The present invention relates to an implant providing osseous anchorage in a vertebra, for example to anchor an osteosynthesis device. This implant has a polyaxial head allowing to receive, in a plurality of angular positions, a bar linking several implants. The present invention also relates to a method for installing the implant, in particular to perform a reduction of a spondylolisthesis (i.e., a jutting out of a vertebra with respect to the adjacent vertebrae).
It is known, in the prior art, to fix a plurality of implants, each to a vertebra, and to connect them together with a bar or a plate, fixed to each implant, along the vertebral column, so as to maintain or correct the rachis. These implants are generally fixed to the vertebrae, either via screwing of a threaded part of the implant in a vertebra, or by fixing of a hook of the implant onto a vertebra. The implants known to the prior art are equipped with a fixation channel, at the head, allowing to fix the bar or plate into a duct. Sometimes, a lateral aperture allows introducing the bar via the side of the duct.
The international patent application WO 03/049629 shows an implant with polyaxial head allowing to orient the bar in different positions before fixing it, these positions being restricted by a determined clearance of the bar around the axis of the implant and/or around the axis of the duct, thanks to a ball and socket connection. This polyaxial system allows to simplify the positioning of the bar and to reduce the constraints exercised by the implant on the bar, but offers a limited number of levels of movement (i.e., a limited freedom of motion of the various elements of the implant with respect to each other).
On the other hand, the implants known in the prior art generally allow to completely reduce a spondylolisthesis of the rachis but do not allow to partially reduce it, a spondylolisthesis reduction consisting in a repositioning of the vertebra in the axis of the adjacent vertebrae in the vertebral column. Yet, in some cases, it is necessary to only partially reduce a spondylolisthesis or to control, during implantation, the reduction level of the spondylolisthesis.
The international patent application WO 00/15125 mentions that an implant with polyaxial head allowing to orient the bar in different positions before fixing it. However, the different embodiments of this implant in the prior art have the inconveniences, when the bar is inserted into its duct, of either not offering all the possible levels of movement, or of not allowing to continue to screw the implant into the vertebrae.
The object of the present invention is to overcome these inconveniences in the prior art by proposing an implant for osseous anchoring allowing to restrict the constraints exercised on the rachis during a correcting of the latter and to control the reduction level of a spondylolisthesis.
This object is reached through an implant of osseous anchoring comprising a body equipped with osseous anchoring means and a head bearing fixation means capable of receiving and fixing at least one bar, in particular of osteosynthesis, the head of the implant being traversed by at least one duct receiving the bar through a lateral aperture and by a threaded channel having an axis not parallel to the axis of the duct and receiving a fixation screw of the bar, the implant being characterized in that it comprises fixation means of the head on a part of the body of the implant extending along the osseous anchoring means, these fixation means of the head consisting in a portion of the head which forms a ring into which is inserted a fixation olive threaded onto the part of the body of the implant extending along the osseous anchoring means and allowing, prior to blocking and fixing, at least a determined clearance of the head around at least one axis not parallel to the axis of symmetry of the osseous anchoring means, and in that the fixation screw of the bar comprises a ball and socket at its base allowing at least a determined clearance of the bar around at least one axis parallel to the duct axis, the fixation means of the head and the ball and socket of the fixation screw of the bar allowing a determined clearance of the head around the axis of symmetry of the osseous anchoring means, even when the bar is inserted into the duct.
According to another feature, the inside diameter of the ends of the duct of the head is greater than the inside diameter of the center of the duct, which confers a widened out profile to the duct allowing, in association with the ball and socket at the base of the fixation screw, a determined clearance of the bar around the axis of the duct.
According to another feature, the head is equipped with a ring, which is placed on the other side of the head in relation to the duct, and in that the part of the implant extending along the osseous anchoring means, which is threaded through a fixation olive, itself threaded through a ring, is cylindrical and threaded and extends, widening out from the cylindrical part towards the anchoring means, by a tapered part, complementary of a tapered internal surface of the fixation olive which is sectioned at a point along its entire height.
According to another feature, the external surface of the fixation olive is convex and complementary of a concave internal surface of the ring, the external diameter of the olive being slightly less than the internal diameter of the ring, so that the olive, compression inserted into the ring thanks to the section of the olive along its entire height, allows a retaining of the head on the olive, whilst allowing the orientation and the determined clearance of the head around at least one axis parallel to the axis of symmetry of the osseous anchoring means.
According to another feature, a nut has, along its entire height, a threaded drilling intended to be screwed to the cylindrical part of the implant which is threaded so as to initially provoke, either the rise of the body of the implant up to the bar, or the descending of the olive and the head onto the body of the implant, according to the relative positions of the head, the olive and the body in relation to the bar, then secondly, the leaning of the olive on the tapered part of the implant, which engenders the expansion of the fixation olive, and thus the blocking of the head in the desired position.
According to another feature, the nut is equipped with flats capable of co-operating with a tool adapted to the screwing of the nut to the threaded cylindrical part of the implant.
According to another feature, the osseous anchoring means are a hook.
According to another feature, the osseous anchoring means are a threaded part.
According to another feature, the cylindrical part of the body of the implant is equipped, at its end opposite the osseous anchoring means, with a blind hole with six faces capable of co-operating with a tool adapted to the screwing of the implant.
According to another feature, the ball and socket of the fixation screw of the bar comprises a flat at its base.
According to another feature, the flat at the base of the ball and socket of the fixation screw of the bar consists in a disc prominent at the periphery of the ball and can be used as a stop limiting the movement of the ball in relation to the fixation screw of the bar.
According to another feature, the ball and socket at the base of the fixation screw of the bar is associated with a mobile base located between the bar and the duct in a housing in the duct, this base facilitating, prior to blocking and fixing of the bar, the determined clearance of the bar around at least one axis parallel to the axis of the duct.
According to another feature, the mobile base has formal irregularities co-operating with formal irregularities of the duct, so as to restrict the movement of the base in its housing and therefore restrict the clearance of the bar around the axis parallel to the axis of the duct.
Another object of the invention is to propose a method for installing the implant according to the invention.
This object is reached via a method for preparing out with the body prior to the implanting of an osseous anchoring implant comprising a threaded part extended by a smooth tapered part itself extended by a threaded cylindrical part, said cylindrical part being threaded through a fixation olive itself threaded in a head equipped with a duct receiving an osteosynthesis bar by a lateral aperture and with a channel receiving a fixation screw provided with a ball and socket at its base, the fixation olive and the head being retained by a nut screwed to the cylindrical part, the ball and socket being provided, at its base, with a flat consisting in a disc which is prominent at the periphery of the base of the ball and can thus be used as a stop limiting the rotation of the ball in relation to the fixation screw, the method being characterized in that it comprises at least the following successive steps:
the insertion of the bar, via the lateral aperture, into the duct in which it is at least retained via a partial screwing of a fixation screw;
the positioning of the flat at the base of the ball as a stop in the duct, on its internal surface opposite to the lateral aperture, in order to prevent a rotation of the bar in the duct, thanks to the contact of this flat of the ball with a flat on the bar and, consequently prevent, the descending of the head in relation to the bar;
the partial screwing of the nut on the cylindrical part of the implant, so that the nut comes into contact with the fixation olive, so as to prevent a disengagement of the fixation olive and the head from the cylindrical part of the implant, whilst allowing the movement of the head of the implant around at least the axis of symmetry of the osseous anchoring means, in the expectation of the screwing of the osseous anchoring means which will provoke the rise of the body and the vertebra, followed by the screwing of the nut, which will end the rise of the body and the vertebra and will then block the head and the body in the desired position.
According to another feature, the method comprises at least the following successive steps:
the insertion of the bar, via the lateral aperture, into the duct in which it is at least retained via a partial screwing of a fixation screw;
the positioning of the flat at the base of the ball as a stop in the duct, on its internal surface opposite to the lateral aperture, in order to prevent a rotation of the bar in the duct, thanks to the contact of this flat of the ball with a flat on the bar and, consequently prevent, the descending of the head in relation to the bar;
the partial screwing of the nut on the cylindrical part of the implant, so that the nut comes into contact with the fixation olive, so as to retain the vertical position of the cylindrical part of the implant, in relation to the head, whilst allowing the movement of the head of the implant around at least the axis of symmetry of the osseous anchoring means, in the expectation of the complete screwing of the nut which will provoke the rise of the body and the vertebra and will then block the head and the body in the desired position.
According to another feature, the steps of the partial screwing of the fixation screw and the positioning of the flat at the base of the ball as a stop in the duct, on its internal surface opposite to the lateral aperture, can be replaced by a step of a complete screwing of the fixation screw, so as to prevent any movement of the ball and the bar and, consequently, prevent the descending of the head in relation to the bar.
Other features and advantages of the present invention will be clearer upon reading the description thereafter with reference to the annexed drawings, wherein:
a represents a perspective view of an embodiment of the head of the osseous anchoring implant with the section planes B-B and C-C of
a and 6b represent sectional views, respectively, according to the axis of the duct and according to an axis perpendicular to the axis of the duct, of the head of the osseous anchoring implant equipped with the fixation bar and the fixation screw equipped with a ball and socket connection at its base and associated with a mobile base.
The osseous anchoring implant according to the invention comprises four elements: a body (1), a head (2), a fixation olive (3) and a nut (4). The body (1) of the implant comprises, at its upper end, a cylindrical part (10) and, at its lower end, osseous anchoring means (11) for anchoring in a vertebra. The cylindrical part (10) is threaded on its external wall. The cylindrical part (10) and the anchoring means (11) are linked via a smooth tapered part (12), whose transversal section increases between the cylindrical part (10) and the anchoring means (11). The weakest section of the tapered part (12) is substantially equal to the transversal section of the cylindrical part (10). The cylindrical part (10), the tapered part (12) and the anchoring means (11) constituting the body (1) of the implant are placed according to a first axis (A1).
The head (2) of the implant comprises a duct (20) allowing to receive a bar (7), which links several implants together within the context of an osteosynthesis device so as to retain, support or correct the rachis when the implants are screwed in vertebrae. The head (2) of the implant is called polyaxial as it has several levels of free movement, thanks to the fact that it is fixed to the body (1) by a ring (21) clamping a fixation olive (3) constituted of a ring with a tapered and smooth internal wall, complementary of the smooth tapered part (12) of the body (1) of the implant. The external wall of the olive (3) is convex and complementary of the internal surface of the fixation ring (21) of the head (2). This freedom of movement of the head (2), in relation to the body (1) of the implant, consists in a rotation or a combination of several rotations according to three axes substantially perpendicular to one another, particularly visible in
According to an embodiment of the invention, the fixation screw (5) of the bar bears, at its end located on the side of the bar (7), a mobile and articulated element, called ball and socket (52), as that described in the international patent application WO 03/049629 filed by the applicant. The ball and socket (52) consists in a sphere portion (the ball) inserted into a housing (the socket) in the lower end of the fixation screw (5) whose shape is complementary of the sphere portion of the ball and socket (52). This complementary nature of the shape ensures a ball and socket connection between the fixation screw (5) and the bar (7). The ball (52) can have a flat (520) at its base. The bar (7) can also have a flat (71), complementary of the flat (520) at the base of the ball (52), so as to allow a better fixing of the bar (7) when screwing the fixation screw (5) of the bar. This mobile link authorizes some clearance of the ball (52) in relation to the fixation screw (5), in rotation around the center of this ball and socket (52). This ball and socket connection also allows the flat (71) of the bar (7) to remain in contact with the flat (520) of the ball and socket (52) without slippage, which avoids deteriorating the surfaces in contact, renders the blocking more reliable, and reduces the risks of residual stress. In addition, the flat (520) of the ball (52) can consist, as represented on
In an alternative of the embodiment, the ball and socket (52) can be associated with a mobile base (6) placed between the bar (7) and the duct (20). The base (6) is mobile compared to the fixation head (2) and has on its upper face, called support face (62), in contact with the bar (7), a shape complementary of the external surface of this bar (7), for example in the form of a cylinder portion, which provides a good contact surface when tightening the fixation screw (5) of the bar. This mobile base (6) has a part (61) in the shape of a sphere portion, leaning via a complementary contact in a housing formed in the wall of the duct (20). By virtue of this spherical contact, the mobile base (6) has some freedom of rotation around the center of its spherical part (61). On its part (61) in form of a sphere portion the mobile base (6) can have one or a plurality of irregularities (610) in its shape co-operating with one or a plurality of irregularities in the shape of its housing in the duct (20) of the fixation head (2), so as to form a stop limiting the clearance in rotation of the mobile base. These irregularities (610) can be, for example, a pin protruding from the mobile base and co-operating with a larger dimensioned cavity formed on the complementary contact surface. On the contrary, the pin can be in the head (2), at the housing in the duct (20), and protruding into this housing so as to co-operate with a larger dimensioned cavity in the base (6), as for example the pin formed by the screw shown in
Thus, it can be understood that the bar (7) can be inserted and blocked in different angular positions inside the duct (20), while providing a flat contact surface both with the fixation screw, possibly including the ball and socket (52) and with a part of the wall of the widened out duct (20) or with the support face (62) of the mobile base (6). It can also be understood that the invention has the advantage of providing different elements of the implant with a complete freedom of movement in relation to one another. Indeed, the head (2) has, as previously indicated, a freedom of movement around the center of the olive (3) and the bar (7) has a freedom of movement around, for example, the center of the duct (20), thanks to angular clearances by rotation around the axes represented in
The nut (4) comprises at its center, and along its height, a threaded cylindrical drilling (40), of internal diameter substantially equal to the external diameter of the cylindrical part (10) of the body (1) of the implant. The nut (4) comprises on its external wall a plurality of flats (41) allowing to screw the nut (4) to the cylindrical part (10) of the body of the implant using an adapted tool, for example a monkey wrench.
In a first embodiment represented in
In a second embodiment represented in
As aforementioned, the fixation olive (3) is inserted into the ring (21) of the head (2) and stays automatically retained there thanks to the complementary nature between the shape of the convex external surface of the olive (3) and the concave internal surface of the ring (21). The fixation olive (3) and the head (2) are threaded to the cylindrical part (10) of the body (1) of the implant, as far as the tapered part (12) of the body, complementary of the tapered internal surface of the olive (3). The nut (4) is partially screwed onto the cylindrical part (10) of the body (1) of the implant, so as to retain the head (2) and the fixation olive (3) on the cylindrical part (10) of the body (1) of the implant, whilst maintaining their freedom of movement. Thus, the head (2) can be orientated in any given direction, thanks to its rotation around the aforementioned axes (A1, A2 et A5). At this stage, the different elements of the implant do not need to be integrally retained between themselves as the olive (3) automatically holds in the ring (21) and on the tapered part (12) of the body (1). The head (2) will therefore be spontaneously vertically stable compared to the body (1) of the implant, only its orientation, according to the different possible angular clearances, requires a screwing of the nut (4) in order to be stabilized. As aforementioned, the blind hole (13) with six faces, allowing the screwing of the body (1) of the implant, remains accessible even when the nut (4) is threaded onto the threaded part (10) of the body (1), the relative vertical stability of the unit made of the head and the olive on the body of the implant will allow to screw the body (1) of the implant driving the head and the olive. When the bar (7) is fixed, the screwing of the nut (4) on the threaded part (10) of the body (1) of the implant will allow, thanks to this relative stability of the head and the olive in relation to the body, either the rise (the ascension) of the body of the implant if the latter was too low compared to the bar (7), or the lowering of the olive and the head on the body if the first elements were too high compared to the latter and the bar (7). Then the screwing of the nut provokes the contact of the olive on the tapered part (12) of the body engendering the dilating of the olive and the blocking of the head according to the desired orientation.
The implant according to the invention is particularly useful for reducing the jutting out of a vertebra of the rachis compared to a first vertebra.
In a first embodiment of the method for installing the implant such as represented in
In a second embodiment of the method for installing the implant such as represented in
In a third embodiment of the method for installing the implant such as represented in
In these three embodiments of the method, the raising of the jutting out vertebrae to a level chosen by the person implementing the method, performed according to a curve, the polyaxiality of the connection between the body (1) of the implant and the head (2), via the possibility of rotation around the axes (A1), (A2) and (A5), is then entirely suitable. If the fixation screw (5) does not comprise a flat at its base but instead a ball and socket (52), possibly associated to a mobile base (6) placed between the bar (7) and the duct (20), the implant is provided with a double polyaxiality allowing to further reduce the stresses on both the rachis and the bar, thanks to the possibilities for rotating the head (2) around the axes (A1), (A2) and (A5), even when the bar (7) is inserted in the duct (20) of the head (2).
It should be clear to the specialist in the art that the present invention enables embodiments in many specific forms without moving it away from the field of application of the invention as claimed. Consequently, the present embodiments must be considered as illustrative, but can be modified in the field defined by the import of the attached claims and the invention should not be limited to the details provided above.
Number | Date | Country | Kind |
---|---|---|---|
03 10363 | Sep 2003 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2004/002825 | 9/1/2004 | WO | 00 | 6/9/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2005/020829 | 3/10/2005 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4041939 | Hall | Aug 1977 | A |
4047524 | Hall | Sep 1977 | A |
4055385 | Bjors | Oct 1977 | A |
4429690 | Angelino-Pevani | Feb 1984 | A |
4648388 | Steffee | Mar 1987 | A |
4653481 | Howland et al. | Mar 1987 | A |
4696290 | Steffee | Sep 1987 | A |
4773402 | Asher et al. | Sep 1988 | A |
4946458 | Harms et al. | Aug 1990 | A |
5024213 | Asher et al. | Jun 1991 | A |
5067955 | Cotrel | Nov 1991 | A |
5092893 | Smith | Mar 1992 | A |
5129899 | Small et al. | Jul 1992 | A |
5176680 | Vignaud et al. | Jan 1993 | A |
5197986 | Mikhail | Mar 1993 | A |
5226766 | Lasner | Jul 1993 | A |
5269784 | Mast | Dec 1993 | A |
5275600 | Allard et al. | Jan 1994 | A |
5282863 | Burton | Feb 1994 | A |
5314477 | Marnay | May 1994 | A |
5330473 | Howland | Jul 1994 | A |
5344421 | Crook et al. | Sep 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5374267 | Siegal | Dec 1994 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5437669 | Yuan et al. | Aug 1995 | A |
5456698 | Byland et al. | Oct 1995 | A |
5486174 | Fournet-Fayard et al. | Jan 1996 | A |
5486176 | Hildebrand et al. | Jan 1996 | A |
5501684 | Schlapfer et al. | Mar 1996 | A |
5531747 | Ray | Jul 1996 | A |
5536268 | Griss | Jul 1996 | A |
5545163 | Miller et al. | Aug 1996 | A |
5545167 | Lin | Aug 1996 | A |
5582612 | Lin | Dec 1996 | A |
5584833 | Fournet-Fayard et al. | Dec 1996 | A |
5584834 | Errico et al. | Dec 1996 | A |
5591166 | Bernhardt et al. | Jan 1997 | A |
5601552 | Cotrel | Feb 1997 | A |
5603714 | Kaneda et al. | Feb 1997 | A |
5609592 | Brumfield et al. | Mar 1997 | A |
5613968 | Lin | Mar 1997 | A |
5620443 | Gertzbein et al. | Apr 1997 | A |
5628740 | Mullane | May 1997 | A |
5651789 | Cotrel | Jul 1997 | A |
5725528 | Errico et al. | Mar 1998 | A |
5733286 | Ralph et al. | Mar 1998 | A |
5735851 | Errico et al. | Apr 1998 | A |
5743907 | Asher et al. | Apr 1998 | A |
5743911 | Cotrel | Apr 1998 | A |
5797911 | Sherman et al. | Aug 1998 | A |
5800435 | Errico et al. | Sep 1998 | A |
5876403 | Shitoto | Mar 1999 | A |
5899903 | Cotrel | May 1999 | A |
5938663 | Petreto | Aug 1999 | A |
5947965 | Bryan | Sep 1999 | A |
5947966 | Drewry et al. | Sep 1999 | A |
5951557 | Luter | Sep 1999 | A |
5989250 | Wagner et al. | Nov 1999 | A |
5989254 | Katz | Nov 1999 | A |
6030389 | Wagner et al. | Feb 2000 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6053921 | Wagner et al. | Apr 2000 | A |
6063090 | Schlapfer | May 2000 | A |
6066140 | Gertzbein et al. | May 2000 | A |
6074393 | Sitoto | Jun 2000 | A |
6083224 | Gertzbein et al. | Jul 2000 | A |
6117135 | Schlapfer | Sep 2000 | A |
6123706 | Lange | Sep 2000 | A |
6132430 | Wagner | Oct 2000 | A |
6136000 | Louis et al. | Oct 2000 | A |
6136002 | Shih et al. | Oct 2000 | A |
6187005 | Brace et al. | Feb 2001 | B1 |
6206879 | Marnay et al. | Mar 2001 | B1 |
RE37161 | Michelson et al. | May 2001 | E |
6235034 | Bray | May 2001 | B1 |
6248104 | Chopin et al. | Jun 2001 | B1 |
6248105 | Schlapfer et al. | Jun 2001 | B1 |
6254603 | Gertzbein et al. | Jul 2001 | B1 |
6261288 | Jackson | Jul 2001 | B1 |
6277119 | Walulik et al. | Aug 2001 | B1 |
6280445 | Morrison et al. | Aug 2001 | B1 |
6287309 | Baccelli et al. | Sep 2001 | B1 |
6306136 | Baccelli | Oct 2001 | B1 |
6344057 | Rabbe et al. | Feb 2002 | B1 |
6355038 | Phisharodi | Mar 2002 | B1 |
6391030 | Wagner et al. | May 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6416515 | Wagner | Jul 2002 | B1 |
6454769 | Wagner et al. | Sep 2002 | B2 |
6458132 | Choi | Oct 2002 | B2 |
6471704 | Gertzbein et al. | Oct 2002 | B2 |
6475218 | Gournay et al. | Nov 2002 | B2 |
6488682 | Kikuchi et al. | Dec 2002 | B2 |
6506216 | McCue et al. | Jan 2003 | B1 |
6547790 | Harkey, III et al. | Apr 2003 | B2 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6562040 | Wagner | May 2003 | B1 |
6565565 | Yuan et al. | May 2003 | B1 |
6565605 | Goble et al. | May 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6585738 | Mangione et al. | Jul 2003 | B1 |
6595992 | Wagner et al. | Jul 2003 | B1 |
6602254 | Gertzbein et al. | Aug 2003 | B2 |
6610063 | Kumar et al. | Aug 2003 | B2 |
6613050 | Wagner et al. | Sep 2003 | B1 |
6613053 | Collins et al. | Sep 2003 | B1 |
6616664 | Walulik et al. | Sep 2003 | B2 |
6620164 | Ueyama et al. | Sep 2003 | B2 |
6641583 | Shluzas et al. | Nov 2003 | B2 |
6641585 | Sato et al. | Nov 2003 | B2 |
6641586 | Varieur | Nov 2003 | B2 |
6663631 | Kuntz | Dec 2003 | B2 |
6669697 | Pisharodi | Dec 2003 | B1 |
6682530 | Dixon et al. | Jan 2004 | B2 |
6682533 | Dinsdale et al. | Jan 2004 | B1 |
6702814 | Walulik et al. | Mar 2004 | B2 |
6702815 | Kuntz | Mar 2004 | B2 |
6726687 | Jackson | Apr 2004 | B2 |
6736816 | Ritland | May 2004 | B2 |
6749613 | Conchy et al. | Jun 2004 | B1 |
6755829 | Bono et al. | Jun 2004 | B1 |
6884241 | Bertranou et al. | Apr 2005 | B2 |
7037340 | Gau | May 2006 | B2 |
20010001119 | Lombardo | May 2001 | A1 |
20010010000 | Gertzbein et al. | Jul 2001 | A1 |
20010047173 | Schlaepfer et al. | Nov 2001 | A1 |
20020010467 | Cooper et al. | Jan 2002 | A1 |
20020013585 | Gournay et al. | Jan 2002 | A1 |
20020143341 | Biedermann et al. | Oct 2002 | A1 |
20020193795 | Gertzbein et al. | Dec 2002 | A1 |
20030045875 | Bertranou et al. | Mar 2003 | A1 |
20030088251 | Braun et al. | May 2003 | A1 |
20030114853 | Burgess et al. | Jun 2003 | A1 |
20030187441 | Bolger et al. | Oct 2003 | A1 |
20040158251 | Morrison et al. | Aug 2004 | A1 |
20040172020 | Beaurain et al. | Sep 2004 | A1 |
20040254577 | Delecrin et al. | Dec 2004 | A1 |
20050010215 | Delecrin et al. | Jan 2005 | A1 |
20050107788 | Beaurain et al. | May 2005 | A1 |
20060025769 | Dick et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
1304267 | Jun 1992 | CA |
2443215 | Oct 2002 | CA |
4201043 | Jul 1993 | DE |
19512709 | Oct 1996 | DE |
19545612 | Jun 1997 | DE |
19605640 | Aug 1997 | DE |
0274713 | Jul 1988 | EP |
0301489 | Feb 1989 | EP |
0490812 | Jun 1992 | EP |
0572790 | Dec 1993 | EP |
0679369 | Nov 1995 | EP |
0846444 | Jun 1998 | EP |
1254640 | Nov 2002 | EP |
2659226 | Sep 1991 | FR |
2683445 | May 1993 | FR |
2697993 | May 1994 | FR |
2702361 | Sep 1994 | FR |
2704136 | Oct 1994 | FR |
2706763 | Dec 1994 | FR |
2724108 | Mar 1996 | FR |
2726171 | May 1996 | FR |
2735011 | Dec 1996 | FR |
2765093 | Dec 1998 | FR |
2823095 | Apr 2001 | FR |
2827150 | Jan 2003 | FR |
2831048 | Apr 2003 | FR |
2831049 | Apr 2003 | FR |
2833151 | Jun 2003 | FR |
2859095 | Mar 2005 | FR |
2178323 | Feb 1987 | GB |
09098983 | Apr 1997 | JP |
WO9307823 | Apr 1993 | WO |
WO9510240 | Apr 1995 | WO |
WO9900065 | Jan 1999 | WO |
WO9933405 | Jul 1999 | WO |
WO9956675 | Nov 1999 | WO |
WO0015125 | Mar 2000 | WO |
WO0018312 | Apr 2000 | WO |
WO0101874 | Jan 2001 | WO |
WO0103592 | Jan 2001 | WO |
WO0126566 | Apr 2001 | WO |
WO0228299 | Apr 2002 | WO |
WO02080788 | Oct 2002 | WO |
WO03032850 | Apr 2003 | WO |
WO03032851 | Apr 2003 | WO |
WO03039400 | May 2003 | WO |
WO 03049629 | Jun 2003 | WO |
WO03049629 | Jun 2003 | WO |
WO2005020829 | Mar 2005 | WO |
Entry |
---|
A unique self-contained connexion; Website: www.ldrmedical.dr/connexion—uk.htm; Oct. 11, 2004. |
FR 2 704 136 Preliminary Search Report, National Institute of Industrial Property (France), Nov. 24, 1993. |
FR 2 823 095 Preliminary Search Report, National Institute of Industrial Property (France), Dec. 20, 2001. |
FR 2 827 150 Preliminary Search Report, National Institute of Industrial Property (France), Apr. 8, 2002. |
FR 2 831 048 Preliminary Search Report, National Institute of Industrial Property (France), Jul. 3, 2002. |
FR 2 831 049 Preliminary Search Report, National Institute of Industrial Property (France), Jul. 3, 2002. |
FR 2 831 796 Preliminary Search Report, National Institute of Industrial Property (France), Aug. 2, 2002. |
FR 2 833 151 Preliminary Search Report, National Institute of Industrial Property (France), Aug. 28, 2002. |
FR 2 859 095 Preliminary Search Report, National Institute of Industrial Property (France), Apr. 14, 2004. |
PCT/FR98/01363 (Publication WO9900065 Jan. 7, 1999), International Search Report, EPO, Oct. 14, 1998. |
PCT/IB02/02827 International Search Report, EPO, Oct. 4, 2002. |
PCT/IB02/04306 International Search Report, EPO, Feb. 4, 2003. |
PCT/IB02/04307 International Search Report, EPO, Feb. 4, 2003. |
PCT/IB02/04642 International Search Report, EPO, Jul. 2, 2003. |
PCT/IB02/05302 International Search Report, EPO, Mar. 25, 2003. |
PCT/IB04/002825 International Search Report, EPO, Jan. 7, 2005. |
PCT/IB02/02827 International Preliminary Examination Report, EPO, May 15, 2003. |
PCT/IB02/04306 International Preliminary Examination Report, EPO, Jul. 9, 2003. |
PCT/IB02/04307 International Preliminary Examination Report, EPO, Jan. 13, 2004. |
PCT/IB02/04642, International Preliminary Examination Report, EPO, Apr. 1, 2004. |
PCT/IB02/05302 International Preliminary Examination Report, EPO, Mar. 23, 2004. |
PCT/IB04/002825, International Preliminary Report on Patentability, EPO, Oct. 25, 2005. |
PCT/IB04/002825, Written Opinion of the International Searching Authority, EPO, Jan. 5, 2005. |
Product Bulletin, Acromed Corporation, Date Unknown. |
Spinal Instrumentation, An and Cotler, 1992, Williams & Wilkins, pp. 399-400. |
Spinal Product Systems, Zimmer, Date Unknown. |
Stafix Plate System;Daruma, Date Unknown. |
The Syracuse I-Plate, James C. Bayley, Md., et al., Department of Orthopedic Surgery, SUNY-HSC at Syracuse, Spine, vol. 16, No. 3 Supplement, Date Unknown. |
TSRH Spinal Implant System, Danek Medical Inc., Date Unknown. |
Un nouveau standard: la barre á méplat LDR; Website: www.ldrmedical.fr/easyspine.htm; Sep. 19, 2004. |
U.S. Appl. No. 10/276,712, filed Mar. 26, 2003. |
U.S. Appl. No. 10/473,999, filed Apr. 12, 2004. |
U.S. Appl. No. 10/483,563, filed May 21, 2004. |
U.S. Appl. No. 10/476,565, filed Jun. 8, 2004. |
U.S. Appl. No. 10/492,827, filed Jul. 15, 2004. |
U.S. Appl. No. 10/492,753, filed Aug. 9, 2004. |
U.S. Appl. No. 10/498,234, filed Dec. 7, 2004. |
U.S. Appl. No. 11/051,710, filed Feb. 4, 2005. |
U.S. Appl. No. 11/098,266, filed Apr. 4, 2005. |
U.S. Appl. No. 11/109,276, filed Apr. 18, 2005. |
U.S. Appl. No. 11/180,868, filed Jul. 13, 2005. |
U.S. Appl. No. 10/533,846, filed Nov. 11, 2005. |
U.S. Appl. No. 11/341,007, filed Jan. 27, 2006. |
U.S. Appl. No. 11/362,253, filed Feb. 24, 2006. |
U.S. Appl. No. 10/570,080, filed Feb. 28, 2006. |
U.S. Appl. No. 11/378,165, filed Mar. 17, 2006. |
U.S. Appl. No. 11/390,711, filed Mar. 27, 2006. |
U.S. Appl. No. 10/575,065, filed Apr. 7, 2006; and. |
U.S. Appl. No. 10/494,418, filed Jul. 22, 2004. |
FR 2 833 151 Preliminary Search Report, National Institute of Industrial Property (France), Apr. 28, 2002. |
PCT/IB02/05302 International Preliminary Examination Report, EPO, Mar. 23, 2003. |
PCT/IB02/02827 International Search Report, EPO, Oct. 4, 2002; and. |
Number | Date | Country | |
---|---|---|---|
20060282074 A1 | Dec 2006 | US |