The disclosure relates to robotic vacuums, and more particularly, to side brushes used by robotic vacuums.
During operation, robotic floor-cleaning devices may encounter obstructions that prevent the devices from properly completing their task. For example, side brushes generally extend beyond the body of the robotic vacuum to reach areas otherwise inaccessible by the main side brush. Because of this extension, the side brushes may be vulnerable to interaction with obstructions on the working surface. Conventional side brushes are configured as spinning side brushes. As such, conventionally spinning side brushes may tend to draw in obstructions, such as by wrapping up electrical cords or wires around the side brush. In addition to presenting a potentially hazardous condition, removing obstructions may require human intervention thereby reducing the level of autonomy of the robotic vacuum. As such, oscillating side brushes are presented herein.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented below.
Provided is a robotic cleaning device, including a chassis, an oscillating mechanism, and a cleaning component, wherein the oscillating mechanism causes the cleaning component to oscillate in at least plane parallel to a driving surface of the robotic cleaning device.
The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.
Non-limiting and non-exhaustive features of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures.
The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
In still other instances, specific numeric references such as “first material,” may be made. However, the specific numeric reference should not be interpreted as a literal sequential order but rather interpreted that the “first material” is different than a “second material.” Thus, the specific details set forth are merely exemplary. The specific details may be varied from and still be contemplated to be within the spirit and scope of the present disclosure. The term “coupled” is defined as meaning connected either directly to the component or indirectly to the component through another component. Further, as used herein, the terms “about,” “approximately,” or “substantially” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein.
The terms “certain embodiments”, “an embodiment”, “embodiment”, “embodiments”, “the embodiment”, “the embodiments”, “one or more embodiments”, “some embodiments”, and “one embodiment” mean one or more (but not all) embodiments unless expressly specified otherwise. The terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless expressly specified otherwise. The enumerated listing of items does not imply that any or all of the items are mutually exclusive, unless expressly specified otherwise. The terms “a”, “an” and “the” mean “one or more”, unless expressly specified otherwise.
The present invention proposes an oscillating mechanism with side brush for use with autonomous or semi-autonomous robotic devices. In a preferred embodiment, an autonomous or semi-autonomous mobile robotic vacuum cleaning device houses an oscillating mechanism to which a side brush is attached that extends beyond the body of the device. The side brush moves back and forth sweeping dust and debris towards the front of the robotic vacuum cleaning device so that the main brush is able to sweep up the dust and debris into the device. Entanglement is avoided because the oscillating side brush pushes obstructions aside as opposed to wrapping an obstruction around a spinning side brush as noted in conventional solutions above.
Further illustrated is brush assembly 120 that is slidingly coupled with base assembly 102. As may be seen, brush assembly 120 may move along slot 110 when engaged by arm 108. Brush assembly 120 includes hub 122, side brush 124, anchor 128, and return spring 126. In embodiments, hub 122 is slidingly coupled with base plate 104 along slot 110. In some embodiments, a lubricant may be provided to reduce friction. In other embodiments, an ultra-high molecular weight polymer may be utilized to reduce friction. As illustrated, side brush 124 may be coupled with hub 122 and extend outwardly from base 104. In embodiments, the side brush may extend beyond a cover of a robotic vacuum device. In embodiments, the side brush may extend beyond the cover of a robotic vacuum device up to approximately 2.0 inches. In some embodiments, the side brush includes a number of bristles that may be positioned along a plane. In other embodiments, the side brush includes a number of bristles that may be bundled together. Anchor 128 may be positioned along hub 122 and coupled with return spring 126, which in turn may be coupled with anchor 112.
Turning to
It may be appreciated that the speed at which the hub returns to initial contact position is greater than the speed at which the arm moves the hub along the slot. The hub essentially “snaps” back to the initial contact or resting position. This action may provide a desired effect of reducing the amount of debris thrown backward while the side brush is returning to its resting position. The forward speed of the hub and side brush is dependent on the rotational speed of the axle. In some embodiments, the speed of the axle may be selected to correspond to the speed of the robotic vacuum device. In other embodiments, the speed of the axle may be independent of the speed of the robotic vacuum device.
Furthermore, although one arm is illustrated, one skilled in the art will recognize that embodiments may easily include two arms positioned at least 90° apart from each other effectively doubling the oscillation of side brush embodiments. In other embodiments, two or more arms equidistantly placed may be utilized. In addition, the illustrated operation shows the arm moving in a counter clockwise rotation. However, embodiments may also be configured utilizing a clockwise rotation without limitation. In some embodiments, more than one oscillating side brush mechanism may be implemented with the robotic vacuum device.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Furthermore, unless explicitly stated, any method embodiments described herein are not constrained to a particular order or sequence. Further, the Abstract is provided herein for convenience and should not be employed to construe or limit the overall invention, which is expressed in the claims. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
This application is a Continuation of U.S. Non-Provisional patent application Ser. No. 15/924,176, filed Mar. 17, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/544,273 filed Aug. 11, 2017, each of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5901411 | Hato | May 1999 | A |
7503096 | Lin | Mar 2009 | B2 |
7636982 | Jones | Dec 2009 | B2 |
8087117 | Kapoor | Jan 2012 | B2 |
8390251 | Cohen | Mar 2013 | B2 |
8584305 | Won | Nov 2013 | B2 |
9078552 | Han | Jul 2015 | B2 |
9931008 | Yoo | Apr 2018 | B2 |
10980385 | Ebrahimi Afrouzi | Apr 2021 | B1 |
Number | Date | Country | |
---|---|---|---|
62544273 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15924176 | Mar 2018 | US |
Child | 17210350 | US |