The present invention relates generally to dental hygiene, and more particularly to a jet tip for an oral irrigator device.
Oral irrigators have become more and more prevalent in daily hygiene routines. Oral irrigators may direct water, medicament, or other fluids against teeth and gums and into interproximal spaces, thus cleaning such areas as well as aiding in removing plaque and strengthening teeth and maintaining or improving oral health. An exemplary oral irrigator device is described in is application is related to U.S. Patent Application Publication No. 2007/0203439 en titled “Water jet unit and handle,” which is hereby incorporated by reference herein in its entirety.
The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.
The present invention is an oral irrigator tip that provides an oscillating fluid stream for dental and oral cleaning by a user. An oral irrigator tip defines a main fluid passage and first and second side fluid passages on a opposite sides of the main fluid passage. Each side fluid passage has an inlet and an outlet both in fluid communication with the main fluid passage. First and second island structures may be formed between the main fluid passage and respective side fluid passages. Fluid flow through the main fluid passage is drawn to sidewalls of the islands due to the Coanda effect. At least a portion of the fluid stream entering the main fluid passage is diverted through the first and second side fluid passages to create feedback loops that push the fluid flow through the main fluid passage alternately from side to side. An oscillating fluid stream is thereby delivered from the oral irrigator tip. The invention may be realized by a number of different implementations as described herein and further combinations thereof.
In one embodiment, an oral irrigator tip has a shaft portion and a tip portion. The shaft portion defines a fluid passage. The tip portion defines a main fluid passage in fluid communication with the fluid passage defined in the shaft portion. The tip portion also defines a first side fluid passage on a first side of the main fluid passage. The first side fluid passage has a first inlet and a first outlet both in fluid communication with the main fluid passage. The tip portion further defines a second side fluid passage on a second side of the main fluid passage. The second side fluid passage has a second inlet and a second outlet both in fluid communication with the main fluid passage. At least a portion of the fluid stream entering the main fluid passage through the shaft portion is diverted to the first and second side fluid passages so as to deliver an oscillating fluid stream from the oral irrigator tip.
Another implementation of an oral irrigator tip has a shaft portion that defines a fluid passage and a tip portion. The tip portion defines a main fluid passage in fluid communication with the fluid passage defined in the shaft portion. The tip portion also defines a first island on a first side of the main fluid passage and a second island on a second side of the main fluid passage. The first island defines a first angled sidewall adjacent the main fluid passage and the second island defines a second angled sidewall adjacent the main fluid passage. At least a portion of a fluid stream entering the tip portion from the fluid passage of the shaft portion is caused to circulate around the first island and the second island.
In a further implementation, an oral irrigator tip insert has an inlet and a main channel in fluid communication with the inlet. The tip insert further defines a structure configured to cause a Coanda effect on fluid flow through the main channel. The tip insert also defines a pair of feedback loops that divert fluid from the main channel at a first end and redirect the diverted fluid into the main channel at a second end. The tip insert also has an outlet through which oscillating fluid flow exits the tip insert.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention is provided in the following written description of various embodiments of the invention, illustrated in the accompanying drawings, and defined in the appended claims.
An oral irrigator tip 110 for an oral irrigator 100 is disclosed. In some implementations, the oral irrigator tip 110 may be of unitary construction and in other implementations it may be assembled from multiple components. The oral irrigator tip 110 may include a tip portion 128 joined to a shaft portion 126. The shaft portion 126 may include a retaining feature 132 that may be used to join the oral irrigator tip 110 to an oral irrigator handle 120. The tip portion 128 may be removably or fixedly joined to the shaft portion 126. The shaft portion 126 may include a fluid inlet 130 fluidly communicating with a fluid reservoir of an oral irrigator 100 and a fluid passage 150 for conveying fluid from a base 122 to an apex 136 of the shaft portion 126. The shaft portion 126 may further include a fluid outlet 152 fluidly joined to a fluid inlet 153 of the tip portion 128. The tip portion 128 may include a fluid outlet 158 for delivering a fluid stream from the oral irrigator tip 110. Fluid exiting the tip portion 128 may be used to irrigate, or otherwise clean, a user's mouth.
The tip portion 128 may include a tip receiver 138 and a tip insert 140. Collectively the tip receiver 138 and tip insert 140 may define multiple fluid passages that join the fluid inlet 153 to the fluid outlet 158 of the tip portion 128. In one embodiment, the tip insert 140 may define a main fluid passage 162 and two side fluid passages 166a/b on each side of the main fluid passage 162. At least a portion of the fluid flowing through the main fluid passage 162 may be diverted to the two side fluid passages 166a/b so that the tip portion 128 may deliver an oscillating stream of fluid from the fluid outlet 158 as further described below. Such an oscillating fluid stream may enhance removal of plaque from a user's teeth.
Generally, one embodiment of the oral irrigator tip 110 may take the form of a shaft portion 126 joined to a tip portion 128, or other fluid outlet element or assembly of components, as shown, for example, in
The shaft portion 126 may be straight as shown, for example, in
The shaft portion 126 is typically hollow from a fluid inlet 130, which may be defined in or proximate the base 122, to a fluid outlet 152, which may be defined in or proximate the apex 136, to form a fluid passage 150 within the shaft portion 126. The shaft fluid inlet 130 may be fluidly connected to an oral irrigator fluid outlet, such as a fluid outlet in the handle 120, and the shaft fluid outlet 152 may be in fluid communication with a tip portion fluid inlet 153, thus permitting fluid to flow through the shaft portion 126 from the oral irrigator 100 to the tip portion 128.
A retaining feature 132 may be formed on the shaft portion 126, for example, as shown in
An anti-rotation feature 134 may be formed on the shaft portion 126 to limit rotation of the oral irrigator tip 110 relative to the handle 120 about a longitudinal axis of the shaft portion 126 when the oral irrigator tip 110 is coupled to the oral irrigator handle 120. The anti-rotation feature 134 may take the form of a flange extending from the shaft portion 126 and configured for receipt within a recess formed in the oral irrigator handle 120. The flange may be a polygon or other non-circular shape and the handle recess may define a similar shape to prevent rotation of the flange within the handle recess and thus prevent rotation of the oral irrigator tip 110 relative to the handle 120 about the longitudinal axis of the oral irrigator tip 110.
As depicted, for example, in
The tip receiver 138 may define a tip receiver fluid passage 156. The tip receiver fluid passage 156 may extend from an end portion of the tip receiver 138 positioned proximate the shaft portion 126 to a tip receiver cavity 137. The tip receiver fluid passage 156 enables fluid communication between the fluid passage 150 in the shaft portion 126 and fluid passages defined by the tip insert 140. A flow restrictor 154 or other structure may be positioned within the tip receiver fluid passage 156 to restrict or modify fluid flow between the fluid passage 150 in the shaft portion 126 and the tip receiver fluid passage 156. In some versions of the oral irrigator tip 110, the flow restrictor 154 may be omitted.
With reference to
The main portion 141 may further define an inlet 160 of the tip insert 140, at least a portion of the main fluid passage 162, and two side fluid passages 166a/b. The inlet 160, main fluid passage 162, and side fluid passages 164a/b may be formed by defining grooves or other recessed areas in a surface of the main body portion 141 and defining a passage through the flange portion 143 of the tip insert 140. The fluid passages may be encased by an interior wall 139 of the tip receiver 138 and the sidewalls 146a/b and the back wall 144 of the recessed passages of the tip insert 140.
The outlet 158 of the main fluid passage 162 may be defined in the flange portion 143 of the tip insert 140. The flange portion 143 extends normally to the sidewalls of the main portion 141 to form a flange 142 that caps the edges of the tip receiver 138 when the tip insert 140 is placed within the tip receiver cavity 139. The flange 142 prevents over insertion of the tip insert 140 into the tip receiver cavity 137 and provides a surface grip for removal of the tip insert 140 from the tip receiver 138.
The main fluid passage 162 and the two side fluid passages 166a/b may be separated by two identical islands 148a/b. In one embodiment, the islands 148a/b may have four sidewalls with two of the sidewalls adjacent the side fluid passages 166a/b, an angled sidewall 170a/b adjacent the main fluid passage 162, and a short sidewall between one of the sidewalls adjacent a side fluid passage 166a/b and the angled sidewall 170a/b. In other embodiments, the islands 148a/b may be triangular, or may have another polygonal or curved configuration. The islands 148a/b may have flat sidewalls so that fluid may flow around the islands 148a/b with minimal disturbance as fluid is directed from the fluid inlet 153, around the islands 148a/b, and out the fluid outlet 158 of the tip insert 140. The flow of fluid through the tip insert 140 will be further discussed below.
The tip insert fluid passages may be configured to deliver a pulsating stream of fluid from the fluid outlet 158 of the tip portion 128. More particularly and with reference
The fluid outlet 158 is initially narrower in width than the adjacent area of the main fluid passage 162. The fluid outlet 158 in the flange portion 143 is formed in part by two outlet sidewalls 172 that are angled outward and thus enlarge the width of the fluid outlet 158 from the interface with the main fluid passage 162 until the fluid is emitted from the tip insert 140. This form of increased width further aids in the development of the oscillating fluid waveform that is emitted from the fluid outlet 158 of the tip insert 140.
Each side fluid passage 166a/b initially generally extends from an inlet 164a/b adjacent the fluid outlet 158 in a direction incident to a longitudinal axis defined by the main fluid passage 162. At a select distance from the main fluid passage 162, a curved bend at a generally acute angle is defined from the inlet 164a/b by the side fluid passages 166a/b to change the direction of the side fluid passages 166a/b. From this curved bend, the side fluid passages 166a/b extend in a direction generally parallel a longitudinal axis defined by the main fluid passage 162. Proximate the outlets 168a/b of the side fluid passages 166a/b, another curved bend is defined to again change the direction of the side fluid passages 166a/b. From this second curved bend, each side fluid passage 166a/b generally extends in a direction at a transverse angle relative to a longitudinal axis defined by the main fluid passage 162 until it rejoins the main fluid passage 162 adjacent the inlet 160.
Referring to
As shown in
All directional references (e.g., upper, lower, upward, downward, left, right, leftward, rightward, top, bottom, above, below, inner, outer, vertical, horizontal, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the example of the invention, and do not create limitations, particularly as to the position, orientation, or use of the invention unless specifically set forth in the claims. Joinder references (e.g., attached, coupled, connected, joined, and the like) are to be construed broadly and may include intermediate members between a connection of elements and relative movement between elements. As such, joinder references do not necessarily infer that two elements are directly connected and in fixed relation to each other.
In some instances, components are described with reference to “ends” having a particular characteristic and/or being connected with another part. However, those skilled in the art will recognize that the present invention is not limited to components which terminate immediately beyond their points of connection with other parts. Thus, the term “end” should be interpreted broadly, in a manner that includes areas adjacent, rearward, forward of, or otherwise near the terminus of a particular element, link, component, part, member or the like. In methodologies directly or indirectly set forth herein, various steps and operations are described in one possible order of operation, but those skilled in the art will recognize that steps and operations may be rearranged, replaced, or eliminated without necessarily departing from the spirit and scope of the present invention. It is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative only and not limiting. Changes in detail or structure may be made without departing from the spirit of the invention as defined in the appended claims.
The above specification, examples, and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. Other embodiments are therefore contemplated. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.
This application claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. provisional application No. 61/367,263 filed 23 Jul. 2010 entitled “Oscillating Spray Tip for Oral Irrigator,” which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61367263 | Jul 2010 | US |