 312 is greater than the size or cross-sectional area of the chamber inlet 306. It is envisioned that other user interfaces, such as breathing tubes or gas masks (not shown), may alternatively be associated with the housing 302.


Turning to FIG. 17, an assembly of internal components of the OPEP device 300 includes the turbine 314, the inner section 301 of the housing 302, the pair of arms 320, 322, and the blocking member 316. The turbine 314 is rotatably mounted via the shaft 318 within the inner section 301 of the housing 302, which partially forms the chamber 304, along with the lower section 305 of the housing 302. Like the turbine 214 in the OPEP device 200, the turbine 314 is configured to rotate in response to a flow of air through the chamber inlet 306, and could have as few as one vane, or many more vanes, the size and shape of which may vary. Each of the pair of arms 320, 322 (also shown in FIG. 16) are fixed to the shaft 318 such that rotation of the turbine 314 and the shaft 318 results in rotation of the arms 320, 322.


The blocking member 316 is mounted to the inner section 301 of the housing 302 about a pair of hinges 328, 330, such that the blocking member 316 may rotate relative to the chamber outlet 308 between a closed position, as shown in FIG. 17, where the flow of air through the chamber outlet 308 is restricted, and an open position, as shown in FIG. 18, where the flow of air through the chamber outlet 308 is less restricted. The blocking member 316 includes a pair of contact surfaces 332, 334 (also shown in FIG. 16) configured to periodically engage the pair of arms 320, 322 as the pair of arms 320, 322 rotate with the turbine 314 and the shaft 318, thereby moving the blocking member 316 from an open position to a closed position. The blocking member 316 also has a center of mass offset from the pair of hinges 328, 330, or the axis of rotation, such that when the contact surfaces 332, 334 are not engaged with the pair of arms 320, 322, the blocking member 316 moves to an open position, where the contact surfaces 332, 334 may engage a stop 336.


The operation of the OPEP device 300 will now be described with reference to the illustration shown in FIGS. 17-18. In FIG. 18, the flow of air through the device 300 is illustrated by a dashed line. However, it should be appreciated that the dashed line is exemplary and provided for purposes of illustration. The actual flow air through the device 300 may traverse any number of flow paths.


In general, administration of OPEP therapy using the OPEP device 300 begins with the blocking member 316 in an open position, as shown in FIG. 18. As a user exhales in to the mouthpiece 312, exhaled air travels through the housing 302 and enters the chamber 304 through the chamber inlet 306. In response to the flow of air through the chamber inlet 306, the turbine 314 begins to rotate, and exhaled air traverses the chamber 304, exiting the chamber 304 through the chamber outlet 308. Once exhaled air exits the chamber 304, it may travel through the housing 302 and exit the device 300 through the vent 338.


As a user continues to exhale, and the turbine 314 continues to rotate, the shaft 318 rotates, causing the pair of arms 320, 322 to also rotate. As the pair of arms 320, 322 rotate, they periodically engage the contact surfaces 332, 334 on the blocking member 316, as shown in FIG. 17, causing the blocking member 316 to rotate about the pair of hinges 328, 330 from an open position, shown in FIG. 18, to a closed position, shown in FIG. 17. As the blocking member 316 is moved from an open to a closed position, the air flowing through the chamber 304 is restricted from exiting the chamber 304 through the chamber outlet 308, thereby causing the pressure in the chamber 304 and the mouthpiece 312 to increase. As a user continues to exhale, and the turbine 314 continues to rotate, the pair of arms 320, 322 disengage the contact surfaces 332, 334, and the blocking member 316 returns to an open position, allowing the air in the chamber 304 to exit the chamber 304 through the chamber outlet 308, resulting in a decrease in pressure in the chamber 304 and the mouthpiece 312. During a period of exhalation, the blocking member 316 moves repeatedly between an open position and a closed position, causing the pressure in the device 300 to oscillate between a lower pressure and a higher pressure, which is in turn transmitted to the user's airways, thereby administering OPEP therapy.


Finally, as best seen in FIG. 15-16, the OPEP device 300 is equipped with an inhalation portal 324 having a one-way valve 326, which is shown separately in FIG. 19. The one-way valve 326 includes a plurality of tabs or flaps 327 which are configured to open during a period of inhalation, thereby allowing air to travel through the inhalation port 324 and the one-way valve 326, and close during a period of exhalation, thereby directing the flow of exhaled air through the chamber inlet 306. In this way, a user may exhale into the OPEP device 300 for the administration of OPEP therapy, as described above, and also inhale air surrounding the OPEP device 300 through the inhalation portal 324. Alternatively, the OPEP device 300 may be used in combination with a nebulizer for the combined administration of OPEP and aerosol therapies. Any of a number of commercially available nebulizers may be connected to the OPEP device 300 via the inhalation portal 324. One suitable nebulizer is the AeroEclipse® II breath actuated nebulizer available from Trudell Medical International of London, Canada. Descriptions of suitable nebulizers may also be found, for example, in U.S. Pat. No. 5,823,179, the entirety of which is hereby incorporated by reference herein. In this way, a user may exhale into the OPEP device 300 for the administration of OPEP therapy, as described above, and also inhale an aerosolized medicament from an attached nebulizer through the one-way valve 326 and the inhalation portal 324. While the inhalation portal 324 is shown in connection with the OPEP device 300, it should be appreciated that the OPEP device 100 and the OPEP device 200 could also include an inhalation portal and one way-valve configured to operate as described above.


Although the description of the embodiments described above refer to the administration of OPEP therapy on exhalation, it should be appreciated that such embodiments are also configurable for the administration of oscillating pressure therapy upon exhalation only, inhalation only, or both exhalation and inhalation. Accordingly, the terms “oscillating positive respiratory pressure” and “oscillating positive expiratory pressure,” or “OPEP,” may be used interchangeably. Similarly, the term “respiratory” may refer to inhalation, exhalation, or both inhalation and exhalation. Use of any such term should not be construed as a limitation to only inhalation or only exhalation.


The foregoing description of the inventions has been presented for purposes of illustration and description, and is not intended to be exhaustive or to limit the inventions to the precise forms disclosed. It will be apparent to those skilled in the art that the present inventions are susceptible of many variations and modifications coming within the scope of the following claims.

Claims
  • 1. A respiratory treatment device comprising: an inlet configured to receive exhaled air into the device;an outlet configured to permit exhaled air to exit the device;an exhalation flow path defined between the inlet and the outlet;a blocking member movable relative to the exhalation flow path between a closed position where a flow of air along the exhalation flow path is restricted, and an open position where the flow of air along the exhalation flow path is less restricted;a vane separate from the blocking member configured to rotate in response to the flow of air along the exhalation flow path; andan arm operatively connected to the vane, the arm configured to move the blocking member between the closed position and the open position in response to rotation of the vane.
  • 2. The respiratory treatment device of claim 1, wherein the arm is separate from the blocking member.
  • 3. The respiratory treatment device of claim 1, wherein the arm and the vane are rotatable about a common axis of rotation.
  • 4. The respiratory treatment device of claim 1, wherein the vane is rotatable through a full revolution.
  • 5. The respiratory treatment device of claim 1, wherein the arm is rotatable through a full revolution.
  • 6. The respiratory treatment device of claim 1, wherein the arm is configured to repeatedly move the blocking member between the closed position and the open position in response to the flow of air along the exhalation flow path.
  • 7. The respiratory treatment device of claim 1, wherein the blocking member is biased toward the open position.
  • 8. The respiratory treatment device of claim 1, wherein the blocking member is rotatable relative to the exhalation flow path.
  • 9. The respiratory treatment device of claim 1, wherein the blocking member is movable relative to an opening positioned along the exhalation flow path, such that air traversing the exhalation flow path passes through the opening.
  • 10. A respiratory treatment device comprising: an inlet configured to receive exhaled air into the device;an outlet configured to permit exhaled air to exit the device;an exhalation flow path defined between the inlet and the outlet;a blocking member movable relative to the exhalation flow path between a closed position where a flow of along the exhalation flow path is restricted, and an open position where the flow of air along the exhalation flow path is less restricted;a vane configured to rotate in response to the flow of air along the exhalation flow path; and,an arm separate from the blocking member, the arm configured to move the blocking member between the closed position and the open position in response to rotation of the vane.
  • 11. The respiratory treatment device of claim 10, wherein the vane is separate from the blocking member.
  • 12. The respiratory treatment device of claim 10, wherein the arm and the vane are operatively connected and rotatable bout a common axis of rotation.
  • 13. The respiratory treatment device of claim 10, wherein the vane is rotatable through a full revolution.
  • 14. The respiratory treatment device of claim 10, wherein the arm is rotatable through a full revolution.
  • 15. The respiratory treatment device of claim 10, wherein the arm is configured to repeatedly move the blocking member between the closed and open positions in response to the flow of air along the exhalation flow path.
  • 16. The respiratory treatment device of claim 10, wherein the blocking member is biased toward the open position.
  • 17. The respiratory treatment device of claim 10, wherein the blocking member is rotatable relative to the exhalation flow path.
  • 18. The respiratory treatment device of claim 10, wherein the blocking member is movable relative to an opening positioned along the exhalation flow path, such that air traversing the exhalation flow path passes through the opening.
  • 19. A respiratory treatment device comprising: an inlet configured to receive exhaled air into the device;an outlet configured to permit exhaled air to exit the device;an exhalation flow path defined between the inlet and the outlet;a blocking member movable relative to the exhalation flow path between a closed position where a flow of air along the exhalation flow path is restricted, and an open position where the flow of air along the exhalation flow path is less restricted;a vane configured to rotate in response to the flow of air along the exhalation flow path; and,an arm configured to move the blocking member between the closed position and the open position in response to rotation of the vane;wherein the vane and the arm are separate from the blocking member, and are operatively connected and rotatable about a common axis of rotation.
  • 20. The respiratory treatment device of claim 19, wherein the arm is configured to repeatedly move the blocking member between the closed position and the open position in response to the flow of air along the exhalation flow path.
RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 15/819,150, filed on Nov. 21, 2017, pending, which is a continuation of U.S. application Ser. No. 14/462,009, filed on Aug. 18, 2014, now U.S. Pat. No. 9,849,257, which claims the benefit of U.S. Provisional Application No. 61/868,667, filed on Aug. 22, 2013, all of which are incorporated herein by reference.

US Referenced Citations (195)
Number Name Date Kind
393869 Warren Dec 1888 A
938808 Yount Nov 1909 A
2670739 NcNeill Mar 1954 A
2918917 Emerson Dec 1959 A
3710780 Milch Jan 1973 A
3732864 Thompson et al. May 1973 A
3834383 Weigl et al. Sep 1974 A
3908987 Boehringer Sep 1975 A
4054134 Kritzer Oct 1977 A
4062358 Kritzer Dec 1977 A
4182366 Boehringer Jan 1980 A
4198969 Virag Apr 1980 A
4221381 Ericson Sep 1980 A
4226233 Kritzer Oct 1980 A
4231375 Boehringer et al. Nov 1980 A
4267832 Hakkinen May 1981 A
4275722 Sorensen Jun 1981 A
4298023 McGinnis Nov 1981 A
4327740 Shuman May 1982 A
4403616 King Sep 1983 A
4436090 Darling Mar 1984 A
4470412 Nowacki et al. Sep 1984 A
4601465 Roy Jul 1986 A
4611591 Inui et al. Sep 1986 A
4635631 Izumi Jan 1987 A
4651731 Vicenzi et al. Mar 1987 A
4739987 Nicholson Apr 1988 A
4770413 Green Sep 1988 A
4951661 Sladek Aug 1990 A
4973047 Norell Nov 1990 A
4981295 Belman et al. Jan 1991 A
5018517 Liardet May 1991 A
5042467 Foley Aug 1991 A
5065746 Steen Nov 1991 A
5193529 Labaere Mar 1993 A
5253651 Stockwell et al. Oct 1993 A
5277195 Williams Jan 1994 A
5345930 Cardinal et al. Sep 1994 A
5372128 Haber et al. Dec 1994 A
5381789 Marquardt Jan 1995 A
5413112 Jansen et al. May 1995 A
5451190 Liardet Sep 1995 A
5479920 Piper et al. Jan 1996 A
5540220 Gropper et al. Jul 1996 A
5569122 Cegla Oct 1996 A
5570682 Johnson Nov 1996 A
5598839 Niles et al. Feb 1997 A
5613489 Miller Mar 1997 A
5613497 DeBush Mar 1997 A
5645049 Foley et al. Jul 1997 A
5647345 Saul Jul 1997 A
5655520 Howe Aug 1997 A
5658221 Hougen Aug 1997 A
5687912 Denyer Nov 1997 A
5727546 Clarke et al. Mar 1998 A
5791339 Winter Aug 1998 A
5816246 Mirza Oct 1998 A
5823183 Casper et al. Oct 1998 A
5829429 Hughes Nov 1998 A
5848588 Foley et al. Dec 1998 A
5862802 Bird Jan 1999 A
5890998 Hougen Apr 1999 A
5893361 Hughes Apr 1999 A
5899832 Hougen May 1999 A
5910071 Hougen Jun 1999 A
5925831 Storsved Jul 1999 A
5988163 Casper et al. Nov 1999 A
5988166 Hayek Nov 1999 A
6026807 Puderbaugh et al. Feb 2000 A
6029661 Whaley et al. Feb 2000 A
6044841 Verdun et al. Apr 2000 A
6058932 Hughes May 2000 A
6066101 Johnson May 2000 A
6067984 Piper May 2000 A
6083141 Hougen Jul 2000 A
6089105 Ricciardelli Jul 2000 A
6102038 DeVries Aug 2000 A
6167881 Hughes Jan 2001 B1
6176235 Benarrouch et al. Jan 2001 B1
6182657 Brydon et al. Feb 2001 B1
D440651 Foran Apr 2001 S
6209538 Casper et al. Apr 2001 B1
6240917 Andrade Jun 2001 B1
6253766 Niles Jul 2001 B1
6269839 Wickham et al. Aug 2001 B1
6293279 Schmidt et al. Sep 2001 B1
6340025 Van Brunt Jan 2002 B1
6345617 Engelbreth et al. Feb 2002 B1
6412481 Bienvenu et al. Jul 2002 B1
6446629 Takaki et al. Sep 2002 B1
6447459 Larom Sep 2002 B1
6500095 Hougen Dec 2002 B1
6550477 Casper et al. Apr 2003 B1
6557549 Schmidt et al. May 2003 B2
6561186 Casper et al. May 2003 B2
6581595 Murdock et al. Jun 2003 B1
6581596 Truitt Jun 2003 B1
6581598 Foran et al. Jun 2003 B1
6581600 Bird Jun 2003 B2
6595203 Bird Jul 2003 B1
6606989 Brand Aug 2003 B1
6607008 Yoshimoto et al. Aug 2003 B1
6615831 Truitt Sep 2003 B1
6631721 Salter et al. Oct 2003 B1
6659100 O'Rourke Dec 2003 B2
6681768 Haaije de Boer et al. Jan 2004 B2
6702769 Fowler/Hawkins Mar 2004 B1
6708690 Hete et al. Mar 2004 B1
6708691 Hayek Mar 2004 B1
6726598 Jarvis Apr 2004 B1
D490519 Pelerossi et al. May 2004 S
6776159 Pelerossi et al. Aug 2004 B2
6848443 Schmidt et al. Feb 2005 B2
6851425 Jaffre Feb 2005 B2
6889564 Marcotte et al. May 2005 B1
6904906 Salter Jun 2005 B2
6923181 Tuck Aug 2005 B2
6929007 Emerson Aug 2005 B2
6984214 Fowler/Hawkins Jan 2006 B2
7059324 Pelerossi et al. Jun 2006 B2
7096866 Be'eri et al. Aug 2006 B2
7134434 Truitt et al. Nov 2006 B2
7165547 Truitt et al. Jan 2007 B2
7188621 DeVries Mar 2007 B2
7191776 Niles Mar 2007 B2
7191780 Faram Mar 2007 B2
7214170 Summers et al. May 2007 B2
7383740 Krasilchikov et al. Jun 2008 B2
7617821 Hughes Nov 2009 B2
7699054 Pelerossi et al. Apr 2010 B2
7717847 Smith May 2010 B2
7771472 Hendricksen Aug 2010 B2
7779841 Dunsmore et al. Aug 2010 B2
7798148 Doshi Sep 2010 B2
7856979 Doshi Dec 2010 B2
7905228 Blacker et al. Mar 2011 B2
7909033 Faram Mar 2011 B2
8006922 Katzer Aug 2011 B2
8025051 Dagsland Sep 2011 B2
8025054 Dunsmore et al. Sep 2011 B2
8043236 Goldshtein et al. Oct 2011 B2
8051854 Faram Nov 2011 B2
RE43174 Schmidt et al. Feb 2012 E
8118024 DeVries et al. Feb 2012 B2
8118713 Foley et al. Feb 2012 B2
8225785 Richards et al. Jul 2012 B2
8327849 Grychowski et al. Dec 2012 B2
8360061 Brown et al. Jan 2013 B2
8460223 Huster et al. Jun 2013 B2
8469029 Brown et al. Jun 2013 B2
8485179 Meyer Jul 2013 B1
8528547 Dunsmore et al. Sep 2013 B2
8539951 Meyer et al. Sep 2013 B1
8985111 Grychowski et al. Mar 2015 B2
8993774 Kanbara et al. Mar 2015 B2
D731050 Meyer Jun 2015 S
9149589 Meyer et al. Oct 2015 B2
9220855 Meyer Dec 2015 B2
9358417 Meyer Jun 2016 B2
9517315 Meyer Dec 2016 B2
D776804 Meyer Jan 2017 S
D778429 Engelbreth et al. Feb 2017 S
D780906 Engelbreth et al. Mar 2017 S
9636473 Meyer May 2017 B2
9737677 Grychowski et al. Aug 2017 B2
9808588 Meyer et al. Nov 2017 B1
9849257 Meyer Dec 2017 B2
9913955 Grychowski et al. Mar 2018 B2
9950128 Meyer et al. Apr 2018 B2
9981106 Meyer et al. May 2018 B2
10039691 Von Hollen Aug 2018 B2
10076616 Meyer et al. Sep 2018 B2
10272224 Costella et al. Apr 2019 B2
10363383 Alizoti et al. Jul 2019 B2
10413698 Meyer et al. Sep 2019 B2
10449324 Meyer et al. Oct 2019 B2
20030015195 Haaije de Boer et al. Jan 2003 A1
20060032607 Wisniewski Feb 2006 A1
20070089740 Baumert et al. Apr 2007 A1
20070259759 Sumners et al. Nov 2007 A1
20080078383 Richards et al. Apr 2008 A1
20080245368 Dunsmore et al. Oct 2008 A1
20080257348 Piper Oct 2008 A1
20090241949 Smutney et al. Oct 2009 A1
20100139655 Genosar Jun 2010 A1
20100307487 Dunsmore et al. Dec 2010 A1
20120097164 Rozario et al. Apr 2012 A1
20150374939 Meyer et al. Dec 2015 A1
20170049979 Meyer et al. Feb 2017 A1
20170128683 Meyer et al. May 2017 A1
20170312461 Grychowski et al. Nov 2017 A1
20180154093 Meyer et al. Jun 2018 A1
20180214662 Meyer et al. Aug 2018 A1
20180256839 Meyer et al. Sep 2018 A1
20190240533 Alizoti Aug 2019 A1
Foreign Referenced Citations (24)
Number Date Country
201329062 Oct 2009 CN
0 372 148 Jun 1990 EP
0 678 306 Oct 1995 EP
1 464 357 Oct 2004 EP
1 435 251 Jun 2006 EP
1 103 287 Jun 2007 EP
1 897 576 Mar 2008 EP
1 908 489 Apr 2008 EP
2444114 Apr 2012 EP
2455137 May 2012 EP
2 425 488 Nov 2006 GB
2010-523220 Jul 2010 JP
WO 198903707 May 1989 WO
WO 199640376 Dec 1996 WO
WO 199916490 Apr 1999 WO
WO 200027455 May 2000 WO
WO 2007061648 May 2007 WO
WO 2007119104 Oct 2007 WO
WO 2008063966 May 2008 WO
WO 2008122045 Oct 2008 WO
WO 2009131965 Oct 2009 WO
WO 2011058470 May 2011 WO
WO 2012038864 Mar 2012 WO
WO 2016012740 Jan 2016 WO
Non-Patent Literature Citations (17)
Entry
U.S. Appl. No. 14/674,494, filed Mar. 31, 2015, Meyer et al.
Web page entitled Bronchial Hygiene, acapella Vibratory PEP Therapy System accessed from http://www.smiths/medical.com/catalog/bronchial/hygiene/acapella/acapella.html on Jul. 7, 2009.
Web page entitled Thayer Quake accessed from http://www.thayermedical.com/quake.htm on Jul. 7, 2009.
Human growth hormone, cortisol, and acid/base balance changes after hyperventilation and breath/holding; PubMed—indexed for Medline; Int J Sports Med., Dec. 1986; 7(6):311/5, Djarova T.
Bosco C, Cardinale M. & Tsarpela O (1999). Influence of vibration on mechanical power and electromyogram activity in human arm flexor muscles. Eur J Appl Physiol 79, 306/311.
David Sumners; Power Breathing and Strength; http://EzineArticles.com/972576 Published: Feb. 7, 2008.
Good Vibrations blog; http://vibrotraining.blogspot.com. Earliest posting Jan. 17, 2008.
Breathtaking News; More Youbreathe; Aug. 10, 2007.
PCT International Search Report for PCT/IB2012/001089, Oct. 5, 2012.
PCT International Written Opinion for PCT/IB2012/001089, Oct. 5, 2012.
Preliminary Report on Patentability, PCT/IB2012/001089, Dec. 10, 2013.
PCT/IB2012001089 European Search Report dated Nov. 6, 2014.
IPR2018/01025 Petition; D R Burton Healthcare LLC v. Trudell Medical International; Title: Oscillating Postive Respiratory Pressure Device; (94 pp).
D R Burton Healthcare LLC v. Trudell Medical International; “Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018/01025, U.S. Pat. No. 9,808,588; Sep. 7, 2018; 107 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Declaration of Dr. William W. Durgin, Ph.D., In Support of Patent Owner's Preliminary Response to Petition for Inter Partes Review”; Case No. IPR2018/01025, U.S. Pat. No. 9,808,588; Trudell Medical Exhibit 2001/00001-2001/00217; 217 pages.
D R Burton Helathcare LLC v. Trudell Medical International; “Petitioner's Reply to Patent Owner Preliminary Response”; Case No. IPR2018/01025, U.S. Pat. No. 9,808,588 B1; Oct. 9, 2018; 16 pages.
D R Burton Healthcare LLC v. Trudell Medical International; “Decision Denying Institution of Inter Partes Review”; Case No. IPR2018/01025, U.S. Pat. No. 9,808,588 B1; Nov. 29, 2018; 32 pages.
Related Publications (1)
Number Date Country
20210060272 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61868667 Aug 2013 US
Continuations (2)
Number Date Country
Parent 15819150 Nov 2017 US
Child 17028263 US
Parent 14462009 Aug 2014 US
Child 15819150 US