Osteosynthesis device

Abstract
In one embodiment, the present invention includes an intramedullary osteosynthesis or arthrodesis implant including a central body, a first pair of legs extending from the central body to a pair of leg tips, and a second pair of legs extending from the central body, in a direction opposite the first pair of legs, to a pair of leg tips such that the central body, first pair of legs and second pair of legs are positioned alongside a longitudinal axis.
Description
FIELD OF THE INVENTION

The invention relates to the technical field of orthopaedic implants, in particular for arthrodeses and osteosyntheses.


BACKGROUND OF THE INVENTION

It may be recalled that an osteosynthesis implant must serve to hold in place two (or more) parts of the same bone fractured or cut by a surgical operation (osteotomy), for the time necessary for the consolidation of this bone (typically 3 months).


It may be recalled that an arthrodesis is the blocking of a joint by surgery to fuse two bones into a single one, using an osteosynthesis device.


It may be recalled that the purpose of any osteosynthesis and particularly in the case of an arthrodesis is to obtain very good primary and also secondary stability, in order to obtain the consolidation in the best possible conditions, that is, in a position selected by the surgeon, by minimizing the problems of post-operative pain and edemas, by shortening the consolidation time as much as possible.


To obtain this result, the stability of the osteosynthesis associated with the implant is critical. Furthermore, the implant must also provide and maintain a slight compression on the portions of bone to be fused together, thereby facilitating this consolidation.


Various technical solutions have been proposed to carry out an arthrodesis, in particular at the tips (foot, hand, wrist, ankle, etc.).


Mention can be made, for example of basic staples which do not provide a proper fixation during consolidation, and shape memory staples which serve to place the two bone portions to be consolidated under compression, thereby corresponding to the intended purpose.


However, to obtain satisfactory stability, it is necessary to place two, or even three staples, in different planes. This significantly increases their size, thereby limiting the applications, in particular on small bones (for example in the fingers or toes).


It is also common to use extramedullary or extra-osseous plates and screws, which also require a relatively large space and cannot be used on the terminal phalanges of the fingers (distal interphalangeal arthrodesis for example). Moreover, the medium-term stability of these systems is not always guaranteed (loosening of the mounting).


Certain types of screw can be used in intramedullary cases, but in this case, the approach path requires a pulpar approach, which may generate serious complications (sepsis, etc.) and discomfort for the patient.


Use can also be made of pins which have a smaller size. However, the stability obtained is not satisfactory (problems of migration) and it is generally necessary to remove them after consolidation. With such devices, moreover, the patient cannot immerse the finger or toe treated, because the pin generally projects outside the skin.


Intramedullary osteosynthesis systems are available for long bones (tibia, femur, humerus, etc.). For example, lockable centromedullary nails are known. Apart from the fact that the locking technique is difficult, it cannot be miniaturized for extremity surgery (hand and foot).


Shape memory intramedullary devices are also available for solving part of the problems with respect to the arthrodesis or the osteosynthesis of the small fragments: for example, the solutions described in French patent 2 846 545 or French patent 2 884 406 (U.S. 2008/0177262).


French Patent 2 846 545 describes an H-shaped device which opens in the body into an X, thanks to the use of a shape memory set around 37° C., each leg being implanted in a calibrated hole.


In practice, such a system does not allow proper introduction into the bone. This is because the preparation of 2 parallel holes in a phalange is extremely difficult due to the limited size and, above all, the parallel legs tend to open naturally during introduction and thereby exert an effect of distraction of the two fragments rather than compression.


Furthermore, the use of shape memory is very limiting due to the demands it makes on surgeons, in particular of temperature management: the implant must be fitted into the bone when cold before it warms and opens. This requires placing the implant in a support, storing it cold, and using all possible speed for implantation.


Finally, since the legs are straight, their shape memory tends to create a local support at their tips, which does not ensure satisfactory behavior and can damage the bone.


U.S. 2008/0177262 teaches a system for easier introduction whether by the shape (eye) or by a support or a clamp that keeps the legs of the implant closed during introduction.


Nevertheless, these systems do not operate very dependably, because they do not define the optimal criteria allowing proper introduction into the bone and good anchorage: the anchoring zones always tend to open too early, thereby blocking introduction.


OBJECT OF THE INVENTION

It is the object of the invention to remedy all these drawbacks simply, reliably, effectively and efficiently.


The problem that the invention proposes to solve is to define the success criteria for an intramedullary implant, easy to place and effective for generating primary and secondary stability of the osteosynthesis or arthrodesis focus thanks to its stiffness and its compression component.


SUMMARY OF THE INVENTION

The inventive implant is characterized in that it comprises two bone anchoring zones on either side of a stiff stability zone, withstanding shear forces, these two anchoring zones having a possibility of high deformation at their base (in particular by elasticity) and a design such that they can adopt a closed position (in particular thanks to a suitable clamp closed at their base) for easy introduction into a calibrated centromedullary hole (prepared with an appropriate instrument), and in that owing to this particular configuration, they offer in the bone site the possibility of obtaining the final impaction without a distraction effect on the bone and sufficient expansion to ensure proper fixation in the bone.


The anchoring zones can be deformed at their base by elasticity, superelasticity or shape memory and typically consist of branches or legs, optionally connected (olive or rugby ball shape). In the open shape, these branches have an outward positive angle at their base and are curved inwardly toward their tips, whereas when the shape is closed, the angle of the base is reversed, that is negative or turned inwardly, thereby obtaining the width at the tips (impaction side) that is smaller than their base, in order to avoid impaction in the bone and blocking of the penetration of the implant.


The invention has a particularly advantageous application, which cannot however be considered as limiting, for the preparation of arthrodeses in the phalanges of the fingers and toes, especially for the proximal and distal interphalangeal joints in the hand and foot.


The device is implantable via the dorsal path (or optionally lateral or palmar/plantar), but without pulpar approach, thereby minimizing the risks of infection and improving the patient's comfort.


To take account of the anatomical features, the anchoring zones are connected to the median zone serving for strength (in particular shear) at the osteosynthesis focus by more or less long connecting zones, and the central zone may have a bend to adapt to the characteristics of the desired arthrodesis.


The material constituting the implant of the invention must allow a certain minimal opening of the anchoring zones once the implant is in the body. It may therefore be made from any sufficiently elastic implantable material such as stainless steel, titanium, a bioresorbable material such as polylactide acid PLLA.


Preferably, the implant of the invention is prepared from a shape memory material used for its property of superelasticity (or elasticity associated with the transformation of the austenite martensite phase under stress) which has the widest known elasticity range (up to 8% in elastic elongation equivalent in traction for an implant of Nitinol, a nickel-titanium alloy comprising about 55.5 to 56% by weight of nickel, the remainder being titanium).


It is also possible to use a material having a thermal shape memory around 37° C.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described in greater detail below in conjunction with the appended drawings in which:



FIG. 1 shows an exemplary implant of the invention in its full open position in 3 dimensions,



FIG. 2 shows the same example in its closed introduction position in its main plane,



FIG. 3 shows an exemplary implant of the invention in its full open position, in its main plane,



FIG. 4 shows an example of a bent implant according to the invention in its full open position,



FIG. 5 (5a to 5f) shows the implantation sequence: closed, half introduced still stressed, fully introduced on one side (free in the bone), and the same sequence on the other side.





SPECIFIC DESCRIPTION

The implant is in the form of 2 anchoring zones A1 and A2 connected by a central zone C (FIG. 1) and optionally intermediate connecting zones such that in the closed position, the shape is substantially inscribed in a very elongated rectangle (FIG. 2), and in the open shape, corresponds to a wider X-shape due to the spreading of the anchoring zones A1 and A2 (FIG. 3).


The anchoring zones A1 and A2 each have two legs P1 and P2 having lengths L1 and L2 (FIG. 3).


The cross-section of the implant is adapted to the implantation sites, but preferably flat in order to have good mechanical strength and reduced size (typically the thickness e is about 1 to 2 mm) (FIG. 1).



FIG. 2 shows the closed position with the various widths of the implant: Lab is the width of the central zone C, L1ab and L2ab are the widths at the base of the anchoring zones A1 and A2. These 3 widths may be equal or slightly different to adapt to the bone site. Typically, the widths are about 2 to 5 times the thickness (or 2 to 10 mm). These dimensions are adapted to the various dimensions of the hand and foot but are not limiting because they depend on the bone site of the operated patient.


The anchoring zones A1 and A2 are suitable for separation by elastic effect or by shape memory effect at their base, so that the maximum width in the open position at the tips La1 and La2 (FIG. 3) is at least equal to the width of the base of the same anchoring zone in the closed position plus 50% minimum, or plus a minimum of 1.5 mm. This means that La1>L1ab+50% or La1>L1ab+1.5 mm and that La2>L2ab+50% or La2>L2ab+1.5 mm. This opening criterion is necessary to have sufficient fixation in the bone.


As shown in FIG. 3, the legs P1 and P2 are substantially straight at their base (on about ⅓ to half of their length) and are then rounded inwardly at their tips (on about ⅓ to half of their length). In the open position, the straight inner portions of the legs P1 and P2 make positive outward angles a1 and a2 with the longitudinal implant axis A (FIG. 3), whereas in the closed position, these angles become inward negative angles b1 and b2 (FIG. 2). The upper or outer portions (toward the tip) of the legs P1 and P2 virtually undergoes no particular deformation between the two open and closed shapes.


This particular geometric arrangement ensures that in the closed position, the legs virtually touch at the tips (FIG. 2), and that the widths at the tips in the closed position La1f and La2f are lower than the widths at the respective bases L1ab and L2ab, thereby allowing easy introduction without distraction of the distal bone fragment and also obtaining the opened/closed movement by a local deformation at the base of the legs, that is by leaving the distal zone free for introducing this zone into the bone.


In order to obtain both easy introduction and sufficient opening movement, the angles a1 and a2 are preferably between +5 degrees and +25 degrees and the angles b1 and b2 between 0 degrees and −15 degrees.


Preferably, the width of the tips of the anchoring zones in the closed position La1f and La2f are lower than the widths of the bases of the zones L1ab and L2ab, minus 20%: La1f<L1ab−20% and La2f<L2ab−20%.


The legs or anchoring zones are thus “articulated” at their base, and can therefore be secured in the closed position on a support or even better a clamp, positioned at an appropriate location defined in particular in the case of an elastic material (for a shape memory material, this is not absolutely necessary since the shape does not change as long as the activation temperature is not reached), this clamp not covering more than half of the length of the legs, thereby allowing introduction of at least half of the implant into its recess.


The inside tangents at the tip of the legs P1 and P2 in the open position make angles β1 and β2 with the longitudinal axis A of the implant close to 0 degrees, in order to have a good bone contact area along the whole lengths of the legs in the open position and to prevent the bone from being touched by the tips alone (FIG. 3).


In the implant site, at body temperature, the implant can still be in the closed position, or parallel or with semiopen legs so that the force exerted by opening of the legs is transmitted to the bone and ensures proper fixation.


This “olive” arrangement of the legs, associated with an “articulation” of the base and associated with a minimal introduction of half of their length allows completion of the insertion, once the clamp has been removed.


In order to guarantee satisfactory operation, the elasticity or memory of the piece must allow a transition from the closed shape (typically width 2 to 4 mm according to the size of the site) to an open shape with a significant movement (+1.5 to +3 mm approximately).


Similarly, the force of expansion of the legs (or swelling of the olive) must be significant: typically 1 to 3 kg for an arthrodesis of the tips (force measured at 37° C. in the blocked introduction position), without being excessive: it is important for the legs to avoid opening completely and for the bone to resist so as to have a real holding force.


The legs P1 and P2 or fins may have a rough surface or even better notches D (FIG. 3) on their outer surfaces intended to be press into the spongy bone and form a good anchorage. The typical depth of these notches H1 and H2 is about 0.5 mm. The opening of the legs must be at least 1.5 times this depth in order to ensure good engagement of the notches in the bone or 1.5 mm.


The legs P1 and P2 may also have a surface covered with an osseointegration coating such as hydroxyapatite (HAP) intended to facilitate the anchorage.


To facilitate introduction into the bone, the tips of the legs P1 and P2 are bevelled with an inward angle to the longitudinal axis A of the implant W1 and W2 (FIG. 3). This angle is typically between −20 degrees and −40 degrees.


By tests on fresh cadavers and experience, an optimal level of the force was determined with a minimum allowing anchorage of the notches in the spongy bone and a maximum force to be certain to avoid damaging the implantation site.


After tests and experience, an ideal zone was found with a maximum 20% of the elastic limit of the bone measured in a blocked closed shape at 37° C., which, considering the dimensions of the implant, gives rise to maximum values of about 3 kg, and the need for a rapid lowering as soon as the anchorage is obtained, or a force divided by 2 in the semi-open position (a force of 0.5 to 1.5 kg allows good holding). In fact, if the opening force is higher than about 3 kg, introduction into the bone becomes much more difficult, or even impossible above 4 kg. Finally, in order to guarantee a damage-free site, it is necessary for the force to become negligible for a virtually complete opening. These values are indicative and depend on the arthrodesis site and the bone quality.


In one version of the invention, the notches D1 and D2 on the outside of the legs P1 and P2 allow the positioning of a clamp and introduction at the base of the legs P1 and P2 (FIG. 3). These notches are symmetrical by pairs of legs and their spacing d is the same on the legs P1 and on the legs P2.


The central zone C must have a minimum length Lc equal to the length d between the notches D1 and D2 so that even in case of movement of the implant during final impaction, this zone C remains in the arthrodesis focus and performs its resistance function.


In one version of the invention, an orifice Or is provided in this central zone for positioning a holding pin to prevent migration of the implant at the time of final impaction.


As shown in FIG. 4, this central zone may be bent at an angle Ag defined between the 2 main planes formed by the legs P1 on the one hand and P2 on the other hand to adapt to the surgical requirements for adjusting the position of the arthrodesis. In most cases, the angle Ag is fixed between 0° (typically flat position for an index) and 30° (typically for a little finger).


As an example, an operating technique of implantation of the inventive device for the case of an elastic or superelastic implant is described as follows as shown in FIG. 5:


DETAILED DESCRIPTION OF THE FEATURES OF THE INVENTION AND EXEMPLARY EMBODIMENTS





    • Approach by dorsal path

    • Resection of cartilages and osteophytes

    • Centromedullary perforation using an appropriate instrument to make a calibrated rectangular hole having a width of substantially L1ab or L2ab and thickness of substantially e (by a suitable rasp)

    • Closure of the clamp side P1 (FIG. 5a)

    • Implant introduction side P1 to minimum half (FIG. 5b)

    • Clamp removal

    • Complete introduction side P1 (FIG. 5c)

    • Closure of the clamp side P2 (FIG. 5d)

    • Placement of the bone side P2 on the implant side P2 to about half (FIG. 5e)

    • Removal of the clamp

    • Manual impaction of the bone side P2 on the bone P1 (FIG. 5f)





In a particular embodiment, intended for a distal interphalangeal arthrodesis (hand), the implant is prepared from a superelastic Nitinol alloy (nickel-titanium in the weight proportion 55.8% nickel and 44.2% titanium).


The cross-section of the central zone C is Lab×e=2.8×1.2 mm and the legs are asymmetrical to adapt better to the shapes of the bone, minimize the implanted metal section and allow sufficient expansion for good anchorage. The length of the legs is L2=6.5 mm distal side P2 and L1=9 mm proximal side P1. The length of the central zone C is 3 mm, allowing a slight offset during closure, without affecting the shear strength. To adapt to the surgeon's choice, this central zone may be bent (typically flat or 15° or 25°.


In the closed position, the width of the proximal base L1ab is 3.8 mm and of the distal base L2ab is 3.0 mm. The opening of the legs P1 and P2 is 2.5 mm or 2.2 mm, that is La1 is 6.3 mm and La2 is 5.2 mm. In the open position the angle at the base of the legs is a1=10° and a2=22°. The straight portion is about 45% of the total length. The curvature of the distal tip of the legs is calculated so that the angle of the tangent at the tip is β1=−5° and β2=−3°. In the closed position, the angle at the base of the legs is b1=−4°, b2=−2°. And the width at tip is La1f=2.5 mm and La2f=2.1 mm.


In one embodiment of the invention, the 0.5 mm deep notches are distributed on the legs (1 notch at approximately 0.8 mm spacings).


The angle of incidence of the tip of the legs (including notches) is w1=33° and w2=24°, allowing easy introduction without the distraction effect between the two bone pieces to be osteosynthesized.


The rounded design of the anchoring zones serves to obtain a maximized contact area over the entire length in the open shape, with an impaction effect in the spongy bone, and hence a spongy packing effect.


In another example, more appropriate for arthrodesis of the thumb, the dimensions are rather the following: Closed widths: L1ab=6.5 mm, L2ab=5 mm, with an opening of 3 to 4 mm approximately to obtain: La1=11 mm and La2=8 mm and L1=13 mm and L2=9 mm.

Claims
  • 1. An intramedullary osteosynthesis or arthrodesis implant comprising: a central body;a first pair of legs extending from the central body, each leg having a base, a leg tip and an outer surface extending from the base to the leg tip and facing away from the other leg of the pair of legs, the leg base of each leg including a base notch on the outer surface shaped to face in a first direction and the leg tip of each leg including two or more tip notches on the outer surface spaced from one another a first distance, each tip notch shaped to face in a second direction different from the first direction, and each leg including a flat surface extending along the outer surface a second distance between the base notch and the tip notch nearest the base notch, wherein the second distance is longer than the first distance; anda second pair of legs extending from the central body in a direction opposite the first pair of legs.
  • 2. The implant of claim 1, wherein the central body, first pair of legs and second pair of legs are positioned along a longitudinal axis.
  • 3. The implant of claim 1, wherein each leg of the second pair of legs has a leg base and a leg tip, the second pair of legs, measured from the leg base to the leg tip, has a shorter length than the first pair of legs, measured from the leg base to the leg tip.
  • 4. The implant of claim 1, wherein each leg of the second pair of legs has a leg base and a leg tip, each leg base including a base notch and each leg tip including a tip notch.
  • 5. The implant of claim 4, wherein each leg of the first and second pairs of legs includes two or more tip notches.
  • 6. The implant of claim 1, wherein the second pair of legs include an inward curve along the length of each leg towards the tip of each leg.
  • 7. An intramedullary osteosynthesis or arthrodesis implant comprising: a monolithic body extending along a longitudinal axis, the body including a plurality of notches on an outward-facing surface of the body, at least a first notch is spaced from a second notch in a direction along the axis, the first and second notches extending outwardly in the same direction from the axis, a third notch and a fourth notch extending outwardly in the same direction from the axis as the first and second notches, and at least the first notch having a taper along the axis in a different direction than a taper of the third notch along the axis, the first and second notches spaced a first distance from one another and the fourth notch spaced a second distance from the first or second notch that is closer to the fourth notch, wherein the second distance faces the same direction as the first, second, third and fourth notches and is free of notches and is larger than the first distance.
  • 8. The implant of claim 7, wherein the monolithic body further comprises a central body, a first pair of legs and a second pair of legs, wherein a base of each of the first and second pair of legs is adjacent the central body.
  • 9. The implant of claim 8, wherein the second pair of legs extends from the central body in a direction opposite the first pair of legs.
  • 10. The implant of claim 9, wherein the central body, first pair of legs and second pair of legs are positioned along the longitudinal axis.
  • 11. The implant of claim 7, wherein the second pair of legs, measured from the leg base to a leg tip, has a shorter length than the first pair of legs, measured from the leg base to the leg tip.
  • 12. The implant of claim 7, wherein each leg of the second pair of legs includes at least one notch.
  • 13. The implant of claim 12, wherein one leg of the first pair of legs includes the first and second notches and the other leg of the first pair of legs includes the third notch.
  • 14. The implant of claim 7, wherein the second pair of legs include an inward curve along the length of each leg towards the tip of each leg.
  • 15. An intramedullary osteosynthesis or arthrodesis implant comprising: a monolithic body including a first pair of legs and a second pair of legs, each leg of each pair of legs having a base, a tip, and an outer surface extending from the base to the tip and facing away from the other leg of the pair of legs, the second pair of legs, measured from the leg base to the leg tip, has a shorter length than the first pair of legs, measured from the leg base to the leg tip, and each leg of the first and second pair of legs including two or more tip notches on the outer surface at each leg tip, the two notches spaced from one another a first distance, and a surface free of notches extending along the outer surface a second distance from the two or more tip notches towards a base notch on the outer surface, wherein the second distance is greater than the first distance.
  • 16. The implant of claim 15, wherein the base notch is shaped to face in a first direction and the tip notches shaped to face in a second direction different from the first direction.
  • 17. The implant of claim 15, wherein the first pair of legs and the second pair of legs both extend from a central body.
  • 18. The implant of claim 17, wherein the central body, first pair of legs and second pair of legs are positioned along a longitudinal axis.
  • 19. The implant of claim 15, wherein each leg of the second pair of legs includes a base notch and two or more tip notches.
  • 20. The implant of claim 19, wherein each leg of the first and second pairs of legs includes three or more tip notches.
Priority Claims (1)
Number Date Country Kind
07 02003 Mar 2007 FR national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/531,577, filed Feb. 1, 2010, which is a national phase entry under 35 U.S.C. §371 of International Application No. PCT/FR2008/050453 filed Mar. 14, 2008, published in French, which claims priority from FR 0702003 filed Mar. 20, 2007, all of which are hereby incorporated herein by reference.

US Referenced Citations (201)
Number Name Date Kind
1095054 Wiesenfeld Apr 1914 A
3462765 Swanson Aug 1969 A
3466669 Flatt Sep 1969 A
3593342 Niebauer et al. Jul 1971 A
3681786 Lynch Aug 1972 A
3739403 Nicolle Jun 1973 A
3805302 Mathys Apr 1974 A
3824631 Burstein et al. Jul 1974 A
3875594 Swanson Apr 1975 A
D243716 Treace et al. Mar 1977 S
4091806 Aginsky et al. May 1978 A
4158893 Swanson Jun 1979 A
4204284 Koeneman May 1980 A
4276660 Laure Jul 1981 A
4364382 Mennen Dec 1982 A
4367562 Gauthier et al. Jan 1983 A
D277509 Lawrence et al. Feb 1985 S
D277784 Sgarlato et al. Feb 1985 S
4522200 Stednitz Jun 1985 A
D284099 Laporta et al. Jun 1986 S
4634382 Kusano et al. Jan 1987 A
D291731 Aikins Sep 1987 S
4759768 Hermann et al. Jul 1988 A
4871367 Christensen et al. Oct 1989 A
4955916 Carignan et al. Sep 1990 A
4969909 Barouk Nov 1990 A
5011497 Persson et al. Apr 1991 A
5047059 Saffar Sep 1991 A
5062851 Branemark Nov 1991 A
5092896 Meuli et al. Mar 1992 A
5108443 Branemark Apr 1992 A
5133761 Krouskop Jul 1992 A
5179915 Cohen et al. Jan 1993 A
5190546 Jervis Mar 1993 A
5207712 Cohen May 1993 A
5326364 Clift, Jr. et al. Jul 1994 A
5360450 Giannini Nov 1994 A
5405400 Linscheid et al. Apr 1995 A
5405401 Lippincott, III et al. Apr 1995 A
5425776 Cohen Jun 1995 A
5425777 Sarkisian et al. Jun 1995 A
5454814 Comte Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5474557 Mai Dec 1995 A
5480447 Skiba Jan 1996 A
5484443 Pascarella et al. Jan 1996 A
5507822 Bouchon et al. Apr 1996 A
5522903 Sokolow et al. Jun 1996 A
5554157 Errico et al. Sep 1996 A
5634925 Urbanski Jun 1997 A
5674297 Lane et al. Oct 1997 A
5702472 Huebner Dec 1997 A
5725585 Zobel Mar 1998 A
5782927 Klawitter et al. Jul 1998 A
5824095 Di Maio, Jr. et al. Oct 1998 A
5876434 Flomenblit et al. Mar 1999 A
5882444 Flomenblit et al. Mar 1999 A
5919193 Slavitt Jul 1999 A
5951288 Sawa Sep 1999 A
5958159 Prandi Sep 1999 A
5984970 Bramlet Nov 1999 A
5984971 Faccioli et al. Nov 1999 A
6011497 Tsang et al. Jan 2000 A
6017366 Berman Jan 2000 A
6146387 Trott et al. Nov 2000 A
6162234 Freedland et al. Dec 2000 A
6193757 Foley et al. Feb 2001 B1
6197037 Hair Mar 2001 B1
6200330 Benderev et al. Mar 2001 B1
6248109 Stoffella Jun 2001 B1
6261289 Levy Jul 2001 B1
6319284 Rushdy et al. Nov 2001 B1
6342076 Lundborg Jan 2002 B1
6352560 Poeschmann et al. Mar 2002 B1
6383223 Baehler et al. May 2002 B1
6386877 Sutter May 2002 B1
6423097 Rauscher Jul 2002 B2
6428634 Besselink et al. Aug 2002 B1
6454808 Masada Sep 2002 B1
6475242 Bramlet Nov 2002 B1
6554833 Levy et al. Apr 2003 B2
6689169 Harris Feb 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6699292 Ogilvie et al. Mar 2004 B2
6706045 Lin et al. Mar 2004 B2
6773437 Ogilvie et al. Aug 2004 B2
6811568 Minamikawa Nov 2004 B2
6827741 Reeder Dec 2004 B2
6869449 Ball et al. Mar 2005 B2
6896177 Carter May 2005 B2
6981974 Berger Jan 2006 B2
7025789 Chow et al. Apr 2006 B2
7037342 Nilsson et al. May 2006 B2
7041106 Carver et al. May 2006 B1
7052498 Levy et al. May 2006 B2
7182787 Hassler et al. Feb 2007 B2
7240677 Fox Jul 2007 B2
7291175 Gordon Nov 2007 B1
7588603 Leonard Sep 2009 B2
7655042 Foley et al. Feb 2010 B2
7780737 Bonnard et al. Aug 2010 B2
7837738 Reigstad et al. Nov 2010 B2
7842091 Johnstone et al. Nov 2010 B2
7909880 Grant Mar 2011 B1
7922765 Reiley Apr 2011 B2
7955388 Jensen et al. Jun 2011 B2
7976580 Berger Jul 2011 B2
8048173 Ochoa Nov 2011 B2
8100983 Schulte Jan 2012 B2
8162942 Coati et al. Apr 2012 B2
8202305 Reiley Jun 2012 B2
8262712 Coilard-Lavirotte et al. Sep 2012 B2
8308779 Reiley Nov 2012 B2
8394097 Peyrot et al. Mar 2013 B2
8414583 Prandi et al. Apr 2013 B2
8475456 Augoyard et al. Jul 2013 B2
8529611 Champagne et al. Sep 2013 B2
8597337 Champagne Dec 2013 B2
8608785 Reed et al. Dec 2013 B2
8685024 Roman Apr 2014 B2
8715325 Weiner et al. May 2014 B2
8840623 Reiley Sep 2014 B2
8864804 Champagne et al. Oct 2014 B2
9011504 Reed Apr 2015 B2
9283007 Augoyard et al. Mar 2016 B2
20010025199 Rauscher Sep 2001 A1
20020019636 Ogilvie et al. Feb 2002 A1
20020055785 Harris May 2002 A1
20020065561 Ogilvie et al. May 2002 A1
20020068939 Levy et al. Jun 2002 A1
20020082705 Bouman et al. Jun 2002 A1
20020169066 Cassidy et al. Nov 2002 A1
20030040805 Minamikawa Feb 2003 A1
20030069645 Ball et al. Apr 2003 A1
20030120277 Berger Jun 2003 A1
20030130660 Levy et al. Jul 2003 A1
20040002759 Ferree Jan 2004 A1
20040093081 Nilsson et al. May 2004 A1
20040102853 Boumann et al. May 2004 A1
20040138756 Reeder Jul 2004 A1
20040220678 Chow et al. Nov 2004 A1
20050119757 Hassler et al. Jun 2005 A1
20050251265 Calandruccio et al. Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050283159 Amara Dec 2005 A1
20060052725 Santilli Mar 2006 A1
20060052878 Schmieding Mar 2006 A1
20060074492 Frey Apr 2006 A1
20060084998 Levy et al. Apr 2006 A1
20060085075 McLeer Apr 2006 A1
20060247787 Rydell et al. Nov 2006 A1
20070038303 Myerson et al. Feb 2007 A1
20070123993 Hassler et al. May 2007 A1
20070142920 Niemi Jun 2007 A1
20070156241 Reiley et al. Jul 2007 A1
20070185584 Kaufmann et al. Aug 2007 A1
20070213831 de Cubber Sep 2007 A1
20070239158 Trieu et al. Oct 2007 A1
20080039949 Meesenburg et al. Feb 2008 A1
20080132894 Coilard-Lavirotte et al. Jun 2008 A1
20080154385 Trail et al. Jun 2008 A1
20080177262 Augoyard et al. Jul 2008 A1
20080195219 Wiley et al. Aug 2008 A1
20080221697 Graser Sep 2008 A1
20080221698 Berger Sep 2008 A1
20080234763 Patterson et al. Sep 2008 A1
20080269908 Warburton Oct 2008 A1
20090005821 Chirico et al. Jan 2009 A1
20090012564 Chirico et al. Jan 2009 A1
20090138096 Myerson et al. May 2009 A1
20090254189 Scheker Oct 2009 A1
20090254190 Gannoe et al. Oct 2009 A1
20100010637 Pequignot Jan 2010 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100016982 Solomons Jan 2010 A1
20100057214 Graham et al. Mar 2010 A1
20100121390 Kleinman May 2010 A1
20100131014 Peyrot May 2010 A1
20100131072 Schulte May 2010 A1
20100161068 Lindner et al. Jun 2010 A1
20100185295 Emmanuel Jul 2010 A1
20100228301 Greenhalgh et al. Sep 2010 A1
20100249942 Goswami et al. Sep 2010 A1
20100256770 Hakansson et al. Oct 2010 A1
20100262254 Lawrence et al. Oct 2010 A1
20110004317 Hacking et al. Jan 2011 A1
20110093084 Morton Apr 2011 A1
20110093085 Morton Apr 2011 A1
20110144644 Prandi et al. Jun 2011 A1
20110301652 Reed et al. Dec 2011 A1
20120029579 Bottlang et al. Feb 2012 A1
20120065692 Champagne et al. Mar 2012 A1
20130053975 Reed et al. Feb 2013 A1
20130060295 Reed et al. Mar 2013 A1
20130066435 Averous et al. Mar 2013 A1
20130131822 Lewis et al. May 2013 A1
20130150965 Taylor et al. Jun 2013 A1
20140058462 Reed et al. Feb 2014 A1
20140142715 McCormick May 2014 A1
20140180428 McCormick Jun 2014 A1
20140188239 Cummings Jul 2014 A1
Foreign Referenced Citations (53)
Number Date Country
2551021 Mar 2005 CA
2243699 Jan 2006 CA
2836654 Jun 2014 CA
2837497 Jun 2014 CA
0042808 Dec 1981 EP
0420794 Apr 1991 EP
0454645 Oct 1991 EP
1300122 Apr 2003 EP
1356794 Nov 2003 EP
1582159 Oct 2005 EP
1923012 May 2008 EP
2663838 Jan 1992 FR
2725126 Apr 1996 FR
2783702 Mar 2000 FR
2787313 Jun 2000 FR
2794019 Dec 2000 FR
2801189 May 2001 FR
2846545 May 2004 FR
2846545 May 2004 FR
2884406 Oct 2006 FR
EP 1 923 012 Nov 2006 FR
2119655 Nov 1983 GB
2430625 Apr 2007 GB
2430625 Apr 2007 GB
60145133 Jul 1985 JP
03-001854 Aug 1991 JP
7303662 Nov 1995 JP
2004535249 Nov 2004 JP
3648687 May 2005 JP
2007530194 Nov 2007 JP
2008188411 Aug 2008 JP
2008537696 Sep 2008 JP
4695511 Jun 2011 JP
5631597 Nov 2014 JP
20070004513 Jan 2007 KR
20070022256 Feb 2007 KR
101004561 Jan 2011 KR
101235983 Feb 2013 KR
9116014 Oct 1991 WO
9625129 Aug 1996 WO
9641596 Dec 1996 WO
9726846 Jul 1997 WO
9733537 Sep 1997 WO
0117445 Mar 2001 WO
03084416 Oct 2003 WO
2005020830 Mar 2005 WO
2005063149 Jul 2005 WO
2005104961 Nov 2005 WO
2006109004 Oct 2006 WO
2008057404 May 2008 WO
2008112308 Sep 2008 WO
2009103085 Aug 2009 WO
2011130229 Oct 2011 WO
Non-Patent Literature Citations (2)
Entry
International Search Report for PCT/FR2008/050453 dated Nov. 4, 2008.
International Search Report, PCT/FR2006/050345, dated Aug. 30, 2006.
Related Publications (1)
Number Date Country
20140039630 A1 Feb 2014 US
Continuations (1)
Number Date Country
Parent 12531577 US
Child 13686074 US