This application is the US national phase of PCT application PCT/FR2008/050453, filed 14 Mar. 2008, published 30 Oct. 2008 as WO2008/129214, and claiming the priority of French patent application 0702003 itself filed 20 Mar. 2007, whose entire disclosures are herewith incorporated by reference.
The invention relates to the technical field of orthopaedic implants, in particular for arthrodeses and osteosyntheses.
It may be recalled that an osteosynthesis implant must serve to hold in place two (or more) parts of the same bone is fractured or cut by a surgical operation (osteotomy), for the time necessary for the consolidation of this bone (typically 3 months).
It may be recalled that an arthrodesis is the blocking of a joint by surgery to fuse two bones into a single one, using an osteosynthesis device.
It may be recalled that the purpose of any osteosynthesis and particularly in the case of an arthrodesis is to obtain very good primary and also secondary stability, in order to obtain the consolidation in the best possible conditions, that is, in a position selected by the surgeon, by minimizing the problems of post-operative pain and edemas, by shortening the consolidation time as much as possible.
To obtain this result, the stability of the osteosynthesis associated with the implant is critical. Furthermore, the implant must also provide and maintain a slight compression on the portions of bone to be fused together, thereby facilitating this consolidation.
Various technical solutions have been proposed to carry out an arthrodesis, in particular at the tips (foot, hand, wrist, ankle, etc.).
Mention can be made, for example of basic staples which do not provide a proper fixation during consolidation, and shape memory staples which serve to place the two bone portions to be consolidated under compression, thereby corresponding to the intended purpose.
However, to obtain satisfactory stability, it is necessary to place two, or even three staples, in different planes. This significantly increases their size, thereby limiting the applications, in particular on small bones (for example in the fingers or toes).
It is also common to use extramedullary or extra-osseous plates and screws, which also require a relatively large space and cannot be used on the terminal phalanges of the fingers (distal interphalangeal arthrodesis for example). Moreover, the medium-term stability of these systems is not always guaranteed (loosening of the mounting).
Certain types of screw can be used in intramedullary cases, but in this case, the approach path requires a pulpar approach, which may generate serious complications (sepsis, etc.) and discomfort for the patient.
Use can also be made of pins which have a smaller size. However, the stability obtained is not satisfactory (problems of migration) and it is generally necessary to remove them after consolidation. With such devices, moreover, the patient cannot immerse the finger or toe treated, because the pin generally projects outside the skin.
Intramedullary osteosynthesis systems are available for long bones (tibia, femur, humerus, etc.). For example, lockable centromedullary nails are known. Apart from the fact that the locking technique is difficult, it cannot be miniaturized for extremity surgery (hand and foot).
Shape memory intramedullary devices are also available for solving part of the problems with respect to the arthrodesis or the osteosynthesis of the small fragments: for example, the solutions described in French patent 2 846 545 or French patent 2 884 406 (US 2008/0177262).
French Patent 2 846 545 describes an H-shaped device which opens in the body into an X, thanks to the use of a shape is memory set around 37° C., each leg being implanted in a calibrated hole.
In practice, such a system does not allow proper introduction into the bone. This is because the preparation of 2 parallel holes in a phalange is extremely difficult due to the limited size and, above all, the parallel legs tend to open naturally during introduction and thereby exert an effect of distraction of the two fragments rather than compression.
Furthermore, the use of shape memory is very limiting due to the demands it makes on surgeons, in particular of temperature management: the implant must be fitted into the bone when cold before it warms and opens. This requires placing the implant in a support, storing it cold, and using all possible speed for implantation.
Finally, since the legs are straight, their shape memory tends to create a local support at their tips, which does not ensure satisfactory behavior and can damage the bone.
US 2008/0177262 teaches a system for easier introduction whether by the shape (eye) or by a support or a clamp that keeps the legs of the implant closed during introduction.
Nevertheless, these systems do not operate very dependably, because they do not define the optimal criteria allowing proper introduction into the bone and good anchorage: the anchoring zones always tend to open too early, thereby blocking introduction.
It is the object of the invention to remedy all these drawbacks simply, reliably, effectively and efficiently.
The problem that the invention proposes to solve is to define the success criteria for an intramedullary implant, easy to place and effective for generating primary and secondary stability of the osteosynthesis or arthrodesis focus thanks to its stiffness and its compression component.
Invention
The inventive implant is characterized in that it comprises two bone anchoring zones on either side of a stiff stability zone, withstanding shear forces, these two anchoring zones having a possibility of high deformation at their base (in particular by elasticity) and a design such that they can adopt a closed position (in particular thanks to a suitable clamp closed at their base) for easy introduction into a calibrated centromedullary hole (prepared with an appropriate instrument), and in that owing to this particular configuration, they offer in the bone site the possibility of obtaining the final impaction without a distraction effect on the bone and sufficient expansion to ensure proper fixation in the bone.
The anchoring zones can be deformed at their base by elasticity, superelasticity or shape memory and typically consist of branches or legs, optionally connected (olive or rugby ball shape). In the open shape, these branches have an outward positive angle at their base and are curved inwardly toward their tips, whereas when the shape is closed, the angle of the base is reversed, that is negative or turned inwardly, thereby obtaining the width at the tips (impaction side) that is smaller than their base, in order to avoid impaction in the bone and blocking of the penetration of the implant.
The invention has a particularly advantageous application, which cannot however be considered as limiting, for the preparation of arthrodeses in the phalanges of the fingers and toes, especially for the proximal and distal interphalangeal joints in the hand and foot.
The device is implantable via the dorsal path (or optionally lateral or palmar/plantar), but without pulpar approach, thereby minimizing the risks of infection and improving the patient's comfort.
To take account of the anatomical features, the anchoring zones are connected to the median zone serving for strength (in particular shear) at the osteosynthesis focus by more or less long connecting zones, and the central zone may have a bend to adapt to the characteristics of the desired arthrodesis.
The material constituting the implant of the invention must allow a certain minimal opening of the anchoring zones once the implant is in the body. It may therefore be made from any sufficiently elastic implantable material such as stainless steel, titanium, a bioresorbable material such as polylactide acid PLLA.
Preferably, the implant of the invention is prepared from a shape memory material used for its property of superelasticity (or elasticity associated with the transformation of the austenite martensite phase under stress) which has the widest known elasticity range (up to 8% in elastic elongation equivalent in traction for an implant of Nitinol, a nickel-titanium alloy comprising about 55.5 to 56% by weight of nickel, the remainder being titanium).
It is also possible to use a material having a thermal shape memory around 37° C.
The invention is described in greater detail below in conjunction with the appended drawings in which:
The implant is in the form of 2 anchoring zones A1 and A2 connected by a central zone C (
The anchoring zones A1 and A2 each have two legs P1 and P2 having lengths L1 and L2 (
The cross-section of the implant is adapted to the implantation sites, but preferably flat in order to have good mechanical strength and reduced size (typically the thickness e is about 1 to 2 mm) (
The anchoring zones A1 and A2 are suitable for separation by elastic effect or by shape memory effect at their base, so that the maximum width in the open position at the tips La1 and La2 (
As shown in
This particular geometric arrangement ensures that in the closed position, the legs virtually touch at the tips (
In order to obtain both easy introduction and sufficient opening movement, the angles a1 (( ), (]] and a2 are preferably between +5° and +25° and the angles b1 (( ), (]] and b2 between 0° and −15°.
Preferably, the widths of the tips of the anchoring zones in the closed position La1f and La2f are lower than the widths of the bases of these zones L1ab and L2ab, minus 20%: La1f<L1ab−20% and La2f<L2ab−20%.
The legs or anchoring zones are thus “articulated” at their base, and can therefore be secured in the closed position on a support or even better a clamp, positioned at an appropriate location defined in particular in the case of an elastic material (for a shape memory material, this is not absolutely necessary since the shape does not change as long as the activation temperature is not reached), this clamp not covering more than half of the length of the legs, thereby allowing introduction of at least half of the implant into its recess.
The inside tangents at the tip of the legs P1 and P2 in the open position make angles β1 and β2 with the longitudinal axis A of the implant close to 0°, in order to have a good bone contact area along the whole lengths of the legs in the open position and to prevent the bone from being touched by the tips alone (
In the implant site, at body temperature, the implant can still be in the closed position, or parallel or with semiopen legs so that the force exerted by opening of the legs is transmitted to the bone and ensures proper fixation.
This “olive” arrangement of the legs, associated with an “articulation” of the base and associated with a minimal introduction of half of their length allows completion of the insertion, once the clamp has been removed.
In order to guarantee satisfactory operation, the elasticity or memory of the piece must allow a transition from the closed shape (typically width 2 to 4 mm according to the size of the site) to an open shape with a significant movement (+1.5 to +3 mm approximately).
Similarly, the force of expansion of the legs (or swelling of the olive) must be significant: typically 1 to 3 kg for an arthrodesis of the tips (force measured at 37° C. in the blocked introduction position), without being excessive: it is important for the legs to avoid opening completely and for the bone to resist so as to have a real holding force.
The legs P1 (( ), (]] and P2 or fins may have a rough surface or even better notches D (
The legs P1 (( ), (]] and P2 may also have a surface covered with an osseointegration coating such as hydroxyapatite (HAP) intended to facilitate the anchorage.
To facilitate introduction into the bone, the tips of the legs P1 and P2 are beveled with an inward angle to the longitudinal axis A of the implant W1 and W2 (
By tests on fresh cadavers and experience, an optimal level of the force was determined with a minimum allowing anchorage of the notches in the spongy bone and a maximum force to be certain to avoid damaging the implantation site.
After tests and experience, an ideal zone was found with a maximum 20% of the elastic limit of the bone measured in a blocked closed shape at 37° C., which, considering the dimensions of the implant, gives rise to maximum values of about 3 kg, and the need for a rapid lowering as soon as the anchorage is obtained, or a force divided by 2 in the semi-open position (a force of 0.5 to 1.5 kg allows good holding). In fact, if the opening force is higher than about 3 kg, introduction into the bone becomes much more difficult, or even impossible above 4 kg. Finally, in order to guarantee a damage-free site, it is necessary for the force to become negligible for a virtually complete opening. These values are indicative and depend on the arthrodesis site and the bone quality.
In one version of the invention, the notches D1 and D2 on the outside of the legs P1 and P2 allow the positioning of a clamp and introduction at the base of the legs P1 (( ), (]] and P2 (
The central zone C must have a minimum length Lc equal to the length d between the notches D1 and D2 so that even in case of movement of the implant during final impaction, this zone C remains in the arthrodesis focus and performs its resistance is function.
In one version of the invention, an orifice Or is provided in this central zone for positioning a holding pin to prevent migration of the implant at the time of final impaction.
As shown in
As an example, an operating technique of implantation of the inventive device for the case of an elastic or superelastic implant is described as follows as shown in
In a particular embodiment, intended for a distal interphalangeal arthrodesis (hand), the implant is prepared from a superelastic Nitinol alloy (nickel-titanium in the weight proportion 55.8% nickel and 44.2% titanium).
The cross-section of the central zone C is Lab×e=2.8×1.2 mm and the legs are asymmetrical to adapt better to the shapes of the bone, minimize the implanted metal section and allow sufficient expansion for good anchorage. The length of the legs is L2=6.5 mm distal side P2 and L1=9 mm proximal side P1. The length of the central zone C is 3 mm, allowing a slight offset during closure, without affecting the shear strength. To adapt to the surgeon's choice, this central zone may be bent (typically flat or 15° or 25°).
In the closed position, the width of the proximal base L1ab is 3.8 mm and of the distal base L2ab is 3.0 mm. The opening of the legs P1 and P2 is 2.5 mm or 2.2 mm, that is La1 is 6.3 mm and La2 is 5.2 mm. In the open position the angle at the base of the legs is a1=10° and a2=22°. The straight portion is about 45% of the total length. The curvature of the distal tip of the legs is calculated so that the angle of the tangent at the tip is β1=−5° and β2=3°. In the closed position, the angle at the base of the legs is b1=−4°, b2=−2°. And the width at tip is La1f=2.5 mm and La2f=2.1 mm.
In one embodiment of the invention, the 0.5 mm deep notches are distributed on the legs (1 notch at approximately 0.8 mm spacings).
The angle of incidence of the tip of the legs (including notches) is w1=33° and w2=24°, allowing easy introduction without the distraction effect between the two bone pieces to be osteosynthesized.
The rounded design of the anchoring zones serves to obtain a maximized contact area over the entire length in the open shape, with an impaction effect in the spongy bone, and hence a spongy packing effect.
In another example, more appropriate for arthrodesis of the thumb, the dimensions are rather the following:
Closed widths: L1ab=6.5 mm, L2ab=5 mm, with an opening of 3 to 4 mm approximately to obtain: La1=11 mm and La2=8 mm and L1=13 mm and L2=9 mm.
Number | Date | Country | Kind |
---|---|---|---|
07 02003 | Mar 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2008/050453 | 3/14/2008 | WO | 00 | 2/1/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/129214 | 10/30/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3462765 | Swanson | Aug 1969 | A |
3466669 | Flatt | Sep 1969 | A |
3593342 | Niebauer et al. | Jul 1971 | A |
3681786 | Lynch | Aug 1972 | A |
3739403 | Nicolle | Jun 1973 | A |
3824631 | Burstein | Jul 1974 | A |
D243716 | Treace et al. | Mar 1977 | S |
4204284 | Koeneman | May 1980 | A |
4276660 | Laure | Jul 1981 | A |
4364382 | Mennen | Dec 1982 | A |
D277509 | Lawrence et al. | Feb 1985 | S |
D277784 | Sgarlato et al. | Feb 1985 | S |
D284099 | Laporta et al. | Jun 1986 | S |
D291731 | Aikins | Sep 1987 | S |
4759768 | Hermann et al. | Jul 1988 | A |
4955916 | Carignan et al. | Sep 1990 | A |
4969909 | Barouk | Nov 1990 | A |
5047059 | Saffar | Sep 1991 | A |
5092896 | Meuli et al. | Mar 1992 | A |
5133761 | Krouskop | Jul 1992 | A |
5179915 | Cohen et al. | Jan 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5207712 | Cohen | May 1993 | A |
5326364 | Clift, Jr. et al. | Jul 1994 | A |
5405400 | Linscheid et al. | Apr 1995 | A |
5405401 | Lippincott, III et al. | Apr 1995 | A |
5425777 | Sarkisian et al. | Jun 1995 | A |
5480447 | Skiba | Jan 1996 | A |
5507822 | Bouchon et al. | Apr 1996 | A |
5522903 | Sokolow et al. | Jun 1996 | A |
5554157 | Errico et al. | Sep 1996 | A |
5634925 | Urbanski | Jun 1997 | A |
5674297 | Lane et al. | Oct 1997 | A |
5702472 | Huebner | Dec 1997 | A |
5725585 | Zobel | Mar 1998 | A |
5782927 | Klawitter et al. | Jul 1998 | A |
5876434 | Flomenblit et al. | Mar 1999 | A |
5882444 | Flomenblit et al. | Mar 1999 | A |
5951288 | Sawa | Sep 1999 | A |
5958159 | Prandi | Sep 1999 | A |
5984970 | Bramlet | Nov 1999 | A |
6011497 | Tsang et al. | Jan 2000 | A |
6017366 | Berman | Jan 2000 | A |
6146387 | Trott et al. | Nov 2000 | A |
6197037 | Hair | Mar 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6248109 | Stoffella | Jun 2001 | B1 |
6319284 | Rushdy et al. | Nov 2001 | B1 |
6352560 | Poeschmann et al. | Mar 2002 | B1 |
6383223 | Baehler et al. | May 2002 | B1 |
6386877 | Sutter | May 2002 | B1 |
6423097 | Rauscher | Jul 2002 | B2 |
6428634 | Besselink et al. | Aug 2002 | B1 |
6454808 | Masada | Sep 2002 | B1 |
6475242 | Bramlet | Nov 2002 | B1 |
6699247 | Zucherman et al. | Mar 2004 | B2 |
6699292 | Ogilvie et al. | Mar 2004 | B2 |
6706045 | Lin et al. | Mar 2004 | B2 |
6811568 | Minamikawa | Nov 2004 | B2 |
6869449 | Ball et al. | Mar 2005 | B2 |
7037342 | Nilsson et al. | May 2006 | B2 |
7041106 | Carver et al. | May 2006 | B1 |
7182787 | Hassler et al. | Feb 2007 | B2 |
7240677 | Fox | Jul 2007 | B2 |
7291175 | Gordon | Nov 2007 | B1 |
7588603 | Leonard | Sep 2009 | B2 |
7780737 | Bonnard et al. | Aug 2010 | B2 |
7837738 | Reigstad et al. | Nov 2010 | B2 |
7842091 | Johnstone et al. | Nov 2010 | B2 |
20010025199 | Rauscher | Sep 2001 | A1 |
20020019636 | Ogilvie et al. | Feb 2002 | A1 |
20020055785 | Harris | May 2002 | A1 |
20020065561 | Ogilvie et al. | May 2002 | A1 |
20020068939 | Levy et al. | Jun 2002 | A1 |
20020082705 | Bouman et al. | Jun 2002 | A1 |
20030040805 | Minamikawa | Feb 2003 | A1 |
20030069645 | Ball et al. | Apr 2003 | A1 |
20040093081 | Nilsson et al. | May 2004 | A1 |
20040102853 | Boumann et al. | May 2004 | A1 |
20040138756 | Reeder | Jul 2004 | A1 |
20040220678 | Chow et al. | Nov 2004 | A1 |
20050119757 | Hassler et al. | Jun 2005 | A1 |
20050251265 | Calandruccio et al. | Nov 2005 | A1 |
20050283159 | Amara | Dec 2005 | A1 |
20060052725 | Santilli | Mar 2006 | A1 |
20060052878 | Schmieding | Mar 2006 | A1 |
20060074492 | Frey | Apr 2006 | A1 |
20060084998 | Levy et al. | Apr 2006 | A1 |
20060247787 | Rydell et al. | Nov 2006 | A1 |
20070038303 | Myerson et al. | Feb 2007 | A1 |
20070123993 | Hassler et al. | May 2007 | A1 |
20070142920 | Niemi | Jun 2007 | A1 |
20070185584 | Kaufmann et al. | Aug 2007 | A1 |
20070213831 | de Cubber | Sep 2007 | A1 |
20070239158 | Trieu et al. | Oct 2007 | A1 |
20080039949 | Meesenburg et al. | Feb 2008 | A1 |
20080154385 | Trail et al. | Jun 2008 | A1 |
20080177262 | Augoyard et al. | Jul 2008 | A1 |
20080195219 | Wiley et al. | Aug 2008 | A1 |
20080221697 | Graser | Sep 2008 | A1 |
20080221698 | Berger | Sep 2008 | A1 |
20080269908 | Warburton | Oct 2008 | A1 |
20090254189 | Scheker | Oct 2009 | A1 |
20090254190 | Gannoe et al. | Oct 2009 | A1 |
20100010637 | Pequignot | Jan 2010 | A1 |
20100016982 | Solomons | Jan 2010 | A1 |
20100057214 | Graham et al. | Mar 2010 | A1 |
20100121390 | Kleinman | May 2010 | A1 |
20100131014 | Peyrot et al. | May 2010 | A1 |
20100131072 | Schulte | May 2010 | A1 |
20100161068 | Lindner et al. | Jun 2010 | A1 |
20100185295 | Emmanuel | Jul 2010 | A1 |
20100249942 | Goswami et al. | Sep 2010 | A1 |
20100256770 | Hakansson et al. | Oct 2010 | A1 |
20100262254 | Lawrence et al. | Oct 2010 | A1 |
20110004317 | Hacking et al. | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1300122 | Apr 2003 | EP |
1923012 | May 2008 | EP |
2725126 | Apr 1996 | FR |
2787313 | Jun 2000 | FR |
2794019 | Dec 2000 | FR |
2783702 | Mar 2003 | FR |
2846545 | May 2004 | FR |
2884406 | Oct 2006 | FR |
2119655 | Nov 1983 | GB |
2430625 | Apr 2007 | GB |
60145133 | Jul 1985 | JP |
7303662 | Nov 1995 | JP |
2004535249 | Nov 2004 | JP |
2007530194 | Nov 2007 | JP |
2005063149 | Jul 2005 | WO |
2005104961 | Nov 2005 | WO |
2006109004 | Oct 2006 | WO |
Entry |
---|
International Search Report for PCT/FR2008/050453 dated Nov. 4, 2008. |
International Search Report, PCT/FR2006/050345, dated Aug. 30, 2006. |
Number | Date | Country | |
---|---|---|---|
20100131014 A1 | May 2010 | US |