The present disclosure relates generally to an oscillatory system for a motorized drive unit for the generation of a rotary oscillatory movement. The present disclosure also relates to an oscillatory system having a first component and a second component able to oscillate relative to one another around an axis of oscillation, and more particularly to a small electric appliance having an oscillatory system having a motorized drive unit that includes an electromagnetic drive element.
Oscillatory systems are used in direct drives which can carry out movements without any further mechanical transmission elements. It is, for example, desirable in the drive of electric toothbrushes to generate a rotary oscillatory movement around a drive shaft axis and, in addition, a translatory oscillatory movement, for example, a radial movement. For this purpose, the drive represents an oscillatory system which can oscillate in a plurality of degrees of freedom. The journaling of the two components able to oscillate with respect to one another is realized in this respect by ball bearings, for example.
A drive unit which can generate a movement having a plurality of degrees of freedom, of which one in particular is a rotary oscillatory movement, is described in WO 2005/062445 A1.
It is desirable to set forth an oscillatory system for a motorized drive unit for the generation of a relative rotary oscillatory movement, said oscillatory system realizing a journaling and spring function in a simple manner and enabling a compact structure of a motorized drive unit. Accordingly, there is a need for an oscillatory system having the features described herein.
In one embodiment, an oscillatory system for a motorized drive unit for the generation of a rotary oscillatory movement includes a first oscillatory component and a second oscillatory component, the components capable of oscillating relative to one another around an axis of oscillation; and at least two elongate spring elements, each spring element having a first fastening point and a second fastening point spaced apart from one another. The spring elements are elastic in the direction of the rotary oscillatory movement. For each spring element the first fastening point is connected to the first oscillatory component and the second fastening point is connected to the second oscillatory component such that the spring elements intersect at the axis of oscillation, the axis of oscillation having an angle of intersection different from 0 degrees.
In another embodiment, a motorized drive unit for the generation of a rotary oscillatory movement includes an electromagnetic drive element having an output axle; and an to oscillatory system. The oscillatory system includes a first oscillatory component and a second oscillatory component, the components capable of oscillating relative to one another around an axis of oscillation; and at least two elongate spring elements, each spring element having a first fastening point and a second fastening point spaced apart from one another. The spring elements are elastic in the direction of the rotary oscillatory movement. For each spring element the first fastening point is connected to the first oscillatory component and the second fastening point is connected to the second oscillatory component such that the spring elements intersect at the axis of oscillation, the axis of oscillation having an angle of intersection different from 0 degrees. A first oscillatory component is rotationally fixed to the electromagnetic drive element and the second oscillatory component is connected to the output axle.
While the specification concludes with claims which particularly point out and distinctly claim the subject matter that is regarded as the invention, it is believed the various embodiments will be better understood from the following description taken in conjunction with the accompanying drawings, in which:
a is a plan view of an oscillatory system in accordance with one embodiment;
b is a perspective view of the oscillatory system of
a is a perspective view of an oscillatory system in accordance with another embodiment;
b is a perspective view of the oscillatory system of
a is a plan view of an oscillatory system in accordance with another embodiment;
b is a perspective view of the oscillatory system of
a is a perspective view of an oscillatory system in accordance with another embodiment;
b is an end view taken along line VII b of
c is a side view of the oscillatory system taken along line VII c of
d is a side view of the oscillatory system taken along line VII c of
a is a perspective view of an oscillatory system in accordance with another embodiment;
b is a side view of the oscillatory system taken along line VIII b of
The figures herein are not necessarily drawn to scale.
According to the present disclosure, an oscillatory system includes a motorized drive unit for the generation of a rotary oscillatory condition. In one embodiment, the drive unit includes a first component and a second component which can oscillate relative to one another around an axis of oscillation and which carry out a relative rotary oscillatory movement with respect to one another. As described herein, the oscillatory system may include at least two elongate spring elements which are elastic at least in the direction of the rotary oscillatory movement. Each of these spring elements has two fastening points spaced apart from one another in each case. One of these fastening points is respectively connected to the first oscillatory component and the other fastening point is connected to the second oscillatory component. The spring elements therefore connect the first oscillatory component and the second oscillatory component to one another, but permit a rotary oscillatory movement due to their elasticity in its direction.
The at least two elongate spring elements are arranged such that the connection line of the fastening points of a first spring element and the connection line of the fastening points of to a second spring element cross at an angle of intersection which is different from 0°. The two oscillatory components are fixedly connected to one another in this manner. Due to the elasticity of the spring elements, however, a relative rotary oscillatory movement is possible around the point of intersection of the connection lines of the respective fastening points.
The spring arrangement formed in this manner allows both the journaling and the spring function of two oscillatory components relative to one another which can be realized with relatively simple components. Other journaling elements such as ball bearings or slide bearings may be eliminated so that the oscillatory system in accordance with the present disclosure ensures a very cost-effective structure. In one embodiment, the spring elements may intersect in the axis of oscillation. In particular the virtual axis of intersection formed by the intersected spring angle is collinear to a drive axle which is rotationally driven by a motor to generate the rotary oscillatory movement.
In one embodiment, movement of the spring elements in a translatory direction radially to the axis of oscillation is also possible. This movement may be accomplished with a setting of the respective oscillatory properties, in particular of the frequency and of the amplitude, being possible in a simple manner by a suitable selection of materials and shape of the spring elements. In another embodiment, the spring elements include leaf springs whose leaf spring surfaces are parallel to a respective plane which includes the axis of oscillation. Leaf springs are simple to manufacture and provide the elasticity around an axis which is disposed in its leaf spring surface with a simultaneously higher stiffness in other spatial directions. The leaf springs may be made of any suitable material, including, for example, sheet metal. A cost-effective embodiment provides that the leaf springs of the system are bent from a common sheet metal part so that only a punching process is required.
The first and the second oscillatory components may be made of any suitable material, including, for example, plastic. In one embodiment, the plastic components may be made as injection molded plastic parts. It is then possible in a simple manner to overmold the spring elements with these plastic parts during the manufacturing process so that the first and the second oscillatory components and the spring elements are already fixedly connected to one another in the injection process. This is particularly advantageous if the spring elements include leaf springs which are bent from a common sheet metal part. In this manner, a compact and fixed unit is created of oscillatory components and spring elements. In another embodiment, the entire oscillatory system may be manufactured from plastic parts resulting in lower manufacturing costs.
The stiffness of the oscillatory system in different spatial directions can be set differently by selection of the angle of intersection between the spring elements. If the angle of intersection amounts to 90°, for example, the stiffness for a translatory movement with otherwise equal properties of the two spring elements in a direction transverse to the axis of oscillation and from one oscillatory component to the other is the same as the stiffness in the direction perpendicular thereto, with the angle of intersection between a part of a first spring element which is connected to the first oscillatory component and a part of a second spring element which is connected to the second oscillatory component being measured. The system then substantially represents a rotary bearing.
If, in contrast, an angle of intersection is selected which is not equal to 90°, the stiffness values in different transverse directions to the axis of oscillation can be selected at different levels. If, for example, an angle of intersection is selected which is less than 90°, the system is softer in a direction from the first oscillatory component to the second oscillatory component than in a direction perpendicular thereto. Alternatively or additionally to the selection of an angle of intersection differing from 90°, a different oscillatory capability can be achieved in different directions by a suitable profiling of the spring elements.
In one embodiment, spring elements may also be elastic in a direction parallel to the axis of oscillation. In this manner, an axial oscillatory movement can also be generated. The spring elements can for this purpose be selected, for example, such that they have comparable elasticity in all directions. A realization which is simple to manufacture and is reliable provides that leaf springs which have a main leaf spring surface including the axis of oscillation are also used for such an embodiment. The ends of the leaf springs in the vicinity of the fastening points are, however, in one embodiment, bent by approximately 90° so that there is also increased elasticity in the direction of the axis of oscillation in this region. If a plurality of such leaf springs are arranged next to one another, an almost linear movement is possible parallel to the axis of oscillation in this manner so that a linear bearing is realized.
The total oscillatory system can in turn be suspended in an oscillatory manner, for example in a housing. In this embodiment, similar intersected spring arrangements, which include leaf springs, for example, can be used as for the oscillatory system itself. On a corresponding embodiment of these springs made as suspension elements, the first oscillatory component then oscillates in phase opposition to the second oscillatory component. For example, the suspension elements can be arranged substantially parallel to the spring elements. Use of an embodiment in which an oscillatory component is fastened in the housing of an electric toothbrush, will considerably reduce the oscillations which can be felt at the hand piece.
In one embodiment, a drive unit has an electromagnetic drive element and an oscillatory system. In one example, the electromagnetic drive element is in the form of an electric motor. One of the oscillatory components of the oscillatory system is rotationally fixedly connected to the electromagnetic drive element and the other oscillatory component is connected to the drive axle of the electromagnetic drive element.
In another embodiment, an electromagnetic drive element is used which provides a rotary oscillatory movement and a translatory oscillatory movement. Such a drive unit with an electromagnetic drive element is particularly suitable for the drive of a small electric appliance since a compact and simple structure is possible. Such small electric appliances which can be driven by a drive unit may include electric razors and electric toothbrushes, for example, in which a rotary oscillatory movement is frequently combined with a translatory oscillation movement. In one embodiment, a drive unit for an electric toothbrush will have the brush head being connected to one of the oscillatory components of the oscillatory system, for example, to the oscillatory component which is connected to the drive axle of the electromagnetic drive element.
An electric toothbrush 10, with the housing forming the handle being open is shown in
The electromagnetic drive element 14 is made such that it can additionally stimulate a translatory oscillatory movement in the direction B which can be passed on by the oscillatory system 12 in a manner described herein. The movement of the oscillator 26 is passed on via the output shaft 22 of the oscillatory system 12 to the pushed-on brush head 20 which in this respect carries out a rotary oscillatory movement in direction A and a translatory oscillatory movement in direction B. A circuit board 24 is provided beneath the chassis 28.
As shown in
With respect to the embodiment shown in
In the embodiment of
a shows a detail of the embodiment of
Another embodiment of an oscillatory system is shown in
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”.
Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
09006043 | May 2009 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5189751 | Giuliani et al. | Mar 1993 | A |
7067945 | Grez et al. | Jun 2006 | B2 |
7687944 | Benning et al. | Mar 2010 | B2 |
8304938 | Jungnickel et al. | Nov 2012 | B2 |
20050280319 | Pilcher et al. | Dec 2005 | A1 |
20060255665 | Kraus et al. | Nov 2006 | A1 |
20080106156 | Reishus et al. | May 2008 | A1 |
20100277013 | Jungnickel et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
WO 03054414 | Jul 2003 | WO |
WO 03092535 | Nov 2003 | WO |
WO 2005062445 | Jul 2005 | WO |
WO 2008053455 | May 2008 | WO |
Entry |
---|
U.S. Appl. No. 13/190,287, filed Jul. 25, 2011, Ziegler et al. |
U.S. Appl. No. 13/190,293, filed Jul. 25, 2011, Schaefer et al. |
U.S. Appl. No. 61/511,154, filed Jul. 25, 2011, Jungnickel et al. |
European Search Report dated Oct. 9, 2009. |
Number | Date | Country | |
---|---|---|---|
20130025080 A1 | Jan 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12769704 | Apr 2010 | US |
Child | 13633306 | US |