This invention relates to an oscillator device having a plurality of oscillators and, more particularly, to an oscillator device suitably usable in an optical deflecting device. In another aspects the present invention concerns a scan type display or an image forming apparatus such as a laser beam printer or a digital copying machine, having such optical deflecting device.
As compared with traditional scanning optical systems having a rotary polygonal mirror (polygon mirror), recently proposed resonance type optical deflecting devices have advantageous features that the optical deflecting device can be made quite small in size; slow power consumption; and theoretically no surface tilt of the mirror surface.
On the other hand, in the resonance type optical deflecting devices since, in principle, the deflecting angle (displacement angle) of the mirror changes sinusoidally, the angular speed is not constant. U.S. Pat. No. 4,859,846 and U.S. Patent Application, Publication No. 2006/152785 have proposed a method for correcting this.
In U.S. Pat. No. 4,859,846, a resonance type deflector having oscillation modes of a fundamental frequency and a frequency threefold the fundamental frequency is used to accomplish triangular-wave drive.
Although triangular-wave drive of an oscillator of the deflector may be provided by the structures disclosed in the aforementioned patent documents, further improvements are still necessary with regard to the deflection angle controllability of the oscillator. The present invention enables high precision control of the deflection angle (displacement angle) of an oscillator of an oscillator device.
In accordance with an aspect of the present invention, there is provided an oscillator device, comprising: an oscillating system having a first oscillator, a second oscillator, a first torsion spring for connecting said first and second oscillators each other, and a second torsion spring being connected to said second oscillator and having a common torsional axis with said first torsion spring; a supporting system for supporting said oscillating system; a driving system for driving said oscillating system so that at least one of said first and second oscillators produces oscillation as can be expressed by an equation that contains a sum of a plurality of time functions; a signal producing system for producing an output signal corresponding to displacement of at least one of said first and second oscillators; and a drive control system for controlling said driving system on the basis of the output signal of said signal producing system so that at least one of amplitude and phase of the time function takes a predetermined value.
In accordance with another aspect of the present invention, there is provided an oscillator device, comprising: an oscillating system having a first oscillator, a second oscillator, a first torsion spring for connecting said first and second oscillators each other, and a second torsion spring being connected to said second oscillator and having a common torsional axis with said first torsion spring; a supporting system for supporting said oscillating system; a driving system for driving said oscillating system so that at least one of said first and second oscillators produces oscillation as can be expressed by an equation that contains at least a term
A1 sin ωt+A2 sin(nωt+ø)
where n is an integer not less than 2; a signal producing system for producing an output signal corresponding to displacement of at least one of said first and second oscillators; and a drive control system for controlling said driving system on the basis of the output signal of said signal producing system so that at least one of A1, A2 and ø in the aforementioned equation takes a predetermined value.
In accordance with a further aspect of the present invention, there is provided an oscillator device, comprising: an oscillating system having a first oscillator, a second oscillator, a first torsion spring for connecting said first and second oscillators each other, and a second torsion spring being connected to said second oscillator and having a common torsional axis with said first torsion spring; a supporting system for supporting said oscillating system; a driving system for driving said oscillating system so that at least one of said first and second oscillators produces oscillation as can be expressed, in regard to displacement θ(t) thereof, by an equation
θ(t)=A1 sin ωt+ΣAn sin(nωt+øn-1)
where n is an integer not less than 2; a signal producing system for producing an output signal corresponding to displacement of at least one of said first and second oscillators; and a drive control system for controlling said driving system on the basis of the output signal of said signal producing system so that at least one of A1, A2, . . . and An and ø1, ø2, . . . and øn-1 in the aforementioned equation takes a predetermined value.
In accordance with a yet further aspect of the present invention, there is provided an oscillator device, comprising: a supporting system; an oscillating system having a first oscillator, a second oscillator, a first torsion spring for connecting said first and second oscillators each other, and a second torsion spring for connecting said supporting system and said second oscillator each other and having a common torsional axis with said first torsion spring; a driving system for driving said oscillating system so that one of said first and second oscillators produces oscillation as can be expressed, in regard to displacement θ(t) thereof, by an equation
θ(t)=A1 sin ωt+A2 sin(2ωt+ø);
a signal producing system for producing first and second time moment information as one of said first and second oscillators provides a first displacement angle, and for producing third and fourth time moment information as the one oscillator provides a second displacement angle different from the first displacement angle; and a drive control system for controlling said driving system on the basis of the first to fourth time moment information so that at least one of A1, A2 and ø in the aforementioned equation takes a predetermined value.
Briefly, in accordance with an oscillator device of the present invention, the deflection angle of an oscillator can be controlled very precisely.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
An oscillator device according to a first embodiment of the present invention will now be described.
The oscillator device of this embodiment may comprise, as shown in
The oscillator device may further comprise a driving system 120 for applying a driving force to the oscillating system, and a drive control system 150 for adjusting the driving system 120. The driving system 120 may drive the oscillating system so that at least one of the oscillators produces oscillation as can be expressed by an equation that contains the sum of a plurality of time functions. The drive control system 150 may supply, to the driving system 120, a driving signal effective to cause such oscillation.
Where an oscillator device according to this embodiment is used in an optical deflecting device, at least one oscillator may be provided with a reflection mirror. The reflection mirror may be a light reflection film formed on the surface of the oscillator. If the oscillator surface is sufficiently smooth, it may be used as a reflection mirror without a light reflection film. The optical deflecting device may further include a light source 131 for emitting a light beam. The light beam 132 may be projected on the reflection mirror of the oscillator, whereby the light beam is scanned.
The operational principle of the oscillator device according to this embodiment will be explained. Generally, the free oscillation of an oscillating system that includes oscillators of a number n and torsion springs of a number n is expressed by the following equation.
where Ik is the moment of inertia of the oscillator, kk is the spring constant of the torsion spring, and θk is the angle of torsion of the oscillator (k=1, . . . , n).
If the eigen value of M−1K of this system is denoted by λk (k=1 to n), the angular oscillation frequency (angular frequency) ωk in the natural oscillation mode is given by φk=√(λk) (square root of λk). In the oscillator device according to this embodiment, the oscillating system may have oscillators of a number n and torsion springs of a number n, and it may be arranged so that ωk includes a fundamental frequency as well as frequencies of a number n−1, which frequencies are integer-fold the fundamental frequency. This enables various motions of the oscillator. Here, the term “integer-fold” means “N-fold” where N is an integral number. However, the “integral number” here may include a case of an approximately integral number. Such “approximately-integral-number-fold” may be chosen from the numerical range of about 0.98n to 1.02n times the fundamental frequency (n is an arbitrary integer).
Specifically, the oscillator device of this embodiment may have two oscillators and two torsion springs and it may be arranged so that ωk includes a fundamental frequency and frequencies approximately-even-number-fold the fundamental frequency. With this arrangement, approximately constant angular speed drive is accomplished while, in a predetermined range, variation in angular speed of the oscillator is well suppressed.
If n=3, an oscillating system having three oscillators 101, 102 and 103 and three torsion springs 111, 112 and 113 such as shown in
As described above, by increasing the number of oscillation mode, fluctuation of angular speed of the oscillator in a predetermined range can be reduced.
The oscillator device of this embodiment may have two oscillators and two torsion springs, and it may be arranged so that a fundamental frequency and a frequency or frequencies approximately three-fold the fundamental frequency may be included in ωk. This enables approximately triangular-wave drive of the oscillators.
Next, oscillation of an oscillating system having oscillators of a number n and torsion springs of a number n, such as shown in
This oscillating system simultaneously produces oscillation motion moving in accordance with a fundamental frequency and oscillation motion moving with frequencies approximately-integral-number-fold the fundamental frequency and having a number n−1.
Hence, in a first example according to this embodiment, at least one of plural oscillators may be arranged to provide oscillation as can be expressed by an equation that contains the sum of plural time functions. The equation containing the sum of plural time functions may include an equation having a constant term. An example of such equation with a constant term may be a case wherein a constant DC bias is applied to the driving system to shift the displacement angle origin (the position where displacement angle is zero) of the oscillator.
In a second example according to this embodiment, the deflection angle θ of the optical deflecting device (here, it is measured with reference to the position of the scan center as shown in
In a third example according to this embodiment, if the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω, respectively, the amplitude and angular frequency of the n-th oscillation motion are denoted by An and nω, and the relative phase difference between the first and n-th oscillation motions is denoted by øn-1, then the motion of the oscillator can be expressed by the following equation.
θ(t)=A1 sin ωt+ΣAn sin(nωt+øn-1) (2)
wherein n is an integer not less than 2. The value of n can be enlarged as desired as long as the number of the oscillators that constitute the oscillator device can be increased. In practical production of oscillator devices, however, the largest number of n may preferably be 3 to 5. The driving system 120 may have a structure for applying a driving force to the driving system in accordance with any of electromagnetic process, electrostatic process, piezoelectric process, and so on. If the electromagnetic drive is used, at least one oscillator may be provided with a permanent magnet, and a coil for applying a magnetic field to this permanent magnet may be disposed near the oscillator. Disposition of the permanent magnet and the coil may be reversed. If the electrostatic drive is used, at least one oscillator may be provided with an electrode, and another electrode for applying an electrostatic force to between these electrodes may be disposed close to the oscillator. If the piezoelectric drive is used, the oscillating system or the supporting system may be provided with a piezoelectric device to apply a driving force.
The drive control system 150 may be arranged to produce a driving signal with which the oscillating system can produce oscillation motion in accordance with any one of the first to third examples, described above. The driving signal may be applied to the driving system.
The driving signal may be one based on combined sinusoidal waves (
The oscillator device of this embodiment may include a signal producing device for producing an output signal corresponding to displacement of at least one oscillator. In
Where a piezoelectric resistor 170 is to be used to detect the displacement angle of the oscillator, as an example the piezoelectric resistor 170 may be provided on a torsion spring, and the moment of time whereat the oscillator defines a certain displacement angle may be detected on the basis of an output signal from the piezoelectric resistor 170. The piezoelectric resistor 170 may be made by diffusing phosphorus into p-type monocrystal silicon, for example. The piezoelectric resistor 170 produces an output signal corresponding to the torsional angle of the torsion spring. Hence, for measurement of the displacement angle of the oscillator, a plurality of piezoelectric resistors 170 may be provided in relation to a plurality of torsion springs such that the displacement angle of the oscillator can be measured on the basis of torsional angle information from these torsion springs. This ensures higher precision measurement.
Where a light receiving element 140 is going to be used to detect the displacement angle of the oscillator, the structure may be made as follows.
Namely, a first light receiving element may be disposed at a position to be irradiated with scanning light as the oscillator takes a first displacement angler and a second light receiving element may be disposed at a position to be irradiated with scanning light as the oscillator takes a second displacement angle. The first and second light receiving elements may be provided by different elements, or they may be provided by one and the same element. The scanning light may be incident directly on the light receiving element, or it may be incident thereon via at least one reflection member. In summary, at least one light receiving element should be provided to receive and detect the scanning light at first and second scan angles. The signal producing device used in this embodiment may be one arranged to produce a signal intermittently with respect to a time axis, at the moment as a predetermined displacement angle is defined. Alternatively, it may be one arranged to produce a signal corresponding to the displacement, continuously with respect to the time axis.
Since the deflection angle of a mirror and the scan angle of scanning light scanningly deflected by that mirror are in constant relationship with each other, and they can be treated equivalently. Hence, in this specification, the term “deflection angle” (displacement angle) and the term “scan angle” are used equivalently.
As shown in
This embodiment is not limited in regard to the structure for measuring the time moment of passage of the scanning light at first and second displacement angles, and the time moment of passage of the scanning light may be measured at more displacement angles.
In the present invention, the term “displacement angle” includes a displacement angle when the oscillator is held stationary, that is, a displacement angle which is equal to zero.
In the first example of this embodiment, the drive control system 150 may control the driving system 120 on the basis of an output signal of the signal producing device so that at least one of the amplitude and phase of a plurality of time functions that represent the oscillation motion of the oscillator takes a predetermined value.
In the second example, since the oscillation motion of the oscillator is expressed by an equation that contains at least a term A1 sin ωt+A2 sin(nωt+ø), the driving system may be controlled as follows. That is, the driving system 120 may be controlled so that at least one of A1, A2 and ø in the aforementioned equation takes a predetermined value.
In the third example, on the other hand, since the oscillation motion of the oscillator is expressed by Equation (2), the driving system 120 may be controlled on the basis of an output signal of the signal producing device so that at least one of A1, A2, . . . , An and ø1, ø2, . . . , øn-1 takes a predetermined value.
As described above, in the oscillator device according to this embodiment of the present invention, the deflection angle of the oscillator can be controlled very precisely with a quite simple structure.
In this embodiment, the drive may be adjusted in accordance with information from the signal producing device. With regard to such information from the signal producing device, preferably, the drive may be/controlled on the basis of both of the information from the signal producing device in a case where the displacement angle of the oscillator is positive and the information from the signal producing device in a case where the displacement angle is negative. For example, if, with respect to a displacement angle θ of the oscillator, four pieces of information from the signal producing device at four time moments reflecting the displacement should be used, two of the four time moments may preferably be those concerning the time moment information when the displacement angle θ of the oscillator is positive, and the remaining two may be those concerning the time moment information when the displacement angle θ is negative.
An oscillator device according to a second embodiment of the present invention will now be described. The oscillator device of this embodiment may comprise, as shown in
The oscillator device may further comprise a driving system 120 for applying a driving force to the oscillating system, a drive control system 150 for adjusting the driving system, and a signal producing device for producing time moment information related to time moment as one of the two oscillators takes first and second, different displacement angles. This signal producing device may be used as a displacement angle gauge. In
At least one oscillator may be provided with a reflection mirror. Where the oscillator device of this embodiment is used in an optical deflecting device, a light source 131 for emitting a light beam may be provided. The light beam 132 from the light source may be projected onto the reflection mirror of the oscillator, whereby the light is scanningly deflected.
The oscillating system is arranged to simultaneously produce first oscillation motion moving in accordance with a first frequency (fundamental frequency) and second oscillation motion moving with second frequency which is a frequency integral-number-fold the fundamental frequency.
Namely, the deflection angle θ of the optical deflecting device of this embodiment (here, it is measured with reference to the position of the scan center as shown in
θ(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2) (3-1)
Furthermore, if the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1 and the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the relative phase difference between the two frequencies is denoted by ø, and the time with respect to the reference time being taken at an arbitrary time is denoted by t, then the deflection angle θ of the optical deflecting device can be expressed as follows,
θ(t)=A1 sin(ω1t)+A2 sin(ω2t+ø) (3-2)
or
θ(t)=A1 sin(ω1t+ø)+A2 sin(ω2t) (3-3)
Equation (3-3) corresponds to a case wherein there is a possibility of adjusting the phase of the fundamental wave ω1 during the control. Equation (3-1), Equation (3-2) and Equation (3-3) are different only with respect to the expression concerning determination of the origin or reference point of time. These are essentially the same in that each is an equation containing four unknown values: for example, ø in Equation (3-2) and Equation (3-3) can be rewritten as ø1-ø2 or ø2-ø1.
The driving system 120 may be arranged to apply a driving force to the oscillating system in accordance with any of electromagnetic process, electrostatic process, piezoelectric process, and so on. It may have a similar structure as of the first embodiment.
The drive control system 150 may be arranged to produce a driving signal with which the oscillating system can provide oscillation motion, oscillating in accordance with a fundamental frequency and frequencies N-fold the fundamental frequency where N is an integer. The driving signal may be applied to the driving system.
The driving signal may be one based on combined sinusoidal waves (
The displacement gauge may be arranged to measure four time moments, that is, two different time moments whereat, within one cycle of the first oscillation motion, the oscillator takes the first displacement angle, and two different time moments whereat the oscillator takes the second displacement angle.
The drive control system 150 may be arranged to produce a driving signal by combining a first signal having a first frequency and a second signal having a second frequency, and to apply the same to the driving system 120. Furthermore, the drive control system may operate to adjust the driving signal so that the four measured time moments mentioned above coincide with desired moments determined beforehand. Then, it may apply the thus adjusted driving signal to the driving system 120, whereby the oscillator device can be controlled very precisely.
The drive control system 150 may further be arranged to calculate at least one of the amplitudes and phases of the first and second oscillation motions in Equation (3-1), that is, A1, ø1, A2 and ø2 in this equation, from the four time moments described above. Then, the drive control system 150 may adjust the driving signal so that at least one of these values is made equal to a preset value.
For adjustment of the driving signal, the amplitude component and phase component of the first oscillation motion in the driving signal as well as the amplitude component and phase component of the second oscillation motion may be adjusted. Here, the amplitude component of the first oscillation motion in the driving signal, for example, refers to such component in the driving signal with which the amplitude of the first oscillation motion of the oscillator can be changed. This is also the case with the other components.
By supplying so adjusted driving signal to the driving system 120, the oscillator device can be controlled very precisely.
Although this embodiment has been described with reference to an example wherein moment of passage of the scanning light is measured on the basis of the first and second displacement angles, the present invention is not limited to it. More displacement angles may be used to measure the moment of passage of the scanning light.
An oscillator device according to a third embodiment of the present invention will be described.
In this embodiment as well, if the amplitude, angular frequency and phase of the first oscillation motion are denoted by A1, ω1 and ø1, the amplitude, angular frequency and phase of the second oscillation motion are denoted by A2, ω2 and ø2, and the time is denoted by t, then the deflection angle θ of the optical deflecting device can be expressed by Equation (3-1) mentioned hereinbefore.
Furthermore, if the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the relative phase difference between the two frequencies is denoted by ø, and the time with respect to the reference time being taken at an arbitrary time is denoted by t, then the deflection angle θ can be expressed by Equation (3-2) or Equation (3-3) mentioned hereinbefore.
Here, by using the first and second light receiving elements disposed at positions of the first and second displacement angles, mutually different four desired time moments in one cycle of the first oscillating motion may be measured. Then, the drive control system 150 may adjust the driving signal so that the scanning light passes over the first and second light receiving elements at preset time moments.
Namely, the drive control system 150 may be arranged to calculate, from the four time moments mentioned hereinbefore, the amplitude and phase of the first oscillation motion as well as the amplitude and phase of the second oscillation motion in Equation (3-1), that is, the values of A1, ø1, A2 and ø2 in this equation. Based on this, an arbitrary and desired deflection angle θ of the optical deflecting device is provided. Here, with regard to the four time moments, if the deflection angles corresponding to the positions of the first and second light receiving elements are denoted by θBD1 and θBD2 (see
At certain moments t1 and t2,
θ(t1)=θ(t2)=θBD1 (4)
At certain moments t3 and t4,
θ(t3)=θ(t4)=θBD2 (5)
Namely, by letting the four time moments coincide with the arbitrary desired moments, respectively, the drive control system 150 can definitely determine the amplitudes and phases of the first and second oscillation motions. More specifically, in order to bring the four time moments into coincidence with the preset time moments, the drive control system 150 produces a driving signal and applies the same to the driving system 120, thereby to adjust the amplitudes and phases or a relative phase difference of the first and second oscillation motions.
The driving signal may be one based on combined sinusoidal waves (
An oscillator device according to a fourth embodiment of the present invention will be described.
In this embodiment as well, if the amplitude, angular frequency and phase of the first oscillation motion are denoted by A1, ω1 and ø1, the amplitude, angular frequency and phase of the second oscillation motion are denoted by A2, ω2 and ø2, and the time is denoted by t, then the deflection angle θ of the optical deflecting device can be expressed by Equation (3-1) mentioned hereinbefore.
Furthermore, if the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the relative phase difference between the two frequencies is denoted by ø, and the time with respect to the reference time being taken at an arbitrary time is denoted by t, then the deflection angle θ can be expressed by Equation (3-2) or Equation (3-3) mentioned hereinbefore.
Here, the light receiving element and the reflection plate may be disposed at positions to be irradiated by the scanning light, and mutually different four desired time moments in one cycle of the first oscillating motion may be measured. Then, the drive control system 150 may adjust the driving signal so that the scanning light passes over the light receiving element and the reflection plate at preset time moments.
Namely, the drive control system may be arranged to calculate, from the four time moments mentioned hereinbefore, the amplitude and phase of the first oscillation motion as well as the amplitude and phase of the second oscillation motion in Equation (3-1), that is, the values of A1, ø1, A2 and ø2 in this equation. Based on this, an arbitrary and desired deflection angle θ of the optical deflecting device is provided. Here, with regard to the four time moments, if the deflection angles corresponding to the positions of the light receiving element and the reflection plate are denoted by θBD and θMIORROR (see
At certain moments t1 and t2,
θ(t1)=θ(t2)=θBD (6)
At certain moments t3 and t4,
θ(t3)=θ(t4)=θMIRROR (7)
Namely, by letting the four passage time moments (t1, t2, t3 and t4) coincide with the arbitrary desired time moments, respectively, the drive control system 150 definitely determines the amplitudes and phases of the first and second oscillation motions. More specifically, in order to bring the four time moments into coincidence with the preset moments, the drive control system 150 produces a driving signal and applies the same to the driving system 120, thereby to adjust the amplitudes and phases or a relative phase difference of the first and second oscillation motions.
The driving signal may be one based on combined sinusoidal waves (
An oscillator device according to a fifth embodiment of the present invention will be described.
In the example illustrated, the first oscillation motion is depicted by A1 sin(ω1t) and the second oscillation motion is depicted by A2 sin(ω2t+ø). A phase π is added only to the second oscillation motion during the drive under the second oscillation mode, such that the motion is depicted by A2 sin(ω2t+ø+π). As seen at the solid curves in
If the amplitude, angular frequency and phase of the first oscillation motion are denoted by A1, ω1 and ø1, the amplitude, angular frequency and phase of the second oscillation motion are denoted by A2, ω2 and ø2, and the time is denoted by t, then the deflection angle θa of the optical deflecting device in the first oscillation mode can be expressed as follows.
θa(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2) (8)
Furthermore, the deflection angle θb of the optical deflecting device in the second oscillation mode wherein desired phases ø1′ and ø2′ are added to the phases ø1 and ø2 by the oscillation mode changing means 151, can be expressed as follows.
θb(t)=A1 sin(ω1t+ø1+ø1′)+A2 sin(ω2t+ø2+ø2′) (9)
The light receiving element 140 may be disposed at a desired position to be irradiated by the scanning light, and mutually different four desired time moments in the first oscillating motion, taking a certain point in the cycle as an origin, may be measured. Then, the drive control system 150 may adjust the driving signal so that the scanning light passes over the light receiving element at preset time moment.
Namely, by calculating the amplitudes, angular frequencies and phases of the first and second oscillation motions from the four time moments mentioned hereinbefore, and by adjusting the driving signal based on it, a desired deflection angle θ of the optical deflecting device is provided.
With regard to the four time moments, if the deflection angle corresponding to the position of the light receiving element 140 is denoted by θaBD, with respect to certain moments t1 and t2 as well as certain moments t3 and t4 the following relation is given.
θa(t1)=θa(t2)=θaBD (10)
θb(t3)=θb(t4)=θbBD (11)
Hence, by letting the four time moments (t1, t2, t3 and t4) coincides with the arbitrary desired moments, respectively, the drive control system 150 definitely determines the amplitudes and phases of the first and second oscillation motions. More specifically, in order to bring the four time moments into coincidence with the preset moments, the drive control system 150 produces a driving signal and applies the same to the driving system 120, thereby to adjust the amplitudes and phases of the first and second oscillation motions.
Furthermore, if the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the relative phase difference between these two frequencies is denoted by ø, and the time while taking an arbitrary time as zero is denoted by t, then the deflection angle θa of the optical deflecting device in the first oscillation mode can be expressed as follows.
θa(t)=A1 sin(ω1t)+A2 sin(ω2t+ø) (12)
Furthermore, the deflection angle θb of the optical deflecting device in the second oscillation mode wherein desired phases ø1′ and ø2′ are added to the phases ø1 and ø2 by the oscillation mode changing means 151, can be expressed as follows.
θb(t)=A1 sin(ω1t+ø1′)+A2 sin(ω2t+ø+ø2′) (13)
In this case as well, the light receiving element 140 may be disposed at a desired position to be irradiated by the scanning light, and mutually different four desired time moments in the first oscillating motion, taking a certain point in the cycle as an origin, may be measured. Then, the drive control system 150 may adjust the driving signal so that the scanning light passes over the light receiving element at preset time moment.
Namely, by calculating the amplitudes, angular frequencies and phases of the first and second oscillation motions from the four time moments mentioned hereinbefore, and by adjusting the driving signal based on it, a desired deflection angle θ of the optical deflecting device is provided.
With regard to the four time moments, if the deflection angle corresponding to the position of the light receiving element 140 is denoted by θaBD, with respect, to certain moments t1 and t2 as well as certain moments t3 and t4 the following relation is given.
θa(t1)=θa(t2)=θaBD (14)
θb(t3)=θb(t4)=θaBD (15)
Hence, by letting the four time moments (t1, t2, t3 and t4) coincide with the arbitrary desired moments, respectively, the drive control system 150 definitely determines the amplitudes and phases of the first and second oscillation motions. More specifically, in order to bring the four time moments into coincidence with the preset moments, the drive control system 150 produces a driving signal and applies the same to the driving system 120, thereby to adjust the amplitudes A1 and A2 of the first and second oscillation motions, respectively, as well as the phase difference ø2 between them.
In this embodiment as well, the driving signal may be one based on combined sinusoidal waves (
Specific examples in which the present invention is embodied in various ways will be described below, in conjunction with the drawings.
An optical deflecting device according to Example 1 of the present invention will be described. The block diagram of the optical deflecting device of Example 1 may be the same as shown in
In this example, each of the oscillators 301 and 302 is held by two torsion springs at the upper and lower portions thereof. However, the oscillator may be supported only by one torsion spring, at one side thereof. For example, the oscillator 301 may be held by a single torsion spring 311b, while the oscillator 302 may be held by two torsion springs 312a and 312b. Inversely, the oscillator 301 may be held by two torsion springs 311a and 311b, while the oscillator 302 may be held by a single torsion spring 312b.
The oscillating system including oscillators 301 and 302 and torsion springs 311 and 312 has two oscillation modes, wherein adjustment is made so that the frequency of one mode is approximately two-fold (twice) the frequency of the other mode. For example, if the moment of inertia of the oscillators 301 and 302 is denoted by I1 and I2, respectively, the spring constant provided by the torsion springs 311a and 311b is denoted by k1, and the spring constant provided by the torsion springs 312a and 312b is denoted by k2, then two natural angular oscillation frequencies are determined definitely. In this example, the moment of inertia I1 and I2 and the spring constants k1 and k2 are adjusted to provide ω1=2π×2000 [rad/s] and ω2=2π×4000 [rad/s].
In this example, the wave producing circuits 351 and 352 and adder 370 are used to combine two frequencies to produce a driving signal (see
In accordance with the optical deflecting device of this example, desired optical scan based on two frequency components (e.g., optical scan with its scan angle changing like a sawtooth-wave) is accomplished.
An optical deflecting device according to Example 2 of this embodiment will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
The deflection angle θ of the optical deflecting device of this example can be expressed as follows. Now, the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, and the phases of the two frequencies are denoted by ø1 and ø2. If the time with respect to the origin or reference time being taken at an arbitrary time within one cycle of the first oscillation motion is denoted by t, then the deflection angle θ can be expressed by Equation (3-1) mentioned hereinbefore, that is:
θ(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2)
Here, if A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, the changes in deflection angle θ and angular speed θ′, with respect to time, of the optical deflecting device of this example are such as shown in
Although this example uses a condition A1−1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θ′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves. Preferably, in a continuous time period not less than 20% of one cycle of the first frequency, the largest value θ′max and smallest value θ′min of the angular speed θ′ of the reflection mirror satisfy the following relationship.
(θ′max−θ′min)/(θ′max+θ′min)<0.1
This is general condition required for the optical deflecting device, and it applies to other examples to be described below.
If the first and second light receiving elements 141 and 142 are disposed at symmetrical positions with respect to the center of scan of the optical deflecting device, corresponding to 80% A1 position, namely, at a position where the deflection angle θ becomes equal to 0.8 (taking the largest deflection angle as 1), the result is as follows. Namely, desired target time moments t10, t20, t30 and t40 (see
Although in this example the first and second light receiving elements 141 and 142 are disposed at symmetrical positions with respect to the scan center of the optical deflecting device where the deflection angle θ=0.8, these may be disposed at any other positions providing arbitrary deflection angle θ. Preferably, to avoid optical interference in the approximately constant speed region, the first and second light receiving elements may be disposed within a range of not less than 0.6 to less than 1.0 in terms of the absolute value of deflection angle θ. Here, the range of absolute value of θ from not less than 0.6 to less than 1.0 means a range in which the deflection angle θ is less than +1.0 and not less than 0.6, as well as a range in which θ is not greater than −0.6 and greater than −1.0.
The center of deflection of the reflection mirror is at zero, and a desired largest deflection angle is ±1. This is also the case with the other examples.
Next, details of the method of controlling the deflection angle in this example will be explained.
<A1 Control>
First, A1 is controlled. In order to perform the optical scan only in accordance with the first oscillation motion moving with a fundamental frequency, the frequency of the arbitrary-wave producing circuit 351 is set to an angular frequency of 2000 Hz, while the frequency of the arbitrary-wave producing circuit 352 is set to an arbitrary angular frequency other than 2000 Hz and 4000 Hz and containing zero. This results in that the second oscillation motion produces no resonance oscillation. Here, the deflection angle θ of the optical deflecting device can be expressed as follows.
θ(t)=A1 sin(ω1t) (16)
Then, the time moments t1, t2, t3 and t4 are set as follows.
θ(t1)=θ(t2)=θBD1 (17)
θ(t3)=θ(t4)=θBD2 (18)
Then the amplitude of the arbitrary-wave producing circuit 351 is adjusted so that the value of at least one of t2−t1 and t4−t3 becomes equal to 0.102 msec (this value can be determined beforehand on the basis of changes in desired deflection angle θ shown in
The procedure described above is the procedure for determining the amplitude of the first oscillation motion of the reflection mirror on the oscillator. This procedure is carried out when the second oscillation motion is stopped and the optical scan is being carried out only by the first oscillation motion, so as to perform the following adjustment while taking a certain time within one cycle of the first frequency as zero or a reference. Namely, the amplitude of the first oscillation motion is adjusted so that the time moments of at least one of (i) a set of two different time moments whereat the scanning light passes across the first light receiving element and (ii) a set of two different time moments whereat the scanning light passes across the second light receiving element, can be made coincident with desired target time moments.
After this, the frequency of the arbitrary-wave producing circuit 352 is turned back to 4000 Hz. Here, in this example, for optical scan only with the first oscillation motion moving at the fundamental frequency, the frequency of the arbitrary-wave producing circuit 352 is set to an arbitrary frequency other than 2000 Hz or 4000 Hz and containing zero. That is, in order to stop the second oscillation motion, the periodic driving force of the second frequency, among the driving force to be transmitted to the oscillating system from the driving system, is interrupted and, furthermore, a periodic driving force of a third frequency other than the first and second frequencies is added. However, in this procedure, the amplitude A2 of the arbitrary-wave producing circuit 352 may be made equal to zero.
<ø Control>
Subsequently, the phase difference ø of the first and second oscillation motions is adjusted to zero. Here, both of the following relations should be satisfied.
t2−t1=t4−t3 (19)
t3−t2>t30−t20 (20)
Equation (19) is required because the first and second light receiving elements 141 and 142 are disposed at positions which are symmetrical with respect to the center of scan of the optical deflecting device. By adjusting the phase difference of the arbitrary-wave producing circuits 351 and 352 so as to satisfy this relation, the phase difference of the first and second oscillation motions is made equal to zero. In this case as well, since the number of unknown value to be determined is 1, ø can be determined with this procedure. Equation (20) is the condition for avoiding reverse of the phase of the oscillation motion.
The procedure described above is the procedure for determining the relative phase difference between the first and second oscillation motions of the reflection mirror. Here, the phase of at least one of the first and second oscillation motions is adjusted so that (i) the difference between two different time moments whereat the scan light passes across the first light receiving element and (ii) the difference between two different time moments whereat the scan light passes across the second light receiving element, become equal to each other.
<A2 Control>
Subsequently, A2 is controlled. Now, the time moment whereat the scanning light 133 passes across the first and second light receiving elements 141 and 142 is denoted by t1, t2, t3 and t4. Then, the amplitude of the arbitrary-wave producing circuit 352 is adjusted so that at least one of them satisfies the relation t1=0.052 msec, t2=0.154 msec, t3=0.346 msec or t4=0.448 msec. By this, A2 can be made equal to a desired value A2. In this case as well, since the number of unknown value to be determined is 1, A2 can be determined with this procedure.
The procedure described above is the procedure for determining the amplitude of the second oscillation motion of the reflection mirror, and it is the procedure for adjusting the amplitude of the second oscillation motion so that at least one of the time moments whereat the scanning light passes across the first and second light receiving elements is made equal to a desired value.
<Checking Completion of Control>
If t1, t2, t3 and t4 are in a predetermined tolerable range, the control is terminated. If not so, the sequence goes back to the A1 control, and the above-described control procedure is carried out-again.
With the operations described above, a desired deflection angle θ of the optical deflecting device is accomplished. Although in this example t1, t2, t3, t4, t10, t20, t30 and t40 are considered as the time moment, these may be counts (numbers) measured with reference to a certain clock. Furthermore, although in this example t1, t2, t3, t4, t10, t20, t30 and t40 are considered as determined values, these may be values having certain error range. This is also the case with the other examples.
An optical deflecting device according to Example 3 of this embodiment will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
In this example as well, the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, and the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, and the phases of the two frequencies are denoted by ø1 and ø2. If the time with respect to the origin (0) determined by taking an arbitrary reference time within one cycle of the first oscillation motion is denoted by t, the deflection angle θ of the optical deflecting device of this example can be expressed by Equation (3-1) mentioned hereinbefore, that is:
θ(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2)
Here, if A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, the deflection angle θ of the optical deflecting device of this example is such as shown in
Although this example uses a condition A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θ′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves.
If the first and second light receiving elements 141 and 142 are disposed at symmetrical positions with respect to the center of scan of the optical deflecting device, corresponding to 80% A1 position, namely, at a position where the deflection angle θ becomes equal to 0.8, and also if the time whereat the deflection angle θ is equal to zero (scan center) is denoted by 0, the result is as follows. Namely, desired target time moments t10, t20, t30 and t40 whereat the scanning light 133 should pass across the first and second light receiving elements 141 and 142 are 0.052 msec, 0.154 msec, 0.346 msec and 0.448 msec, respectively. Hence, the control system adjusts the driving signal so that the measured four time moments t1, t2, t3 and t4 for passage of the scanning light 133 across the first and second light receiving elements 141 and 142 should take the desired values mentioned above. By this, the deflection angle θ of the optical deflecting device shown in
Although in this example the first and second light receiving elements 141 and 142 are disposed at symmetrical positions with respect to the scan center of the optical deflecting device where the deflection angle θ=0.8, any other arbitrary deflection angle θ may be used. Furthermore, although in this example the time whereat the deflection angle θ is zero is taken as zero, an arbitrary time within one period of the angular frequency of the first oscillation motion may be used as the origin (0).
The control method in this example will now be explained in detail.
Coefficients and matrix M thereof representing changes in detection time moments t1, t2, t3 and t4 whereat the scanning light 133 passes across the first and second light receiving elements 141 and 142, caused when the control parameters X including any of A1, A2 ø1 and ø2 of the optical deflecting device shift minutely from respective target values, are detected beforehand. These can be expressed as follows.
Thus, the control amounts ΔA1, ΔA2, Δø1 and Δø2 for the amplitude and phase of the reflection mirror can be determined on the basis of time differences Δt1, Δt2, Δt3 and Δt4 between the four detection time moments t1, t2, t3 and t4 and the four target time moments t10, t20, t30 and t40, and in accordance with the following equation.
Based on this equation, the control amounts ΔA1, ΔA2, Δø1 and Δø2 can be calculated from the time difference Δt1, Δt2, Δt3 and Δt4 with respect to the target time moments t10, t20, t30 and t40. Then, the outputs of the arbitrary-wave producing circuits 351 and 352 are changed. By repeating the above-described control procedure, the detection time moment is converged to the target time moments t10, t20, t30 and t40, whereby a desired deflection angle θ of the optical deflecting device is accomplished.
The displacement angle transmission characteristic of the oscillator shown in
An optical deflecting device according to Example 4 of the present invention will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
With regard to the deflection angle θ of the optical deflecting device of this example, now, the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the phase difference between the two frequencies is denoted by ø, and time is denoted by t. Then, the deflection angle θ can be expressed by Equation (3-2) or Equation (3-3) mentioned hereinbefore. Here, ø should read ø1−ø2 or ø2−ø1 in these equations.
Now, it is assumed that A1=1, A2=0.2, ø=0, ω1=2π×2000 and ω2=2π×4000. Although this example uses a condition A1=1, A2=0.2, ø=0 (ø1=0, ø2=0), ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θ′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves. Here, the first and second light receiving elements 141 and 142 are disposed at positions corresponding to 80% A1, namely, at positions where the deflection angle θ becomes equal to 0.8. Also, among the target time moments t10, t20, t30 and t40 whereat the scanning light 133 passes across the first and second light receiving elements 141 and 142, t10 is chosen as the reference time. Then, relative target time t20−t10, t30−t10, t40−t10 from the reference time become equal to 0.102 msec, 0.294 msec and 0.396 msec, respectively. Hence, the deflection angle θ of the optical deflecting device of this example is such as shown in
Although in this example the first and second light receiving elements 141 and 142 are disposed at symmetrical positions with respect to the scan center of the optical deflecting device where the deflection angle θ=0.8, these may be disposed at any other positions corresponding to arbitrary deflection angle θ.
The control method in this example will now be explained in detail. Coefficients and matrix M thereof representing changes in relative detection time t2−t1, t3−t1 and t4−t1 whereat the scanning light 133 passes across the first and second light receiving elements 141 and 142, caused when the control parameters X including any of A1, A2 and ø of the optical deflecting device shift minutely from respective target values, may be detected beforehand. These can be expressed as follows.
Thus, the control amounts ΔA1, ΔA2 and Δø for the amplitude and phase of the reflection mirror can be determined on the basis of time differences Δt2, Δt3 and Δt4 between three relative detection times t2−t1, t3−t1 and t4−t1 as well as three target times t20−t10, t30−t10 and t40−t10, and in accordance with the following equation.
Based on this equation, the control amounts ΔA1, ΔA2 and Δø can be calculated from the time differences Δt2, Δt3 and Δt4 with respect to the target times t20−t10, t30−t10 and t40−t10. Then, the outputs of the arbitrary-wave producing circuits 351 and 352 are adjusted on the basis of these amounts. By repeating the above-described control procedure, the detection time moment is converged to the target time moments t10, t20, t30 and t40, whereby a desired deflection angle θ of the optical deflecting device is accomplished.
The procedure described above will be explained with reference to the block diagram of
In this example as well, a driving signal based on combining sinusoidal waves, such as shown in
Through the control procedure described above, a desired deflection angle θ of the optical deflecting device is accomplished. Although in this example as well, t20−t10, t30−t10 and t40−t10 are considered as determined values, these may be values having certain error range.
An optical deflecting device according to Example 5 of the present invention will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
With regard to the deflection angle θ of the optical deflecting device of this example, now, the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, the phase difference between the two frequencies is denoted by ø, and time is denoted by t. Then, the deflection angle θ can be expressed by Equation (3-2) or Equation (3-3) mentioned hereinbefore. Here, ø should read ø1−ø2 or ø2−ø1 in these equations.
Now, it is assumed that A1=1, A2=0.2, ø=0, ω1=2π×2000 and ω2=2π×4000. Although this example uses a condition A1=1, A2=0.2, ø=0 (ø1=0, ø2=0), ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θ′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves. Furthermore, although in this example as well the first and second light receiving elements 141 and 142 are disposed at symmetrical positions θ1 and θ2 with respect to the scan center of the optical deflecting device, these may be disposed at any other positions providing arbitrary deflection angle θ.
The control method in this example will be described in detail.
The drive control system 150 calculates error quantities related to the amplitude A1 of the frequency ω1, amplitude A2 of the frequency ω2, and phase difference ø between the frequencies ω1 and ω2, and based on these error quantities, it, produces a driving signal for the optical deflecting device.
The manner of calculating these error signals will be explained below.
First, calculation of ø error signal will be described.
It is now assumed that, in the equation shown in
On the other hand, if the amplitude A1 of the first component changes and such change causes an increase of t1, then t2 increases as a result of it. On the other hand, if the amplitude change causes a decrease of t1, then t2 decreases as a result of it. Namely, t1 and t2 are changeable in the same way in response to a change in amplitude A1 of the first component.
Hence, by subtracting t1 and t2, a change in amplitude A1 of the first component can be cancelled and, thus, only the phase shift amount of the first and second components can be extracted.
Here, if the θ1 and θ2 are disposed at symmetrical positions with respect to the scan center of the optical deflecting device, the phase change amount of the first and second components can be extracted only by performing calculation of t1−t2. Furthermore, if θ1 and θ2 are not disposed symmetrically, a good signal is obtainable by adjusting the subtraction ratio of t1 and t2.
It is seen from the above that, if ø0 is taken as a control target value, the error signal for ø that represents the error amount of ø component can be determined in accordance with the following equation.
ø error signal=t1−δxt2−ø0 (δ≧0) (27-1)
Next, calculation of an error signal for the amplitude A1 of the first component will be described.
If the amplitude A1 of the first component changes and it causes an increase of t12, then t21 increases as a result of it. If on the other hand t12 decreases, it causes a decrease of t21. Namely, in response to a change in amplitude A1 of the first component, t12 and t21 changes in the same way.
On the other hand, if the amplitude A2 of the second component changes and it causes an increase of t12, then t21 decreases as a result of it. If t12 decreases to the contrary, t21 increase as a result of it. Namely, in response to a change in the amplitude A2 of the second component, t12 and t21 are changeable inversely.
Hence, by adding t12 and t21 at an appropriate ratio, a change in the amplitude A2 of the second component can be cancelled.
Similarly, since t1 and t12 and t2 and t21 are in inversely changing relation with each other in response to a change in amplitude A1 of the first component, by subtracting t1 and t12, and t2 and t21, the change of the amplitude A1 of the first component can be cancelled and the error signal can be enlarged.
It is seen from the above that, if A10 is taken as a control target value, the error signal for A1 that represents the error amount of A1 component can be determined in accordance with the following equation.
A1 error signal=t1+δxt2−αx(t12+βxt21)−A10 (α,β,δ≧0) (27-2)
Next, calculation of an error signal for the amplitude A2 of the second component will be described.
The error signal for amplitude A2 of the second component can be calculated in accordance with a similar principle as the calculation of the error signal for the amplitude A1 of the first component.
As described hereinbefore, in response to a change in amplitude A1 of the first component, t12 and t21 are changeable in the same way. On the other hand, with a change in amplitude A2 of the second component, t12 and t21 are changeable inversely. Therefore, by subtracting t12 and t21 at an appropriate ratio, the change of the amplitude A1 of the first component can be cancelled.
It is seen from the above that, if A20 is taken as a control target value, the error signal for A2 that represents the error amount of A2 component can be determined in accordance with the following equation.
A2 error signal=t12−γxt21−A20 (γ≧0) (27-3)
The values of α, β, γ and δ can be adjusted as follows.
As regards δ, disturbance is inputted into the amplitude A1 of the first component, and δ is adjusted so that the change of “Out1” (e.g. t1−δxt2) becomes smallest. As regards β, disturbance is inputted into the amplitude A2 of the second component, and β is adjusted so that the change of “Out3” (e.g. t12+βxt21) becomes smallest. As regards α, disturbance is inputted into the amplitude A1 of the first component, and α is adjusted so that the change of “Out2” (e.g. t1+t2+αx(t12+βxt21)) becomes smallest. As regards γ, disturbance is inputted into the amplitude A1 of the first component, and γ is adjusted so that the change of “Out4” (e.g. t12−γxt21) becomes smallest.
The values of α, β, γ and δ may be detected by actually inputting disturbance into A1, A2 and ø or, alternatively, on the basis of calculation.
The control circuit of
Although this example uses low-pass filters to remove noise, signal shaping may be done by using any other filter. Or, use of the filter may be omitted.
As regards the angle θ of the optical deflecting device, although this example uses a relation θ(t)=A1 sin(ω1t)+A2 sin(ω2t+ø), the relation may be changed to A1 sin(ω1t+ø)+A2 sin(ω2t), for example, with essentially the same results. The control method and control circuit of this example are applicable in such case.
An optical deflecting device according to Example 6 of this embodiment will be described. This example is similar to Example 5 except that the error detecting circuit has a structure shown in
In Example 6, error signals for A1, A2 and ø are calculated as follows.
A1 error signal=t1+t2−A10 (28-1)
The error signal for A2 can be detected by subtracting A2 control target value A20 from the signal that represents the amplitude change of A2. This can be expressed as follows.
A2 error signal=t12−A20 (or t21−A20) (28-2)
The error signal for ø can be detected by subtracting ø control target value ø0 from the signal that represents the phase change of ø. This can be expressed as follows.
ø error signal=t1−t2−ø0 (28-3)
By use of the error detecting circuit of this example, error signals for parameters can be calculated through simpler computations. These error signals are applied to the control circuit shown in
An optical deflecting device according to Example 8 of the present invention will be described. The block diagram of the optical deflecting device according to Example 7 is similar to that shown in
In this example as well, oscillators 301 and 301 and torsion springs 311 and 312 have two oscillation modes, wherein adjustment is made to assure that the frequency of one mode is approximately two-fold (twice) of the other's. Furthermore, in this example as well, two natural angular oscillation frequencies (natural angular frequencies) are adjusted to ω1=2π×2000 [Hz] and ω2=2π×4000 [Hz].
With the optical deflecting device of this example, arbitrary optical scanning based on two frequency components (for example, optical scanning wherein the deflection angle changes like a sawtooth wave) is accomplished.
An optical deflecting device according to Example 8 of the present invention will be described. The block diagram of the optical deflecting device according to this example is similar to that shown in
In this example, the deflection angle θ of the optical deflecting device can be expressed by Equation (3-1) mentioned hereinbefore, that is:
θ(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2)
Here, if A1−1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, the changes in deflection angle θ and angular speed θ′, with respect to time, of the optical deflecting device of this example are such as shown in
Although this example uses a condition A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θ′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves.
In this example, as shown in
Next, the method of adjusting the amplitude A1 will be described. If the production of sinusoidal wave of frequency 4000 Hz from the arbitrary-wave producing circuit 352 is interrupted and the circuit produces only a sinusoidal wave of frequency 2000 Hz, the optical deflecting device performs oscillation only in the first oscillation motion. The deflection angle θ can be expressed by θ(t)=A1 sin(ω1t) as in Equation (16).
Here, if the detection time moment (passage time moment) whereat the scanning light 133 and the deflection light 134 pass across the light receiving element 140 is denoted by ta, tb, tc and td, the relationship between the deflection angle and the passage time can be expressed as follows.
θ(ta)=θ(tb)=θBD (29)
θ(tc)=θ(td)=θMIRROR (30)
In
After this, a sinusoidal wave of frequency 4000 Hz is superposedly produced from the arbitrary-wave producing circuit 352, and the optical deflecting device is driven in accordance with these two frequencies. In this case as well, in place of interrupting the production of sinusoidal wave of frequency 4000 Hz from the arbitrary-wave producing circuit 352, in addition to the sinusoidal wave of 2000 Hz a sinusoidal wave having an arbitrary frequency (third frequency) other than 4000 Hz and containing zero may be produced therefrom. Since in such occasion the frequency is out of the resonance frequency of the optical deflecting device, there is no possibility that the motion of the optical deflecting device with the third frequency caused thereby. Advantageous feature here is that, since signals of two frequencies are continuously supplied to the driving system of the optical deflecting device, any change in supplied energy is well suppressed. This effectively reduces a change in temperature of the optical deflecting device which might be caused if the actual drive in the device is changed. This applies to other examples.
In this example, the light receiving element 140 is disposed at a position θBD where the deflection angle θ of the optical deflecting device is equal to +0.85, and the deflection plate 160 is disposed at a position θMIRROR where the deflection angle θ is equal to −0.8. However, these members may be disposed with any deflection angle θ. Preferably, to avoid optical interference in the approximately constant speed region, the light receiving element and the deflection plate may be disposed within a range in which the deflection angle θ is less than +1.0 and not less than +0.6, as well as a range in which θ is not greater than −0.6 and greater than −1.0.
In this example, the amplitude of the arbitrary-wave producing circuit 351 is adjusted so that the value of tb−ta become equal to 0.095 msec. However, the amplitude of the arbitrary-wave producing circuit 351 may be adjusted so that the value of one or more of td−tc and any other time intervals may be made equal to a desired value. Since however there is a relation |θBD|>|θMIRROR| in this example, the value of tb−ta is most sensitive to the amplitude. Therefore, adjusting the amplitude of the arbitrary-wave producing circuit 351 so as to make tb−ta equal to an arbitrary value is preferable. If |θMIRROR|>|θBD| on the other hand, since the value of td−tc is most sensitive to the amplitude, adjusting the amplitude of the arbitrary-wave producing circuit 351 so as to make td−tc equal to a an arbitrary value is preferable.
The procedure described above is the procedure for determining the amplitude of the first oscillation motion of the reflection mirror. In this procedure, while the second oscillation motion is interrupted and the optical scan is being carried out only by the first oscillation motion, the following operation is done. Namely, while taking a certain time within one cycle of the first frequency as zero, the amplitude of the first oscillation motion is adjusted so that at least two different time moments whereat the scanning light passes across one light receiving element are brought into coincidence with the target time moments. In this procedure, in this example, the amplitude of the first oscillation motion is adjusted so that, among plural time intervals of passage of the scanning light across the light receiving element, the shortest time interval is brought into coincidence with the desired target time.
An optical deflecting device according to Example 9 of the present invention will be described. The block diagram of the optical deflecting device according to this example is similar to that shown in
Here, taking the time “zero” in one cycle of the first frequency shown in
The control method in this example will now be explained in detail. Coefficients that represent changes in detection time moments t1, t2, t3 and t4 whereat the scanning light 133 and deflection light 134 pass across the light receiving element, which changes are caused when the control parameters X including any of A1, A2 and ø1 and ø2 of the optical deflecting device shift minutely from respective target values, may be expressed by Equation (21) mentioned hereinbefore. Matrix M may be expressed by Equation (22) also mentioned hereinbefore. These quantities may be detected beforehand and stored.
The control amounts ΔA1, ΔA2, Δø1 and Δø2 for the amplitude and phase of the reflection mirror 101 are determined from the time differences Δt1, Δt2, Δt3 and Δt4 between the four detection time moments t1, t2, t3 and t4 and the four target time moments t10a, t20a, t30a and t40a, and in accordance with Equation (23) mentioned hereinbefore.
By using these equations, the control amounts ΔA1, ΔA2, Δø1 and Δø2 can be calculated from the time differences Δt1, Δt2, Δt3 and Δt4 with respect to the target time moments t10a, t20a, t30a and t40a. Based on these quantities, the outputs of the arbitrary-wave producing circuits 351 and 352 are adjusted. By repeating the above-described control procedure, the detection time moment is converged to the target time moments t10a, t20a, t30a and t40a, whereby a desired deflection angle θ of the optical deflecting device is accomplished. This is basically the same as that described with reference to Example 3.
The procedure described above will be explained with reference to the block diagram of
An optical deflecting device according to Example 10 of the present invention will be described. The block diagram of the optical deflecting device according to this example is similar to that shown in
In this example, among the target time moments t10b, t20b, t30b and t40b whereat the scanning light 133 and the deflection light 134 pass across the light receiving element 140, t10b is chosen as the reference time. Relative target times t20b−t10b, t30b−t10b and t40b−t10b, with respect to the reference time are equal to 0.097 msec, 0.289 msec and 0.391 msec (these are detectable beforehand), respectively, and the deflection angle θ is such as shown in
The control method in this example will now be explained in detail. Both the scanning light 133 and the deflected light 140 are incident on the light receiving element 140, and thus four timings are detectable in one cycle of the first frequency. Therefore, it is necessary to identify which one of the four timings corresponds to the moment t10b that should be chosen in this example as the reference.
In order to identify the timing, in this example, generation of sinusoidal waves of a frequency 4000 Hz from the arbitrary-wave producing circuit 352 is interrupted, and only sinusoidal waves of a frequency 2000 Hz are produced. Then, the optical deflecting device operates only with the first oscillation motion. The deflection angle θ of the optical deflecting device can be expressed by θ(t)−A1 sin(ω1t) as in Equation (16) mentioned hereinbefore.
If the detection time moment (passage time moment) whereat the scanning light 133 and the deflected light 134 pass across the light receiving element 140 is denoted by ta, tb, tc and td wherein ta<tb<tc<td, the relationship between the deflection angle and the passage time moment can be expressed by the following equations, like Equation (29) and Equation (30) mentioned hereinbefore.
θ(ta)=θ(tb)=θBD
θ(tc)=θ(td)=θMIRROR
Here, since the light receiving element 140 and the reflection plate 160 are disposed asymmetrically, the relationship among the time differences tb−ta, tc−tb, td−tc is expressed as follows.
tb−ta<td−tc<tc−tb (31)
In
After this, a sinusoidal wave of frequency 4000 Hz is superposedly produced from the arbitrary-wave producing circuit 352, and the optical deflecting device is driven in accordance with these two frequencies.
Although in this example t10a is used as the reference time, any other reference time can be discriminated on the basis of the magnitude of the time difference mentioned above. The procedure described above is the procedure for determining the reference time. In this procedure, while the second oscillation motion is being interrupted and optical scan is being carried out only by the first oscillation motion, the reference time is determined on the basis of the magnitude of the time intervals concerning the passage of the scanning light across the light receiving element.
The control method of this example will be explained in more detail. Coefficients that represent changes in relative detection time t2−t1, t3−t1, t4−t1 for passage of scanning light 133 and deflection light 134 across the light receiving element, which changes are caused when the control parameters X including any of A1, A2 and ø of the optical deflecting device-shift minutely from respective target values, may be expressed by Equation (24) mentioned hereinbefore. Matrix M may be expressed by Equation (25) also mentioned hereinbefore. The control amounts ΔA1, ΔA2 and Δø for the amplitude and phase of the reflection mirror 101 are determined from the time differences Δt2, Δt3 and Δt4 between the three relative detection times t2−t1, t3−t1, t4−t1 and the three target times t20b−t10b, t30b−t10b and t40b−t10b, and in accordance with Equation (26) mentioned hereinbefore.
By using these equations, the control amounts ΔA1, ΔA2 and Δø can be calculated from the time differences Δt2, Δt3 and Δt4 with respect to the target times t20b−t10b, t30b−t10b and t40b−t10b. Based on these quantities, the outputs of the arbitrary-wave producing circuits 351 and 352 are adjusted. By repeating the above-described control procedure, the detection time moment is converged to the target time moments t10b, t20b, t30b and t40b, whereby a desired deflection angle θ of the optical deflecting device is accomplished. This is basically the same as that described with reference to Example 4.
The procedure described above will be explained with reference to the block diagram of
An optical deflecting device according to Example 11 of the present invention will be described. The block diagram of the optical deflecting device according to this example is similar to that shown in
Among the target time moments t10b, t20b, t30b and t40b whereat the scanning light 133 and the deflected light 134 pass across the light receiving element 140, t10b is chosen as the reference time. Relative target times t20b−t10b, t30b−t10b and t40b−t10b with respect to the reference time are equal to 0.102 msec, 0.294 msec and 0.396 msec (there are detectable beforehand), respectively, and the deflection angle θ is such as shown in
The control method in this example will now be explained in detail. In this example as well, both the scanning light 133 and the deflected light 140 are incident on the light receiving element 140, and four timings are detectable in one cycle of the first frequency. Therefore, it is necessary to identify which one of the four timings corresponds to the moment t10b that should be chosen in this example as the reference.
In order to identify the timing, in this example as well, generation of sinusoidal waves of a frequency 4000 Hz from the arbitrary-wave producing circuit 352 is interrupted, and only sinusoidal waves of a frequency 2000 Hz are produced. Then, the optical deflecting device operates only with the first oscillation motion. The deflection angle θ of the optical deflecting device can be expressed by θ(t)=A1 sin(ω1t) in Equation (16) mentioned hereinbefore.
If the detection time moment (passage time moment) whereat the scanning light 133 and the deflected light 134 pass across the light receiving element 140 is denoted by ta, tb, tc and td wherein ta<tb<tc<td, the relationship between the deflection angle and the passage time moment can be expressed by the following equations, like Equation (29) and Equation (30) mentioned hereinbefore.
θ(ta)=θ(tb)=θBD
θ(tc)=θ(td)=θMIRROR
Here, since the light receiving element 140 and the reflection plate 160 are disposed symmetrically, the relationship among the time differences tb−ta, tc−tb, td−tc is expressed as follows.
tb−ta=td−tc
tb−ta<tc−tb (32)
In addition to this, in this example, the light receiving element 140 and the reflection plate 160 are disposed so that the optical path length of scanning light extending from the reflection mirror 101 to the light receiving element 140 differs from the optical path length of scanning light that extends from the reflection mirror 101 via the reflection plate 160 to the light receiving element 140. Hence, the speed of light passing across the light receiving element 140 is different between the scanning light from the reflection mirror to the light receiving element and the scanning light from the reflection mirror to the light receiving element by way of the reflection plate. As a result, the duration in which light is being incident on the light receiving element is different. Time moments twa, twb, twc and twd where the scanning light 133 and the deflection light 134 pass across the light receiving element, having a finite area, in regard to the passage time moments ta, tb, tc and td, are in the following relation.
twa=twb
twc=twd
twa>twc (33)
From these relations, it is seen that ta should be chosen as the reference time t10b.
After this, a sinusoidal wave of frequency 4000 Hz is superposedly produced from the arbitrary-wave producing circuit 352, and the optical deflecting device is driven in accordance with these two frequencies.
The control method based on Equations (24), (25) and (26) is essentially the same as that having been described with reference to Example 10. The procedure to be done in the block diagram of
In this example, the light receiving element 140 is disposed at a position θBD where the deflection angle θ of the optical deflecting device is equal to +0.8, and the deflection plate 160 is disposed at a position θMIRROR where the deflection angle θ is equal to −0.8. However, these members may be disposed with any deflection angle θ. Preferably, to avoid optical interference in the approximately constant speed region, the light receiving element 140 and the deflection plate 160 may be disposed within a orange in which the deflection angle θ is less than +1.0 and not less than +0.6, as well as a range in which θ is not greater than −0.6 and greater than −1.0.
In this example, the optical path length for the scanning light that extends from the reflection mirror 101 to the light receiving element 140 by way of the reflection plate 160 is made longer. However, the optical path length of scanning light extending from the reflection mirror 101 to the light receiving element 140 by way of the reflection plate 160 may be made shorter. Anyway, discrimination of the reference time may be done on the basis of the relationship that the longer the optical path length is, the shorter the time in which light passes across the light receiving element is.
Although in this example t10b is used as the reference time, any other reference time can be discriminated on the basis of the time difference and the time in which the light passes across the light receiving element 140 as described above.
An optical deflecting device (electrophotographic type image forming apparatus) according to Example 12 will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
An optical deflecting device (electrophotographic type image forming apparatus) according to Example 13 will be described. The block diagram of the optical deflecting device of this example is similar to that shown in
Example 1 through Example 13 described above relate to the first through fourth embodiments of the present invention described hereinbefore. Some examples to be described below concern the fifth embodiment of the present invention.
Example 14 relates to an optical deflecting device, and the bock diagram thereof is similar to that shown in
The structure of this example is similar to that shown in
The driving system in the optical deflecting device of this example is similar to that shown in
By use of the optical deflecting device of this example, desired optical scanning having two frequency components is accomplished.
This example as well concerns the fifth embodiment of optical deflecting device according the present invention. The block diagram of the optical deflecting device of this example is similar to that shown in
The deflection angle θ of the optical deflecting device of this example can be expressed as follows. Now, the amplitude and angular frequency of the first oscillation motion are denoted by A1 and ω1, the amplitude and angular frequency of the second oscillation motion are denoted by A2 and ω2, and the phases of the two frequencies are denoted by ø1 and ø2. If the time with respect to a desired time reference within one cycle of the first oscillation motion is denoted by t, then the deflection angle θa of the optical deflecting device in the first oscillation mode can be expressed by Equation (8) mentioned hereinbefore.
Here, if A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, the changes in deflection angle θa and angular speed θa′, with respect to time, of the optical deflecting device are such as shown in
Although this example uses a condition A1=1, A2=0.2, ø1=0, ø2=0, ω1=2π×2000 and ω2=2π×4000, desired values may be chosen for A1, A2, ø1, ø2, ω1 and ω2 as long as the amount of change in angular speed θa′ can be made smaller in the approximately constant angular speed region as compared with sinusoidal waves.
Here, if the light receiving element 140 is disposed at a position θBD where the deflection angle θ of the optical deflecting device becomes equal to +0.8 while taking the scan center of the optical deflecting device as the origin, as shown in
Furthermore, the deflection angle θb of the optical deflecting device during the drive under the second oscillation mode, wherein a phase π is applied to each of the first periodic driving force having a first frequency and the second periodic driving force having a second frequency, can be expressed as follows.
θb(t)=A1 sin(ω1t+ø1+π)+A2 sin(ω2t+ø2+π) (34)
The method of controlling the deflection angle in this example will be explained in greater detail.
First of all, the amplitude A1 is adjusted. In order that the optical scanning is performed only by the first oscillation motion moving with the fundamental frequency, generation of sinusoidal waves of a frequency 4000 Hz from the arbitrary-wave producing circuit 352 is interrupted, and only sinusoidal waves of a frequency 2000 Hz are produced. Then, the deflection angle θ of the optical deflecting device can be expressed by:
θ(t)=A1 sin(ω1t)
If the detection time moment whereat the scanning light 133 passes across the light receiving element 140 is denoted by ta and tb, the relationship between the deflection angle and the passage time moment can be expressed by:
θ(ta)=θ(tb)=θBD
In
After this, a sinusoidal wave of frequency 4000 Hz is superposedly produced from the arbitrary-wave producing circuit, and the optical deflecting device is driven in accordance with these two frequencies. In this case as well, driving under the first and second driving modes is carried out as described hereinbefore, and values of A2, ø1 and ø2 are made equal to their target values, respectively.
In place of interrupting the production of sinusoidal wave of frequency 4000 Hz from the arbitrary-wave producing circuit, in addition to the sinusoidal wave of 2000 Hz a sinusoidal wave having an arbitrary frequency (third frequency) other than 4000 Hz and containing zero may be produced therefrom. Since in such occasion the frequency is out of the resonance frequency of the optical deflecting device, there is no possibility that the motion of the optical deflecting device with the third frequency is caused thereby. Advantageous feature here is that the temperature change in the optical deflecting device due to changing the drive is reduced.
In this example, a phase π is added to each of the first periodic driving force having a first frequency and the second periodic driving force having a second frequency. However, a desired phase may be applied to the first periodic driving force having a first frequency and the second periodic driving force having a second frequency.
This example as well concerns the fifth embodiment of optical deflecting device according the present invention. This example corresponds to Example 3 described hereinbefore, although the structure is a little different from it.
In this example, if the time zero in one cycle of the first frequency shown in
θc(t)=A1 sin(ω1t+ø1)+A2 sin(ω2t+ø2+π) (35)
Hence, these time moments are set as four preset time moments (target values). Here, the detection time moments (passage moments) t1 and t2 whereat the scanning light 133 passes across the light receiving element 140 as well as the detection time moments (passage moments) t3 and t4 whereat the scanning light 133 passes across the light receiving element 140 with phase π being added to the second periodic driving force of the second frequency, are adjusted. More specifically, the driving signal to the driving system is so adjusted by the control unit they coincide with t10, t20, t30 and t40, respectively. By doing so, a desired deflection angle of the optical deflecting device is accomplished.
In this example as well, as has been explained with reference to Example 3, coefficients and matrix M representing the changes of detection time moments t1, t2, t3 and t4 whereat the scanning light passes across the light receiving element 140 are determined beforehand. Then, control amounts ΔA1, ΔA2, Δø1 and Δø2 can be calculated on the basis of the time differences Δt1, Δt2, Δt3 and Δt4 with respect to the target time moments t10, t20, t30 and t40. The output of the arbitrary-wave producing circuit is subsequently changed in accordance with the calculated control amounts. By repeating the above-described procedure, the time moments are converged to the target time moments t10, t20, t30 and t40, whereby a desired deflection angle is accomplished.
The procedure described above will be explained with reference to the block diagram of
In this example, phase π is added only to the second periodic driving force of second frequency. However, a desired phase may be added to the first periodic driving force of first frequency and the second periodic driving force of second frequency.
This example as well concerns the fifth embodiment of optical deflecting device according the present invention. This example corresponds to Example 4 described hereinbefore, although the structure is a little different from it.
In this example, the time zero in one cycle of the first frequency shown in
Hence, these times are set as three preset times (target values). Now, the driving signal is adjusted by a control unit so that three relative detection times t2−t1, t3−t1 and t4−t1 whereat the scanning light 133 passes across the light receiving element 140, become equal to the aforementioned target values, respectively. By doing so, the deflection angle θ of the optical deflecting device as shown in
Although in this example too is chosen as the reference timer any other reference time can be discriminated on the basis of the magnitude of time difference.
The control method in this example will now be explained in detail. Coefficients and matrix M that represent changes in relative detection times t2−t1, t3−t1 and t4−t1 whereat the scanning light 133 passes across the light receiving element 140, which changes are caused when the control parameters X including any of A1, A2 and ø of the optical deflecting device shifts minutely from respective target values, are determined beforehand in accordance with the procedure having been described with reference to Example 4. The control amounts ΔA1, ΔA2, Δø for the amplitude and phase of the mirror are therefore determined from the time differences Δt2, Δt3 and Δt4 between the three relative detection times t2−t1, t3−t1 and t4−t1 and three target times t20−t10, t30−t10 and t40−t10, like Example 4 described hereinbefore.
Thus, the control amounts ΔA1, ΔA2 and Δø can be calculated from the time differences Δt2, Δt3 and Δt4 with respect to the target time periods t20−t10, t30−t10 and t40−t10. Based on these quantities, the outputs of the arbitrary-wave producing circuits are adjusted. By repeating the above-described procedure, the time moments are converged to the target time moments t10a, t20a, t30a and t40a, whereby a desired deflection angle θ is accomplished.
The procedure described above will be explained with reference to the block diagram of
Then, by computing the matrix based on the time difference 453, in a computing circuit 454, as has been described with reference to Example 4, a control amount 455 is calculated. Then, by using arbitrary-wave producing circuits 351 and 352, an adder 370 and an amplifier 380, a signal to be inputted to the driving system of the optical deflector 420 is produced. In this example, the control amount 455 to be applied to either the arbitrary-wave producing circuit 351 or the arbitrary-wave producing circuit 352 is single.
Although in this example a phase π is added to each of the first periodic driving force of first frequency and the second periodic driving force of second frequency, a desired phase may be added to the first periodic driving force of first frequency and the second periodic driving force of second frequency.
Next, an image forming apparatus according to Example 18 of the present invention will be explained. In this example, an optical deflecting device of the type based on the fifth embodiments of the present invention is used. The block diagram of the optical deflecting device of this example is similar to that shown in
The structure of this example corresponds to what is shown in
Light emitted from a light source 510 is shaped by a collimator lens 520, and thereafter it is deflected one-dimensionally by an optical deflecting device 500. The scanning light goes through a coupling lens 530, and it is imaged on a photosensitive drum 540. There is a light receiving element 550 which is disposed at a position corresponding to the deflection angle of the optical deflecting device 500, which angle is out of the range of the effective region of the photosensitive drum 540. Here, in accordance with the control method as has been explained with reference to any one of Examples 14, 15, 16 and 17, the angular speed of the deflection angle of the optical deflecting device is adjusted so that an approximately constant angular speed is provided on the photosensitive drum 540. As a result of this, in this example, the angular speed less changes as compared with a case of sinusoidal wave drive and, therefore, better printing quality is assured.
Next, an example of optical deflecting device which specifically concerns a technique for adjusting the timing of light beam emission to be done until a desired driving signal is produced.
The block diagram of the optical deflecting device of this example is similar to that shown in
General structure and control method of the image forming apparatus of this example will be explained.
As described hereinbefore, the first and second light receiving elements 713a and 713b are disposed at positions (θBD1 and θBD2) corresponding to a deflection angle which is smaller than the largest deflection angle of the optical deflector.
In operation of the structure described above, in response to a printing operation starting signal from a control unit arranged to control a printer (not shown) as a whole, the optical deflector 711 starts up and the light emission control of the laser 712 is initiated. The scanner control unit 750 adjusts oscillation of the optical deflector 711 and the light emission of the semiconductor laser 712 so that these components become ready for printing in response to the information of the BD signal 760 which is going to be supplied from the light receiving element 713. The adjustment of the state of oscillation of the optical deflector 711 is carried out in the manner as has been described with reference to the preceding examples.
Once it is ready for printing, a paper sheet is supplied from the paper cassette to the conveying belt 606 by which the paper sheet is conveyed sequentially to the image forming units of different colors. In synchronism with the paper sheet conveyance through the conveying belt 606, imagewise signals are supplied to respective laser scanners 610, whereby an electrostatic latent image is produced on the photosensitive drum 601. The electrostatic latent image thus formed on the photosensitive drum 601 is developed by the developing device 611 and the developing roller 603 being in contact with the photosensitive drum 601, and the toner image is transferred to the paper sheet at the image transfer station. Thereafter, the paper sheet is separated from the conveying belt 606 and, through the fixing device 617, the toner image is thermally fixed on the paper sheet. The paper sheet is then discharged outwardly of the machine. Through the procedure described above, the imagewise information supplied from an external machine is printed on the paper sheet.
The optical deflector 711 of this example is basically the same as has been described with reference to Example 1. The light emission of the light source 712 is adjusted by means of the light beam emission control unit 754, and the light beam 720 is scanningly deflected by the optical deflector 711. The light beam emission control unit 754 is arranged to adjust the light source so that it produces a tight beam 720 when one of the oscillators defines a predetermined displacement angle.
The light beam emission control unit 754 of this example will be explained in detail.
The light beam emission control unit 754 drives and adjusts the semiconductor laser 712 so that it emits a light beam 720 at the timing shown at 870, when the oscillator of the optical deflector 711, having a reflection mirror, takes first and second, different displacement angles. Here, as an example, the semiconductor laser 712 may be continuously exited at an initial stage and, after the light beam 720 starts passing across the light receiving element 713 in a certain state or under a certain effective condition, the semiconductor laser may be driven and adjusted in accordance with the emission timing 870. Although in this example the time moment T1 is chosen as the reference time moment, any other moment may be used. Furthermore, although the light emission timing 870 is based on the APC light emission in this example, it may be based on forced light emission. Moreover, although in this example the time moments T1 to T4 are chosen at the rise and fall of the BD signal, the optical deflector 711 may be controlled in response to any of the signal rise and signal fall. Still further, although the foregoing description has been made with reference to a case where the light beam emission control unit 754 is incorporated into an example based on the second embodiment, it may be applied to an example based on any of the second to fifth embodiments of the present invention described hereinbefore, in accordance with the same principle. This is also the case with the examples to be described below.
Example 20 of the present invention will be described. The structure of the image forming apparatus according to this example is similar to that of Example 19. In this example, as shown in
In the timing chart of
Example 21 of the present invention will be described. In this example as well, the structure of the image forming apparatus is similar to that of Example 19. This example is different in the process of controlling the image forming apparatus at the time of start-up.
As shown in
Subsequently, the laser beam emission control unit 754 signals the laser-driver 753 to cause the APC light emission of the semiconductor laser 712 (step S2). After a predetermined time elapsed (step S3), discrimination is made as to whether the time to the time moment T2 from the time moment T1 whereat measurement is carried out by the BD period measuring unit 756, namely, time T2−T1, is within a predetermined time period range or not (in other words, it is an effectiveness condition for discriminating whether the time has become sufficiently long to meet this threshold range or not) (Step S4). If the BD signal reception interval is out of the predetermined time period range mentioned above, the drive control unit 755 signals the driving unit 751 to increase the driving force of the first oscillation motion described above (Step S5) and, following it, discrimination of the BD signal reception interval is carried out again after the lapse of a predetermined time. These procedures are repeated until the interval meets the predetermined-time period range. If the BD signal reception interval meets the predetermined time interval range, the laser beam emission control unit 754 then discriminates the laser beam scan position on the basis of the BD signal reception timing and the reception interval. In accordance with the discrimination result, it operates to set the reference time moment T1 for the light beam emission control (Step S6).
Furthermore, the laser beam emission control unit 754 calculates the elapsed time from the reference position T1 designating the laser 712 emission timing, and it signals the laser driver 753 to turn on and off the laser 712 at predetermined timing (Step S7). Here, the elapsed time T5 to T8 are set at such timing that they do not overlap the image region 872 from the reference timing T1 and yet the BED signals of T1 to T4 can be detected by the light receiving element 713.
The BD period measuring unit 756 measures the BD signal reception time moments (T1 to T4) (Step S8). The laser beam emission control unit 754 then discriminates whether the moments T1 to T4 have become coincident with the BD signal reception time moments (target moments) for the image forming operation, having been determined beforehand (Step S9). If they are not coincident, the drive control unit 755 produces an appropriate driving signal so as to let the moments T1 to T4 coincide with the respective desired time moments, and applies it to the driving unit 620. Based on this, the amplitude and the phase (or phase difference) of the first and second oscillation motions are adjusted (Step S10). This procedure is the same as has been described with reference to the preceding examples. When the BD signal reception interval becomes equal to the BD signal reception interval for the image forming operation, the print-ready state is signaled to the printing control unit (Step S11), and the optical deflector start-up operation is finished.
The light beam emission control is carried out in this example with the procedure described above. Through this procedure, the continuous laser emission state can shift to the intermittent laser emission state quite smoothly. Furthermore, as a result of this, the intermittent laser emission control can be initiated before the optical deflector reaches the oscillation state for the image forming operation. Therefore, unnecessary laser irradiation of the photosensitive drum 601 can be avoided or reduced.
Although in this example the switching of the laser emission mode is discriminated on the basis of the moment of T1, it may be discriminated on the basis of any of T2, T3 and T4. Furthermore, whether more than one of T1 to T4 are all within a range with respect to respective predetermined time moments, may be used as a discrimination condition. Moreover, although in this example the start of T1 is chosen as the reference position, the reference position may be set at the start of any other moments T2−T4. Furthermore, plural reference positions may be used, and T5 and T6 may be calculated from different reference positions. At Step S4, discrimination is made with regard to T2−T1. However, any other time interval or time moment may be used. The timing for turning off the laser during the intermittent laser emission control may be at the moment of completion of the detection of a desired BD signal or, alternatively, it may be after elapse of a predetermined time from the reference position.
In this example, a latency time is defined from the laser emission in the starting-up operation of the scanner to the measurement of the BD period reception interval. If the transition time to the tuned oscillation of the oscillation mirror is very short, the latency time may be set to zero. Furthermore, this example uses a timing chart for the laser control such as shown in
In Examples 19 to 21 described above, the effectiveness condition concerns the set time moment or the time interval with respect to which at least two of the detection signals obtained at the light receiving element are different. The first drive control for satisfying this effectiveness condition is such that: the oscillating system is oscillated only by the first oscillation motion, and the first periodic driving force is adjusted on the basis of the detection signal at the light receiving element 713. On the other hand, the first light beam emission timing control for satisfying the effectiveness condition comprises a control procedure for causing the light beam to be emitted continuously from the start of oscillation drive of the oscillator until the effectiveness condition is satisfied.
However, the first light beam emission control may be such a control that the laser beam is caused to be emitted after elapse of a predetermined time, after the start of oscillation drive of the oscillator, until the effectiveness condition is satisfied. The predetermined time here may be, for example, the time until the oscillation motion of the oscillator shifts from the over-oscillation state to the tuned oscillation state.
In Examples 19 to 21, the second drive control operation to be done after the effectiveness condition is reached, may comprise a procedure for oscillating the oscillation system in accordance with the first and second oscillation motions and for adjusting the first periodic driving force and the second periodic driving force on the basis of the detection signals of the light receiving element 713. Furthermore, the second light beam emission timing control operation to be done after the effectiveness condition is reached, may comprise a control procedure for forcibly turning on and off the light beam twice or more, within the time period of one cycle of the fundamental frequency and yet out of the time period in which light is projected on the image region of the image visualizing means. The second light beam emission timing control operation may be the control procedure for forcibly turning on and off the light beam with reference to one of the detection signals of the light receiving element, within the time period of one cycle of the fundamental frequency.
In accordance with an image forming apparatus of any one of Examples 19 to 21, image formation through the image visualizing means as well as measurement of the time moment whereat one oscillator takes a predetermined displacement angle, for adjustment of the oscillation of the oscillating system, can be performed simultaneously. This does not require initial drive of an oscillation mirror based on a driving condition stored beforehand. Therefore, even if there is individual difference of oscillating characteristic of the oscillation mirror, environmental change or any change with respect to time, the oscillation mirror can be driven in accordance with such characteristic change. Furthermore, since the margin for scan angle of the oscillation mirror can be set on the basis of the oscillation characteristic of the oscillation mirror, the margin can be made smallest and, therefore, the scan angle of the light beam that can be used in the image formation can be made relatively large.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2006-035491 | Feb 2006 | JP | national |
2006-189947 | Jul 2006 | JP | national |
2007-023881 | Feb 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/052909 | 2/13/2007 | WO | 00 | 7/7/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/094489 | 8/23/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4859846 | Burrer | Aug 1989 | A |
5373518 | Uchiyama et al. | Dec 1994 | A |
5463410 | Uchiyama et al. | Oct 1995 | A |
5943082 | Uchiyama et al. | Aug 1999 | A |
7009748 | Turner et al. | Mar 2006 | B2 |
7129964 | Akiyama et al. | Oct 2006 | B2 |
7376161 | Fujii et al. | May 2008 | B2 |
7436566 | Kato et al. | Oct 2008 | B2 |
8270057 | Fujii et al. | Sep 2012 | B2 |
20050078169 | Tumer | Apr 2005 | A1 |
20050088715 | Yoda | Apr 2005 | A1 |
20060152785 | Yasuda et al. | Jul 2006 | A1 |
20070052797 | Fujii et al. | Mar 2007 | A1 |
20070115072 | Kato et al. | May 2007 | A1 |
20070139750 | Velger et al. | Jun 2007 | A1 |
20100085618 | Fujii et al. | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2005063613 | Jul 2005 | WO |
Entry |
---|
Korean Office Action dated Dec. 22, 2010 from corresponding Korean Application No. 10-2008-7019740, and English language translation thereof. |
U.S. Appl. No. 12/198,848, filed Aug. 26, 2008 by Takahisa Kato, Takahiro Akiyama, Kazutoshi Torashima, Suguru Miyagawa, Kazunari Fuji and Shinichiro Watanabe. |
Chinese Office Action dated Mar. 15, 2010 from corresponding Chinese Application No. 200780005355.8, and English language translation thereof. |
Number | Date | Country | |
---|---|---|---|
20090051992 A1 | Feb 2009 | US |