Oscillating tool

Information

  • Patent Grant
  • 8925931
  • Patent Number
    8,925,931
  • Date Filed
    Tuesday, November 9, 2010
    14 years ago
  • Date Issued
    Tuesday, January 6, 2015
    10 years ago
Abstract
A clamp arrangement for releasably securing an accessory to an oscillating power tool can include a tool body including a motor that drives an output member. A clamp assembly can include a first clamp member that moves relative to the accessory between a closed position wherein the clamp assembly retains the accessory and an open position wherein the first clamp member of the clamp assembly is offset from the accessory permitting removal of the accessory from the clamp assembly. A lever can have a user engagement portion and a pivot portion including a pivot axle. The lever can be pivotally coupled to the tool body about the pivot axle between a first position, wherein the clamp assembly is in the closed position and a second position wherein movement of the user engagement portion of the lever causes the clamp assembly to be moved to the open position.
Description
FIELD

The present disclosure relates to power hand tools and more specifically to a clamp arrangement for releasably securing an accessory to an oscillating power hand tool.


BACKGROUND

This section provides background information related to the present disclosure which is not necessarily prior art.


Power hand tools are provided in many examples for performing a wide range of tasks. For example, some power hand tools can include an output member that is driven by a motor and that couples with an accessory to perform a working operation onto a work piece. For example, some hand tools can provide various configurations for attaching cutting accessories, grinding accessories, sanding accessories and the like. Some power hand tools are configured as oscillating tools that are operable to transmit an oscillating motion onto the accessory.


During the course of performing a working operation, a user may want to exchange one accessory for another accessory. For example, a user may want to exchange one grinding accessory with another grinding accessory or one sanding platen with another sanding platen. Alternatively, a user may wish to replace a cutting accessory with another cutting accessory. It is also contemplated that a user may want to replace a given accessory dedicated to one task (such as sanding) with another accessory dedicated toward another task (such as cutting for example). In any event, many power hand tools require the use of a secondary tool to swap out accessories. For example, many power hand tools require the use of a hand screw driver that can be used to retract a fastener that may lock the accessory to the output member of the power hand tool. In other examples, a wrench or other hand tool may be required to remove or unlock a given accessory from the power hand tool and subsequently lock another accessory back to the power hand tool.


SUMMARY

This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.


A clamp arrangement for releasably securing an accessory to a power tool can include a tool body including a motor that drives an output member. A clamp assembly can include a first clamp member that moves relative to the accessory between a closed position wherein the clamp assembly retains the accessory and an open position wherein the first clamp member of the clamp assembly is offset from the accessory permitting removal of the accessory from the clamp assembly. A lever can have a user engagement portion and a pivot portion including a pivot axle. The lever can be pivotally coupled to the tool body about the pivot axle between a first position, wherein the clamp assembly is in the closed position and a second position wherein movement of the user engagement portion of the lever causes the clamp assembly to be moved to the open position. The user engagement portion of the lever can be positioned intermediate the tool housing and the accessory.


According to additional features, the accessory can oscillate about a longitudinal axis that is located intermediate the pivot axle and the user engagement portion. A first biasing member can bias the clamp assembly toward the closed position. The clamp assembly can further comprise a second clamp member having a first portion that opposes the first clamp member and cooperates with the first clamp member to clamp the accessory between the first and second clamp members.


According to other features, the first clamp member can include a first clamp body having one of a first plurality of protrusions extending from a first clamping surface and a first plurality of recesses formed into the first clamping surface. The second clamp member can include a second clamp body that has a second clamping surface that opposes the first clamping surface. The second clamping surface can include the other of the first plurality of protrusions and first plurality of recesses, wherein the first plurality of protrusions are configured to cooperatively locate into the corresponding first plurality of recesses in the closed position. The first clamp body can include an annular flange that nests in a pocket formed on the lever.


According to still other features, the second clamp body can further include an auxiliary attachment surface that is distinct from the second clamping surface. The auxiliary attachment surface can be configured to selectively and alternatively connect with a secondary accessory. The auxiliary attachment surface can further include one of a second plurality of protrusions and second plurality of recesses thereon that are configured to cooperatively mate with the secondary accessory. The second clamping surface and the auxiliary attachment surface can face away from each other. In one example, a second biasing member can be disposed between the user engagement portion of the lever and the tool body. The second biasing member can bias the user engagement portion of the lever away from the tool body.


Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.





DRAWINGS

The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.



FIG. 1 is a perspective view of a clamp arrangement constructed in accordance to one example of the present teachings and shown operatively associated with an exemplary power hand tool for releasably securing a first or a second accessory;



FIG. 2 is a perspective view of a clamp assembly of the clamp arrangement shown in FIG. 1 and shown with the clamp assembly in the closed position retaining the first accessory;



FIG. 3 is an exploded perspective view of the clamp assembly of FIG. 2;



FIG. 4 is a sectional view of the clamp assembly of FIG. 2 and shown with the clamp assembly in the closed position and a lever of the clamp assembly in a first position;



FIG. 5 is a cross-sectional view of the clamp assembly of FIG. 4 and shown with the clamp assembly in the open position resulting from the lever being rotated about a pivot axle into a second position wherein the first accessory is subsequently lifted out of engagement with the first clamp member;



FIG. 6 is a cross-sectional view of the clamp assembly of FIG. 5 shown with the clamp assembly in the open position and the lever in the second position and illustrating the first accessory being removed from the clamp assembly;



FIGS. 7-9 are perspective views of the clamp assembly that generally correspond to the sequence illustrated in FIGS. 4-6 for removing the first accessory from the clamp assembly;



FIGS. 10-12 are perspective views of the clamp assembly that illustrate an exemplary sequence of orienting the first accessory in a different rotational position relative to the clamp assembly;



FIGS. 13-15 are cross-sectional views of the clamp assembly taken through a spindle of the power hand tool and shown with the first accessory rotated at different positions around an axis of the spindle;



FIG. 16 is a perspective view of the clamp arrangement of the present teachings and shown with the clamp assembly secured to the second accessory;



FIG. 17 is an exploded perspective view of the clamp assembly and second accessory illustrated in FIG. 16;



FIG. 18 is a sectional view of the clamp assembly of FIG. 16 and shown with the clamp assembly in the open position resulting from movement of the lever around the pivot axle to the second position for receipt of a mounting collar of the second accessory;



FIG. 19 is a cross-sectional view of the clamp assembly of FIG. 18 and shown with the mounting collar of the second accessory positioned generally between first and second clamp members of the clamp assembly while the lever is maintained in the second position;



FIG. 20 is a cross-sectional view of the clamp assembly of FIG. 19 and illustrating the clamp assembly in the closed position as a result of the lever being released and returned to the first position causing the first and second clamp members to clamp the mounting collar;



FIG. 21 is a perspective view of an exemplary third accessory;



FIG. 22 is a partial cross-section of the clamp assembly and shown with the third accessory secured to an auxiliary mounting surface of the second clamp member;



FIGS. 23-25 illustrate an exemplary assembly sequence of a fourth accessory having a throat that defines a relatively narrower opening as compared to the first accessory wherein the throat is slidably directed through channels provided on the spindle;



FIG. 26 is an exploded partial plan view of the fourth accessory and shown adjacent to the second clamp member and illustrated with the spindle in cross-section taken through the channels;



FIG. 27 is a partial plan view of a fifth accessory having circular mounting passages according to additional features;



FIG. 28 is a partial plan view of the fifth accessory shown in FIG. 27 and illustrated interfacing with the second clamp member;



FIG. 29 is a side view of a clamp arrangement constructed in accordance to another example of the present teachings and shown operatively associated with an exemplary hand tool;



FIG. 30 is a sectional view of the clamp assembly of FIG. 29 and shown with the clamp assembly in a closed position and a lever of the clamp assembly in a first position;



FIG. 31 is a perspective view of the second clamp member of the clamp assembly of FIG. 30;



FIG. 32 is a plan view of an accessory constructed in accordance to one example of the present teachings;



FIG. 33 is a side view of the accessory of FIG. 32 shown placed on the second clamp member and shown with the first clamp member removed for illustrative purposes; and



FIG. 34 is a side view of the clamp assembly shown during removal of the accessory where the lever is moved from the first position (phantom) to a second position (solid line) and the first clamp member is raised away from engagement with the accessory.





Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.


DETAILED DESCRIPTION

Example embodiments will now be described more fully with reference to the accompanying drawings.


With initial reference to FIG. 1, a clamp arrangement constructed in accordance to one example of the present disclosure is shown and generally identified at reference numeral 10. The clamp arrangement 10 is shown operatively associated with a power tool 12 for selectively and alternatively retaining various accessories, such as a first accessory 14a or a second accessory 14b. The exemplary power tool can generally include a tool body 18 including a housing 20 that generally contains a motor 22 that drives an output member 24. The output member 24 can be coupled to a spindle 26. The exemplary power tool 12 is configured for providing an oscillating motion onto the spindle 26. It will be appreciated that while the clamp arrangement 10 is disclosed herein as part of an oscillating power hand tool, the clamp arrangement 10 may be also configured for use with other power tools that releasably secure an accessory.


The clamp arrangement 10 can further include a clamp assembly 30 that operatively cooperates with an actuator such as a lever 32. The clamp assembly 30 can generally include a first clamp member 36 and a second clamp member 38. The lever 32 can include a lever arm 40 that includes a user engagement portion 42 and a block 44. The lever 32 can further include a pivot portion 46 having a pivot axle 48.


With continued reference to FIG. 1, the second accessory 14b will be briefly described. The second accessory 14b can generally include a sanding platen 50 having a platen body 52 and a mounting collar 54. In the example shown, the mounting collar 54 can be coupled to the body 52 by way of a series of fasteners 56. The body 52 can be configured to support an abrasive sheet, such as sand paper and the like as is known in the art. The mounting collar 54 can generally include an upper plate portion 60 having a plurality of mounting features 62. In the example shown, the mounting features 62 are generally in the form of passages formed through the mounting collar 54. The mounting collar 54 can generally include an open-ended aperture or throat 66 configured to accept the spindle 26 in an assembled position as will be described herein.


With additional reference now to FIGS. 2 and 3, the clamp assembly 30 will be described in greater detail. The second clamp member 38 can include a second clamp body 70 generally in the form of a ring having a central opening 72. The second clamp body 70 can generally comprise a second clamping surface 74 having a plurality of mounting features 76 formed thereon. In the example shown, the plurality of mounting features 76 are in the form of male protrusions 78. In the particular example shown, eight protrusions each having a tapered shape or form are provided. However, other configurations are contemplated. The second clamp body 70 can additionally include an auxiliary attachment surface 80 having a plurality of auxiliary mounting features 82 (FIG. 2). Again, the plurality of auxiliary mounting features 82 are shown in the form of male protrusions and may include a similar eight protrusion configuration as provided on the second clamping surface 74. The auxiliary mounting features 82 can each have a diameter of 2.4 mm. Other configurations are contemplated.


With reference now to FIGS. 3 and 4, the first clamp member 36 can generally include a first clamp member body 84 having an annular flange 86. The first clamp member body 84 can include a first clamping surface 87 having a plurality of mounting features 88 (FIG. 4). In the example shown, the plurality of mounting features 88 are in the form of recesses that cooperatively receive the corresponding plurality of mounting features 76 of the second clamp member 38. The mounting features 88 can have any configuration, such as blind bores, or circular grooves being suitable to accept the male protrusions of the mounting features 76. The annular flange 86 can generally extend radially on an end of an outer hub 90 of the first clamp member body 84. The annular flange 86 can have a lever opposing surface 91. The first clamp member body 84 can further include an inner hub 92 that defines a first clamp member opening 94. The first clamp member opening 94 can be configured to receive the spindle 26. An annular channel 96 can be formed between the outer hub 90 and the inner hub 92. The annular channel 96 can have a terminal surface 98.


The lever 32 can generally include a lever body 100 having the user engagement portion 42 formed generally on a first end and the pivot portion 46 formed on an opposite end. According to one example, the pivot portion 46 can generally include a pair of lobes 102 that each define an axle passage 104. The lever body 100 can further include a pocket 108 having a flange opposing surface 110 for generally receiving two steel balls and the annular flange 86 of the first clamp member 36. The block 44 can generally include a pair of transverse posts 116 and a blind bore 118. The axle passages 104 provided in the lobes 102 can be configured to receive the pivot axle 48.


The clamp arrangement 10 can additionally include a first biasing member 120 and a second biasing member 122. The first biasing member 120 can be at least partially received by the annular channel 96 provided on the first clamp member body 84. The second biasing member 122 can be at least partially received into the blind bore 118 of the block 44. The first biasing member 120 can be generally supported on an upper end by a washer 126 that is correspondingly supported by a bearing 130 journalled around the spindle 26. The spindle 26 can additionally include a pair of flats 132 and channels 134 formed on a distal end. The flats 132 can generally correspond to the profile of the opening 72 formed in the second clamp member 38. The flats 132 can cooperate with the profile of the opening 72 to key the second clamp member 38 to the spindle 26 and inhibit rotation of the second clamp member 38 around a spindle axis 140. In the example provided, the output member 24 can be generally in the form of a drive fork that can impart rotational motion onto the spindle 26 around the spindle axis 140. Other configurations are contemplated. A support bearing 142 can be arranged on one end of the spindle 26 for cooperatively mounting within the housing 20.


Returning to FIG. 3, the first accessory 14a can be generally in the form of a cutting member having a working portion 146 and an attachment portion 148. The attachment portion 148 can include a plurality of mounting features 150 in the form of passages formed through the first accessory 14a. The attachment portion 148 can further include an open-ended aperture or throat 152 for selectively receiving a portion of the spindle 26 in an assembled position as will be described herein.


With specific reference now to FIGS. 4-6, an exemplary sequence of removing the first accessory 14a from the clamp assembly 30 will be described according to one example of the present teachings. With initial reference to FIG. 4, the clamp assembly 30 is shown in a closed position wherein the biasing member 120 is supported on a first end by the washer 126 and provides a downward biasing force onto the first clamp member 36 at the annular channel 96. It is important to recognize that in the particular example shown, the second clamp member 38 is fixed to the spindle 26. As shown, the male protrusions of the mounting features 76 selectively locate into the recesses of the mounting features 88 formed on the first clamp member 36. The first accessory 14a therefore is clamped between the second clamping surface 74 and the first clamping surface 87 while the male protrusions of the mounting features 76 locate through passages of the mounting features 150 formed on the first accessory 14a. Those skilled in the art will recognize that while some of the mounting features are described and shown as male protrusions and some of the mounting features are described and shown as recesses, the locations may be swapped. Moreover, other interlocking geometries may be used. As viewed in FIG. 4, the lever 32 is shown and generally described herein as the first position.


With specific reference now to FIG. 5, the lever 32 is shown rotated around a pivot axle axis 160 of the pivot axle 48 to a second position. In the second position, the clamp assembly 30 is generally in the open position where the first clamp member 36 is displaced or offset relative to the second clamp member 38. In order to move the lever 32 from the first position (FIG. 4) to the second position (FIG. 5), a user can urge the user engagement portion 42 (such as by pulling the user engagement portion 42 with an index finger) in a direction generally upwardly as viewed in FIG. 5 and toward the housing 20. In order to rotate the lever 32 around the pivot axle 48, a user must overcome the biasing forces of the respective first and second biasing members 120 and 122. During rotation of the lever 32 around the pivot axle 48, the flange opposing surface 110 in the pocket 108 of the lever body 100 (FIG. 3) generally transmits an upward force (in a direction against the biasing force of the first biasing member 120) onto the lever opposing surface 91. In this regard, the lever 32 can generally lift the first clamp member 36 at the annular flange 86 to move the first clamping surface 87 away from the second clamping surface 74. It will be appreciated that other mechanical configurations other than a lever that pivots about a pivot axle may be used. For example, a camming configuration or slidable actuation member may be additionally or alternatively employed.


With the clamp assembly 30 in the open position, the first and second clamp members 36 and 38, respectively, provide enough clearance, such that a user can remove the first accessory 14a away from the clamp assembly 30. In one example, it may be necessary to initially lift the first accessory 14a away from the male protrusions of the mounting features 76 before pulling the first accessory 14a away from the clamp assembly 30 (FIG. 6).


The clamp arrangement 10 of the present disclosure can provide a significant mechanical advantage that can provide a particularly robust clamping action onto an accessory in a tight package requiring relatively small space. In this regard, by mounting the pivot axle 48 on an opposite end of the user engagement portion 42 a user be offered a significant moment arm that can act against the respective biasing forces of the first and second biasing members 120 and 122 while still offering a significant clamping force. According to other advantages, the location of the user engagement portion 42 provides an ergonomically pleasing configuration adjacent to the housing 20 where a user's palm would be generally positioned. In this regard, an index finger can easily negotiate onto the user engagement portion 42 without having to significantly reposition a user's palm. Moreover, the user engagement portion 42 can be generally located between the housing 20 and the first accessory 14a, such that a user can easily pull up on the user engagement portion 42 in a direction toward the housing with one hand while removing/installing any given accessory with the other hand.


With specific reference now to FIGS. 7-9, perspective views of the clamp assembly 30 are shown wherein FIG. 7 generally corresponds to the sectional view of FIG. 4 of the clamp assembly 30 in the closed position and the lever 32 in the first position. FIG. 8 generally corresponds to the sectional view of FIG. 5 where the clamp assembly 30 is in the open position and the lever 32 is in the second position. FIG. 9 generally corresponds to the sectional view of FIG. 6 where the clamp assembly 30 is in the open position and the lever 32 is in the second position while the first accessory 14a is removed from the clamp assembly 30.


With reference now to FIGS. 10-12, the clamp assembly 30 can be used to selectively clamp a given accessory, such as the first accessory 14a through a variety of rotational orientations around the spindle axis 140. As identified above, the second clamp member 38 includes eight mounting features 76 however other configurations may be incorporated. The first accessory 14a includes nine mounting features or passages 150. The first accessory 14a can be arranged in a plurality of different rotational orientations, such that the male protrusions 78 can be aligned for passing through the passages 150 by rotating the first accessory 14a into the orientation desired. As can be appreciated, it may be advantageous to orient the first accessory 14a differently for a particular task. Once the passages 150 are aligned for receipt of the male protrusions 78 on the second clamp member 38 the attachment portion 148 of first accessory is dropped onto the second clamping surface 74.


In the exemplary sequence shown in FIGS. 10-12, a user can initially pull up the lever 32 at the user engagement portion 42 causing the annular flange 86 of the first clamp member 36 to be lifted as previously described. With the first clamp member 36 displaced from the second clamp member 38, the first accessory 14a can be oriented into the desired radial position and aligned with the corresponding male protrusions 78. The user can then release the user engagement portion 42 allowing the first biasing member 120 (and the second biasing member 122) to urge the first clamp member 36 in a direction toward the second clamp member 38 until the respective first and second clamping surfaces 87 and 74, respectively, engage and clamp the attachment portion 148 of the first accessory 14a (FIG. 12).


Turning now to FIGS. 13-15, various examples are shown with the first accessory 14a mounted around the second clamp member 38. In the examples shown, the male protrusions of the mounting features 76 can be arranged to allow the first accessory 14a to be indexed at about thirty degree increments around the second clamping surface 74. When describing the male protrusions of the mounting features 76 in the context of a clock, mounting features are absent at the two, four, eight and ten o'clock positions. Other examples are contemplated.


With reference now to FIGS. 16-20, the clamp assembly 30 will be described clamping the second accessory 14b according to one example of the present teachings. As described above, the clamp assembly 30 is normally biased into the closed position. As illustrated in FIG. 18, the lever 32 is shown rotated around the pivot axle axis 160 of the pivot axle 48 to the second position. In the second position, the clamp assembly 30 is generally in the open position where the first clamp member 36 is displaced relative to the second clamp member 38. With the clamp assembly 30 in the open position, the first and second clamp members 36 and 38, respectively provide enough clearance to accept the mounting collar 54 of the second accessory 14b.


While a user maintains an upward force on the user engagement portion 42 of the lever 32, the second accessory 14b is directed toward the clamp assembly 30, such that the spindle 26 is generally located through the throat 66 (FIG. 19). Once the desired mounting features 62 of the mounting collar 54 are aligned with the desired mounting features 76 of the second clamp member 38, the user can release the user engagement portion 42 of the lever 32 allowing the respective first and second biasing members 120 and 122 to return the lever 32 to the first position (FIG. 20). In the first position, the clamp assembly 30 is in the closed position, such that the first clamping surface 87 of the first clamp member 36 as well as the second clamping surface 74 of the second clamp member 38 cooperatively clamp the mounting collar 54 of the second accessory 14b.


Turning now to FIGS. 21 and 22, a third accessory 14c and a method of attaching the third accessory 14c to the auxiliary attachment surface 80 of the second clamp member 38 will be described. The third accessory 14c can generally include a body 170 having a generally iron-shaped. A plurality of mounting features 176 can be formed around an upper surface 178 of the body 172 of the third accessory 14c. In the example shown, the plurality of mounting features 176 can be in the form of recesses having a profile that generally mates with the plurality of mounting features 82 extending from the auxiliary attachment surface 80. A mounting aperture 180 can be formed through the body 172 of the third accessory 14c for accepting a fastener 182 (FIG. 22). The fastener 182 can threadably mate with a threaded bore 186 defined at a distal end of the spindle 26. Those skilled in the art will readily appreciate that movement of the lever 32 will not affect the attachment of the third accessory 14c as the third accessory 14c only interfaces with the second clamp member 38 that is rigidly fixed to the spindle 26.


Turning now to FIGS. 23-26, a fourth accessory 14d will be described cooperating with the spindle 26 and the second clamp member 38. The channels 134 formed in the spindle 26 can provide clearance for accepting other accessories, such as accessories that may define a throat 152 having a smaller entrance. In this regard, the reduced geometry throat of an accessory may be initially negotiated through the channel 134 prior to rotating the accessory into the desired orientation relative to the spindle 26 and subsequently clamping the accessory to the clamp assembly 30.


The fourth accessory 14d can have an open-ended aperture or throat 190 formed on an attachment portion 192. The throat 190 can generally span a distance 194. As compared to the throat 152 on the first accessory 14a, the throat 190 provides a reduced distance 194. The channels 134 provided on the spindle 26 are offset a distance 196 that is generally less than the distance 194, such that the throat 190 can be advanced through the channels 134 until clearing the channels 134 at an opposite end of the spindle 26 (see FIG. 24). Once the throat 190 has cleared the channels 134, a user can rotate the fourth accessory 14d to a desired orientation around the second clamping surface 74 of the second clamp member 38. Once the desired orientation has been attained, the attachment portion 192 of the fourth accessory 14d can be dropped onto the second clamping surface 74 while the male protrusions of the mounting features 76 locate through respective passages 198 formed through the attachment portion 192 on the fourth accessory 14d (FIG. 25). FIG. 26 illustrates a plan view that represents the relative distances 194 of the throat 190 and 196 of the channels 134.


With reference now to FIGS. 27 and 28, a fifth accessory 14e is shown that has an attachment portion 200 having a plurality of mounting formations 202 formed therethrough. The mounting formations 202 can be generally in the form of circular apertures. The circular apertures can have a tapered shape. Other dimensions are contemplated that may still have a diameter (or opening in general) that is large enough to accept the diameter of the respective mounting features 76 on the second clamp member 38.


With reference now to FIGS. 29-34, a clamp arrangement constructed in accordance to another example of the present disclosure is shown and generally identified at reference numeral 210. The clamp arrangement 210 is shown operatively associated with a power tool 212 for selectively and alternatively retaining various accessories such as a sixth accessory 14f. The exemplary power tool 212 can generally include a tool body 218 including a housing 220 that generally contains a motor 222 that drives an output member 224. The output member 224 can be coupled to a spindle 226. The exemplary power tool 212 is configured for providing an oscillating motion onto the spindle 226. As with the clamp arrangement 10 described above, the clamp arrangement 210, while described herein as part of an oscillating hand tool, can also be used with other power tools that releasably secure an accessory.


The clamp arrangement 210 can further include a clamp assembly 230 (FIG. 30) that operatively cooperates with a lever 232. The clamp assembly 230 can generally include a first clamp member 236 and a second clamp member 238. The lever 232 can include a lever arm 240 that includes a user engagement portion 242. The lever 232 can further include a pivot portion 246 having a pivot axle 248.


With specific reference now to FIGS. 30 and 31, the second clamp member 238 will be further described. The second clamp member 238 can include a second clamp body 250 generally in the form of a ring having a central opening 252. The second clamp body 250 can generally comprise a second clamping surface 254 having a plurality of mounting features 256 formed thereon. In one example, the second clamp body 250 and the plurality of mounting features 256 can be formed as a unitary, monolithic part, such as by precision cast steel.


As will become appreciated by the following discussion, the second clamp member 238 is configured such that the second clamping surface 254 does not actually engage the sixth accessory 14f. In the example shown, the plurality of mounting features 256 are in the form of male conical protrusions 258. In the particular example shown, eight protrusions or male conical protrusions 258 are configured to each have a tapered body portion 260 that generally tapers from the second clamping surface 254 toward a tip 262. The tip 262 can generally comprise a spherical geometry. The male conical protrusions 258 each have a height 264 measured from the second clamping surface 254 to a terminal end 266 of the tip 262. The male conical protrusions 258 can further define an angle 270 measured from a longitudinal axis 272 to an outer surface 276 of the tapered body portion 260.


The male conical protrusions 258 can be configured to engage apertures of the sixth accessory 14f at a position intermediate the terminal end 266 of the tip 262 and the second clamping surface 254. Explained differently, the sixth accessory 14f can be clamped with the lever 232 in a first position and the clamp assembly 230 closed (FIG. 30), such that the sixth accessory 14f is offset a distance 280 from the second clamping surface 254. According to one example, the height 264 can be substantially about 4 mm and the angle 270 can be substantially about between 20° and 30° and more specifically 25°. A diameter of the male conical protrusions 258 measured at the second clamping surface 254 can be substantially about 3 mm. The surface finish of the male conical protrusions 258 can be sufficiently hard so as not to deform from interaction with the sixth accessory 14f. In one example, the male conical protrusions are at least 10 points (Rockwell hardness testing) harder than the sixth accessory 14f. Other heights and angles are contemplated.


With specific reference now to FIG. 30, the first clamp member 236 can generally include a first clamp member body 284 having an annular flange 286. The first clamp member body 284 can include a clamping surface 287 that has a plurality of mounting features 288 that are in the form of recesses that cooperatively receive the corresponding plurality of mounting features 256 of the second clamp member 238. The mounting features 288 can have any configuration, such as blind bores having diameters suitable to accept at least portions of the male conical protrusions 258 of the mounting features 256. The annular flange 286 can generally extend radially from an outer hub 290 of the first clamp member body 284. The annular flange 286 can have a lever opposing surface 291. The first clamp member body 284 can further include an inner hub 292 that defines a first clamp member opening 294. The first clamp member opening 294 can be configured to receive the spindle 226. An annular channel 296 can be formed between the outer hub 290 and the inner hub 292. The annular channel 296 can have a terminal surface 298.


The lever 232 can generally include a lever body 300 having the user engagement portion 242 formed generally on a first end and the pivot portion 246 formed on an opposite end. According to one example, the pivot portion 246 can generally include a pair of lobes 302 that each define an axle passage similar to the axle passage 104 described above with respect to FIG. 3. The lever body 300 can further include a pocket 308 having a flange opposing surface 310. A retainer plate 312 can be formed on the lever body 100. The retainer plate 312 can be configured to rest on the annular flange 286 when the lever 232 is released. The pivot axle 248 can be configured to pass through the respective axle passages of the lobes 302 and a corresponding axle passage 316 formed through an arm 318 extending from the housing 220.


The clamp arrangement 210 can additionally include a biasing member 320 and a washer 326. The biasing member 320 can be at least partially received by the annular channel 296 provided on the first clamp member body 284. The biasing member 320 can be generally supported on an upper end by a washer 326 that is correspondingly supported by a flange on the spindle 226. A distal end of the spindle 226 can be configured to attain a press fit relationship (through the central opening 252) with the second clamp body 250.


With particular reference now to FIG. 32, the sixth accessory 14f will be described. The sixth accessory 14f can generally be in the form of a cutting member having a working portion 346 and an attachment portion 348. The attachment portion 348 can include a plurality of mounting features 350 in the form of passages formed through the sixth accessory 14f. The attachment portion 348 can further include an open-ended aperture or throat 352 for selectively receiving a portion of the spindle 226 in an assembled position as will be described herein. According to one example of the present teachings, the plurality of mounting features 350 can be circular and have a diameter 358 of substantially about 2.8 mm. The throat 352 can define an angle 360 of about 60°. Other dimensions are contemplated. It will be appreciated however that the diameter 358 is selected to have a geometry such that it will engage the tapered body portion 260 of the male conical protrusions 258 at a location intermediate the terminal end 266 of the tip 262 and the second clamping surface 254. More particularly, the diameter 358 has a geometry that will ensure the attachment portion 348 does not bottom out or rest on top of the second clamping surface 254. In other words, the offset 280 (FIG. 30) must be greater than zero.


The mounting features 256 can be arranged to allow the sixth accessory 14f to be indexed at about 30° increments around the second clamping surface 254. Like the mounting features 76 described above, the mounting features 256 are absent at the two, four, eight and ten o'clock positions. It is further appreciated that the clamp assembly 230 can be used to clamp other accessories, such as described herein. Other configurations are contemplated.


With specific reference now to FIGS. 30 and 34, an exemplary sequence of removing the sixth accessory 14f from the clamp assembly 230 will be described according to one example of the present teachings. With initial reference to FIG. 30, the clamp assembly 230 is shown in a closed position wherein the biasing member 320 is supported on a first end by the washer 326 and provides a downward biasing force onto the first clamp member 236 at the annular channel 296. It is important to recognize that in the particular example shown, the second clamp member 238 is fixed relative to the spindle 226. As shown, the male conical protrusions 258 selectively locate into the recesses of the mounting features 288 formed on the first clamp member 236. The sixth accessory 14f therefore is clamped between the clamping surface 287 and the outer surfaces 276 of the respective male conical protrusions 258. Again, the sixth accessory 14f is clamped at a location offset from the second clamping surface 254 of the second clamp member 238. As viewed in FIG. 30, the lever 232 is shown and generally described herein as the first position. Because the sixth accessory 14f is specifically engaged at the mounting features 350, the sixth accessory 14f can be securely fixed against the clamping surface 287 with minimal or no relative movement between the sixth accessory 14f and the clamp assembly 230.


Turning now specifically to reference FIG. 34, the lever 232 is shown rotated from the first position (phantom line) around the pivot axle axis 249 to a second position (solid line). In the second position, the clamp assembly 230 is generally in the open position where the first clamp member 236 is displaced or offset relative to the second clamp member 238. In order to move the lever 232 from the first position (phantom line, FIG. 34) to the second position (solid line, FIG. 34), a user can urge the user engagement portion 242 (such as by pulling the user engagement portion 242 with an index finger) in a direction generally upwardly as viewed in FIG. 34 and toward the housing 220. In order to rotate the lever 232 around the pivot axle 248, a user must overcome the biasing force of the biasing member 320 (FIG. 30). During rotation of the lever 232 around the pivot axle 248, the flange opposing surface 310 and the pocket 308 of the lever body 300 generally transmits an upward force (in a direction against the biasing force of the biasing member 320) onto the lever opposing surface 291. In this regard, the lever 232 can generally lift the first clamp member 236 at the annular flange 286 to move the clamping surface 287 away from the second clamp member 238.


With the clamp assembly 230 in the open position, the first and second clamp members 236 and 238, respectively, provide enough clearance, such that a user can remove the sixth accessory 14f away from the clamp assembly 230. In one example, it may be necessary to initially lift the sixth accessory 14f away from the male conical protrusions 258 before pulling the sixth accessory 14f away from the clamp assembly 230.


The pivot axle 248 can be located a distance 370 measured perpendicularly from a point 372 on a longitudinal centerline of the spindle 226. In one example, the distance 370 can be long enough to give the user a mechanical advantage to comfortably overcome the bias of the biasing member 320 when moving the lever 232 to the second position (clamp assembly 230 open). A distance 374 measured between the point 372 and a plane defined by the clamping surface 287 can be less than the distance 370.


The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.

Claims
  • 1. A clamp arrangement for releasably securing an accessory having a radially open-ended aperture to a vertically oriented output spindle of an oscillating power tool that is rotationally driven about an axis by a motor, the oscillating power tool having a tool body with an exposed end portion of the output spindle projecting from an underside of the tool body, the clamp arrangement comprising: a clamp assembly coupled to the end portion of the output spindle of the oscillating power tool and including first and second clamp members, the second clamp member being fixedly secured to the end portion of the output spindle below the first clamp member at a fixed distance away from the underside of the tool body, the first clamp member being movable along the axis of the output spindle relative to the second clamp member between a closed position wherein the clamp assembly retains the accessory between the first and second clamp members and an open position wherein the first clamp member of the clamp assembly is offset upwardly from the accessory and displaced toward the underside of the tool body permitting radial removal of the accessory from the clamp assembly while the first clamp member remains coupled to the output spindle; andan actuator having a user engagement portion positioned intermediate the underside of the tool body and the second clamp member and being movably coupled relative to the tool body between a first position, wherein the clamp assembly is in the closed position, and a second position wherein movement of the user engagement portion of the actuator causes the clamp assembly to be moved to the open position.
  • 2. The clamp arrangement of claim 1 wherein the actuator comprises a lever having a pivot portion including a pivot axle, the lever being pivotally coupled relative to the tool body about a pivot axle between the first and second positions.
  • 3. The clamp arrangement of claim 2 wherein the clamp assembly is arranged on the tool body in a position such that the accessory oscillates about a longitudinal axis that is located intermediate the pivot axle and the user engagement portion.
  • 4. The clamp arrangement of claim 2, further comprising a first biasing member that biases the clamp assembly toward the closed position.
  • 5. The clamp arrangement of claim 4, further comprising a second biasing member disposed generally between the user engagement portion of the lever and the tool body and that biases the user engagement portion of the lever away from the tool body.
  • 6. The clamp arrangement of claim 1 wherein the second clamp member has a first portion that opposes the first clamp member and cooperates with the first clamp member to clamp the accessory between the first and second clamp members.
  • 7. The clamp arrangement of claim 6 wherein the first clamp member comprises a first clamp body having one of a first plurality of protrusions extending from a first clamping surface and a first plurality of recesses formed into the first clamping surface.
  • 8. The clamp arrangement of claim 7 wherein the second clamp member comprises a second clamp body having a second clamping surface that opposes the first clamping surface and includes the other of the first plurality of protrusions and the first plurality of recesses, wherein the first plurality of protrusions are configured to cooperatively locate into the corresponding first plurality of recesses in the closed position.
  • 9. The clamp arrangement of claim 8 further comprising an accessory having a plurality of mounting formations therethrough, the first plurality of protrusions each having a conical outer surface that locates partially through and engages the plurality of mounting formations of the accessory in the closed position, wherein the accessory is positioned offset from the second clamping surface of the second clamp body.
  • 10. The clamp arrangement of claim 8 wherein the second clamp body further comprises an auxiliary attachment surface, on an opposite facing surface of the second clamp body from the second clamping surface, and configured to selectively and alternatively connect with a secondary accessory; and further wherein said clamp arrangement further includes a connecting member for fixedly connecting said secondary accessory to said auxiliary attachment surface.
  • 11. The clamp arrangement of claim 10 wherein the auxiliary attachment surface further comprises one of a second plurality of protrusions and second plurality of recesses thereon that are configured to cooperatively mate with the secondary accessory.
  • 12. The clamp arrangement of claim 10 wherein said connecting member comprises a bolt that is configured to be threaded into a threaded bore in the end of the output spindle.
  • 13. A clamp arrangement for releasably securing an accessory having a radially open-ended aperture to a vertically oriented output spindle of an oscillating power tool that is rotationally driven about an axis by a motor, the oscillating power tool having a tool body with an exposed end portion of the output spindle projecting from an underside of the tool body, the clamp arrangement comprising: a clamp assembly coupled to the end portion of the output spindle of the oscillating power tool and including a first clamp member that moves axially relative to the accessory between a closed position wherein the clamp assembly retains the accessory and an open position wherein the first clamp member of the clamp assembly is offset upwardly from the accessory permitting radial removal of the accessory from the clamp assembly;an arm having a user engagement portion positioned intermediate the underside of the tool body and the accessory and a pivot portion including a pivot axle, the arm being pivotally coupled relative to the tool body about the pivot axle between a first position, wherein the clamp assembly is in the closed position and a second position wherein movement of the user engagement portion of the arm causes the clamp assembly to be moved to the open position; andwherein the clamp assembly is arranged on the tool body in a position such that the accessory oscillates about a longitudinal axis that is located intermediate the pivot axle and the user engagement portion.
  • 14. The clamp arrangement of claim 13 wherein the clamp assembly further comprises a second clamp member having a first portion that opposes the first clamp member and cooperates with the first clamp member to clamp the accessory between the first and second clamp members.
  • 15. The clamp arrangement of claim 14 wherein the first clamp member comprises a first clamp body having one of a first plurality of protrusions extending from a first clamping surface and a first plurality of recesses formed into the first clamping surface.
  • 16. The clamp arrangement of claim 15 wherein the second clamp member comprises a second clamp body having a second clamping surface that opposes the first clamping surface and includes the other of the first plurality of protrusions and first plurality of recesses, wherein the first plurality of protrusions are configured to cooperatively locate into the corresponding first plurality of recesses in the closed position.
  • 17. The clamp arrangement of claim 16 wherein the second clamp body further comprises an auxiliary attachment surface, on an opposite facing surface of the second clamp body from the second clamping surface, and configured to selectively and alternatively connect with a secondary accessory.
  • 18. The clamp arrangement of claim 17 wherein the auxiliary attachment surface further comprises one of a second plurality of protrusions and second plurality of recesses thereon that are configured to cooperatively mate with the secondary accessory.
  • 19. The clamp arrangement of claim 17 wherein said clamp arrangement further includes a connecting member comprising a bolt that is configured to be threaded into a threaded bore in the end of the output spindle to fixedly connect said second accessory to said auxiliary attachment surface.
  • 20. A clamp arrangement for releasably securing an accessory having a radially open-ended aperture to a longitudinally extending output spindle of an oscillating power tool that is rotationally driven about a longitudinal axis by a motor, the oscillating power tool having a tool body with an exposed end portion of the output spindle projecting longitudinally along said longitudinal axis from an underside of the tool body, the clamp arrangement comprising: a clamp assembly including first and second clamp members, the second clamp member being fixedly secured to the end portion of the output spindle at a fixed distance away from the underside of the tool body, the first clamp member being movably disposed on the output spindle between the second clamp member and the underside of the tool body for longitudinal movement aligned with said longitudinal axis between a closed position wherein the clamp assembly retains the accessory between the first and second clamp members and an open position wherein the first clamp member of the clamp assembly is longitudinally offset along said longitudinal axis from the second clamp member and displaced toward the underside of the tool body permitting radial removal of the accessory from the clamp assembly while the first clamp member remains coupled to the output spindle; andan actuator having a user engagement portion and being movably coupled relative to the tool body between a first position, wherein the clamp assembly is in the closed position, and a second position wherein the clamp assembly is in the open position; andwherein movement of the user engagement portion of the actuator causes the clamp assembly to be moved from the closed position to the open position.
  • 21. The clamp arrangement of claim 20 wherein the user engagement portion of said actuator is longitudinally positioned along said longitudinal axis intermediate the underside of the tool body and the second clamp member.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit and priority of U.S. Provisional Application No. 61/329,480, filed Apr. 29, 2010. The entire disclosure of the above application is incorporated herein by reference.

US Referenced Citations (260)
Number Name Date Kind
2305465 Bangser Dec 1942 A
D137633 Jacobson Apr 1944 S
2693365 Zelewsky Nov 1954 A
2785515 Sansig Mar 1957 A
2997819 Schact Aug 1961 A
3055497 Klonski Sep 1962 A
3440915 Weyant Apr 1969 A
3554197 Dobbie Jan 1971 A
3656393 Goellner Apr 1972 A
3905374 Winter Sep 1975 A
3943934 Bent Mar 1976 A
4015371 Grayston Apr 1977 A
4059930 Alessio Nov 1977 A
4075793 Vogel et al. Feb 1978 A
4106181 Mattchen Aug 1978 A
4112541 Tetradis Sep 1978 A
4252121 Arnegger Feb 1981 A
4253776 Orain Mar 1981 A
4265285 Fodor May 1981 A
4386609 Mongeon Jun 1983 A
4393626 Schroer Jul 1983 A
4513742 Arnegger Apr 1985 A
4590837 Nanba May 1986 A
4597227 Gentischer et al. Jul 1986 A
4599077 Vuillard Jul 1986 A
4648735 Oddenino Mar 1987 A
4700478 Mezger et al. Oct 1987 A
4784034 Stones et al. Nov 1988 A
4825091 Breyer et al. Apr 1989 A
4891884 Torbet Jan 1990 A
RE33335 Gentischer et al. Sep 1990 E
4980976 Junginger et al. Jan 1991 A
4989374 Rudolf et al. Feb 1991 A
5022188 Borst Jun 1991 A
5027684 Neukam Jul 1991 A
5038478 Mezger et al. Aug 1991 A
5064325 McRoskey Nov 1991 A
5085589 Kan Feb 1992 A
5107737 Tagliaferri Apr 1992 A
5122142 Pascaloff Jun 1992 A
5157873 Rudolf et al. Oct 1992 A
5199223 Rudolf et al. Apr 1993 A
5219378 Arnold Jun 1993 A
5235719 Wimberley Aug 1993 A
5263283 Rudolf et al. Nov 1993 A
5265343 Pascaloff Nov 1993 A
5269784 Mast Dec 1993 A
D343247 Walen Jan 1994 S
5303688 Chiuminatta et al. Apr 1994 A
5306025 Langhoff Apr 1994 A
5306285 Miller et al. Apr 1994 A
5309805 Mezger et al. May 1994 A
5352229 Goble et al. Oct 1994 A
5366312 Raines Nov 1994 A
5382249 Fletcher Jan 1995 A
5423825 Levine Jun 1995 A
5435063 Russo Jul 1995 A
D360946 Goris Aug 1995 S
5440811 Challis Aug 1995 A
D362065 Goris Sep 1995 S
5468247 Matthai et al. Nov 1995 A
5480507 Arnold Jan 1996 A
5489285 Goris Feb 1996 A
5496316 Goris Mar 1996 A
D368777 Goble et al. Apr 1996 S
5507763 Petersen et al. Apr 1996 A
D374286 Goble et al. Oct 1996 S
D374287 Goble et al. Oct 1996 S
D374482 Goble et al. Oct 1996 S
5658304 Lim Aug 1997 A
5676680 Lim Oct 1997 A
5694693 Hutchins et al. Dec 1997 A
5702415 Matthai et al. Dec 1997 A
5729904 Trott Mar 1998 A
5785571 Camp Jul 1998 A
5829931 Doumani Nov 1998 A
5839196 Trott Nov 1998 A
5848473 Brandenburg, Jr. Dec 1998 A
5857237 Dranginis Jan 1999 A
D406223 Tran Mar 1999 S
5957469 Miles et al. Sep 1999 A
6022353 Fletcher et al. Feb 2000 A
6073939 Steadings et al. Jun 2000 A
6082515 Oono et al. Jul 2000 A
6099397 Wurst Aug 2000 A
6116996 Yanase Sep 2000 A
6132282 Camp Oct 2000 A
6132300 Martin Oct 2000 A
6179301 Steadings et al. Jan 2001 B1
6196554 Gaddis et al. Mar 2001 B1
6241259 Gaddis et al. Jun 2001 B1
6340022 Schroer Jan 2002 B1
6430465 Cutler Aug 2002 B2
6434835 Grunikiewicz et al. Aug 2002 B1
6435521 Steadings et al. Aug 2002 B2
D462766 Jacobs et al. Sep 2002 S
6488287 Gaddis et al. Dec 2002 B2
6499381 Ladish et al. Dec 2002 B2
6503253 Fletcher et al. Jan 2003 B1
6536536 Gass et al. Mar 2003 B1
6569001 Rudolf et al. May 2003 B2
6629484 Soyama et al. Oct 2003 B2
6678062 Haugen et al. Jan 2004 B2
6705807 Rudolph et al. Mar 2004 B1
6723101 Fletcher et al. Apr 2004 B2
6747745 Ishikawa et al. Jun 2004 B2
6796888 Jasch Sep 2004 B2
6802764 Besch Oct 2004 B2
6832764 Steadings et al. Dec 2004 B2
6834730 Gass et al. Dec 2004 B2
6865813 Pollak Mar 2005 B2
6869346 Wendt et al. Mar 2005 B2
6945862 Jasch et al. Sep 2005 B2
6949110 Ark et al. Sep 2005 B2
6968933 Buckhouse et al. Nov 2005 B2
7001403 Hausmann et al. Feb 2006 B2
7015445 Bishop Mar 2006 B2
7077735 Krondorfer et al. Jul 2006 B2
7093668 Gass et al. Aug 2006 B2
7107691 Nottingham et al. Sep 2006 B2
7115027 Thomaschewski Oct 2006 B2
7121358 Gass et al. Oct 2006 B2
7128503 Steadings et al. Oct 2006 B2
7169025 Schumacher Jan 2007 B2
7175625 Culbert Feb 2007 B2
7189239 Fisher et al. Mar 2007 B2
7207873 Hesse et al. Apr 2007 B2
7217177 Frech et al. May 2007 B2
D544007 Marasco Jun 2007 S
7225714 Rompel et al. Jun 2007 B2
7237988 Steadings et al. Jul 2007 B2
7258351 Hoffmann et al. Aug 2007 B2
7258515 Krondorfer Aug 2007 B2
7328752 Gass et al. Feb 2008 B2
7334511 Hesselberg et al. Feb 2008 B2
D563186 Ahn Mar 2008 S
7344435 Pollak et al. Mar 2008 B2
7447565 Cerwin Nov 2008 B2
7478979 Zhou et al. Jan 2009 B2
7481608 Zhou et al. Jan 2009 B2
7497860 Carusillo et al. Mar 2009 B2
7527628 Fletcher et al. May 2009 B2
7533470 Nottingham et al. May 2009 B2
7537065 Gallagher et al. May 2009 B2
7540334 Gass et al. Jun 2009 B2
7690871 Steadings et al. Apr 2010 B2
7699566 Nickels, Jr. et al. Apr 2010 B2
7717191 Trautner May 2010 B2
7717192 Schroeder et al. May 2010 B2
7726917 Mack Jun 2010 B2
7735575 Trautner Jun 2010 B2
7746448 Franitza et al. Jun 2010 B2
D619152 Evatt et al. Jul 2010 S
7753381 Nickels, Jr. et al. Jul 2010 B2
7762349 Trautner et al. Jul 2010 B2
7784166 Tanner Aug 2010 B2
D623034 Evatt et al. Sep 2010 S
7798245 Trautner Sep 2010 B2
7833241 Gant Nov 2010 B2
7841601 Mack Nov 2010 B2
7854274 Trautner et al. Dec 2010 B2
D633769 Evatt et al. Mar 2011 S
D633928 Nilsson et al. Mar 2011 S
7901424 Fletcher et al. Mar 2011 B2
7950152 Gallego May 2011 B2
7976253 Steadings et al. Jul 2011 B2
7987920 Schroeder et al. Aug 2011 B2
7997586 Ziegler et al. Aug 2011 B2
D646539 Maras Oct 2011 S
D646540 Maras Oct 2011 S
D646542 Wackwitz Oct 2011 S
8038156 Nickels, Jr. et al. Oct 2011 B2
D648762 Mack Nov 2011 S
8047100 King Nov 2011 B2
D651062 Wackwitz Dec 2011 S
8070168 Mack Dec 2011 B2
8082671 Saegesser Dec 2011 B2
D651499 Tong Jan 2012 S
D651874 Davidian et al. Jan 2012 S
D651875 Davidian et al. Jan 2012 S
D651876 Davidian et al. Jan 2012 S
D651877 Davidian et al. Jan 2012 S
D651878 Davidian et al. Jan 2012 S
D652274 Davidian et al. Jan 2012 S
D653523 Wackwitz et al. Feb 2012 S
8109343 Schroeder et al. Feb 2012 B2
8113520 Zaiser et al. Feb 2012 B2
8151679 Bohne Apr 2012 B2
D665242 Wackwitz Aug 2012 S
D682651 Mcroberts et al. May 2013 S
20010041524 Steiger et al. Nov 2001 A1
20020104421 Wurst Aug 2002 A1
20020198556 Ark et al. Dec 2002 A1
20030014067 Kullmer et al. Jan 2003 A1
20030032971 Hausmann et al. Feb 2003 A1
20040098000 Kleinwaechter May 2004 A1
20040138668 Fisher et al. Jul 2004 A1
20040204731 Gant Oct 2004 A1
20040243136 Gupta et al. Dec 2004 A1
20050178261 Thomaschewski Aug 2005 A1
20050245935 Casey et al. Nov 2005 A1
20060150428 Baculy Jul 2006 A1
20060172669 Hesse et al. Aug 2006 A1
20060217048 Frech et al. Sep 2006 A1
20060272468 Gupta et al. Dec 2006 A1
20060282108 Tanner Dec 2006 A1
20070060030 Pollak et al. Mar 2007 A1
20070093190 Schomisch Apr 2007 A1
20070229853 Cheng Oct 2007 A1
20070266837 Nickels et al. Nov 2007 A1
20070295156 Ziegler et al. Dec 2007 A1
20070295165 Tanaka et al. Dec 2007 A1
20080027449 Gundlapalli et al. Jan 2008 A1
20080190259 Bohne Aug 2008 A1
20080196911 Krapf et al. Aug 2008 A1
20090013540 Bohne Jan 2009 A1
20090023371 Blickle et al. Jan 2009 A1
20090051094 Sandmeier Feb 2009 A1
20090093815 Fletcher et al. Apr 2009 A1
20090138017 Carusillo et al. May 2009 A1
20090197514 Peisert Aug 2009 A1
20090198465 Decker et al. Aug 2009 A1
20090277022 Limberg et al. Nov 2009 A1
20090312761 Boykin et al. Dec 2009 A1
20090312762 Boykin Dec 2009 A1
20090312779 Boykin et al. Dec 2009 A1
20090318065 Zaiser et al. Dec 2009 A1
20090320625 Kildevaeld Dec 2009 A1
20090321625 Sieradzki et al. Dec 2009 A1
20100003906 Zaiser et al. Jan 2010 A1
20100009613 Frueh Jan 2010 A1
20100052269 Zaiser et al. Mar 2010 A1
20100056029 Grunikiewicz Mar 2010 A1
20100193207 Mok et al. Aug 2010 A1
20100197208 Blickle et al. Aug 2010 A1
20100288099 Steiger Nov 2010 A1
20100300714 Trautner Dec 2010 A1
20110000690 Kildevaeld Jan 2011 A1
20110011605 Kildevaeld Jan 2011 A1
20110067894 Bernardi Mar 2011 A1
20110072946 Bernardi et al. Mar 2011 A1
20110086582 Takemura et al. Apr 2011 A1
20110097978 Hofmann et al. Apr 2011 A1
20110127731 Woecht et al. Jun 2011 A1
20110139472 Bohne Jun 2011 A1
20110147023 Herr Jun 2011 A1
20110227300 Zhang et al. Sep 2011 A1
20110266757 Steadings et al. Nov 2011 A1
20110266758 Sergyeyenko et al. Nov 2011 A1
20110266759 Goldman Nov 2011 A1
20110291368 Chen et al. Dec 2011 A1
20110309589 Maras Dec 2011 A1
20110315414 Kuntner et al. Dec 2011 A1
20110316241 Zhang et al. Dec 2011 A1
20110316242 Zhang et al. Dec 2011 A1
20120025476 Nickels, Jr. et al. Feb 2012 A1
20120031636 King Feb 2012 A1
20120073410 Hoffman et al. Mar 2012 A1
20120090863 Puzio et al. Apr 2012 A1
20120144971 Bohne Jun 2012 A1
Foreign Referenced Citations (59)
Number Date Country
2006305634 Apr 2007 AU
657411 Aug 1986 CH
1878647 Aug 1963 DE
2915292 Oct 1980 DE
2935731 Apr 1981 DE
3203670 Aug 1983 DE
3520417 Dec 1985 DE
3833735 Apr 1989 DE
8618695 Sep 1989 DE
4036904 May 1992 DE
29607061 Oct 1996 DE
29810157 Aug 1998 DE
19736933 Oct 1998 DE
29907671 Aug 1999 DE
29809788 Sep 1999 DE
19825408 Dec 1999 DE
20303018 Apr 2003 DE
10307840 Jun 2004 DE
10325392 Dec 2004 DE
102004020982 Nov 2005 DE
202006001643 Mar 2006 DE
102004050798 Apr 2006 DE
102004050799 Apr 2006 DE
202004021498 Jun 2008 DE
102007018465 Oct 2008 DE
102007018467 Oct 2008 DE
202009004549 Jun 2009 DE
202009004549 Jun 2009 DE
202008001759 Jul 2009 DE
102008001234 Oct 2009 DE
202009013147 Jan 2010 DE
202008011959 Feb 2010 DE
102009030854 Jan 2011 DE
0443362 Aug 1991 EP
0554929 Aug 1993 EP
0695607 Feb 1996 EP
0776634 Jun 1997 EP
0962283 Dec 1999 EP
1694477 Jun 2005 EP
1687120 Aug 2006 EP
1819490 Aug 2007 EP
1852218 Nov 2007 EP
1882538 Jan 2008 EP
2085182 Aug 2009 EP
2143531 Jan 2010 EP
2152475 Feb 2010 EP
2159000 Mar 2010 EP
1158205 Jun 1989 JP
2006263914 Oct 2006 JP
WO-9424945 Nov 1994 WO
WO-03097299 Nov 2003 WO
WO-2004043269 May 2004 WO
WO-2005056256 Jun 2005 WO
WO-2006017066 Feb 2006 WO
WO-2008151866 Dec 2008 WO
WO-2009151958 Dec 2009 WO
WO-2009151959 Dec 2009 WO
WO-2009151965 Dec 2009 WO
WO-2010020458 Feb 2010 WO
Non-Patent Literature Citations (11)
Entry
Zimmer Inc., Brochure “Air Drive Blades—The Next Generation” dated Jun. 28, 1993, 1 page; © 1993 Zimmer, Inc.
Zimmer, Inc., Brochure “More Versatile ‘Graft’ Blades Available” dated Feb. 15, 1993, 2 page; © 1993 Zimmer, Inc.
Materials from Stryker Corporation Brochure published prior to Jan. 1, 1994.
Aloe Medical Instruments “Gall Ball Retractor” Item B-1323, p. 115 © 1965.
Stryker Maintenance Manual entitled “System II Ortho Power 90 Battery Powered Surgical Instruments”—For Use With: 298-92, 94,96, 98 (Stryker Surgical Brochure 298-92-16 Rev (Mar. 1986).
Sketch A related to p. 9 of the Stryker Maintenance Manual entitled “System II Ortho Power 90 Battery Powered Surgical Instruments” (Mar. 1986).
pp. 2, 3 and 5 of Stryker prior art brochure/-catalog No. 1420 Standard Bone Saw Handpiece, 1100 Series saw blades, and No. 1470 Sagittal Plane bone saw with Series 1370 blades.
Hall Surgical brochure—New Opposed-Tooth Blades—published prior to Jan. 1, 1994.
Communication dated Jan. 15, 2014, from the Australian Government for corresponding Australian Patent Application No. 2013100855.
Dremel 6300-05 120-volt Multi-Max Oscillating Kit (retrieved on Sep. 30, 2014) viewed on the internet. https://web.archive.org/web/20091224220316/http://www.amazon.com/Dreme1-6300-05-120-Volt-Multi-Max-Oscillating/dp/B002WTCDXO published on Dec. 24, 2009 as per Wayback Machine.
Australian Search Report; Oct. 1, 2014; 5 pp.
Related Publications (1)
Number Date Country
20110266758 A1 Nov 2011 US
Provisional Applications (1)
Number Date Country
61329480 Apr 2010 US