The present invention relates to osteosynthesis or arthrodesis material comprising a bony plate. This material may notably be an arthrodesis material of cervical vertebrae, implanted by anterior route.
It is well known to use rigid plates for repairing or consolidating a bone, or for realising an arthrodesis, this plate comprising holes for letting through screws enabling the attachment thereof to the bone. It is also known to assemble a support structure of an intervertebral graft, such as an intervertebral cage, to a bony plate.
The efficiency of an osteosynthesis or of an arthrodesis implies perfect immobilisation of the bones or portions of treated bones, and the shortcoming of the existing materials is that they are not totally satisfactory from this point of view. Indeed, the stresses exerted on the material by the bone or portions of bones may lead to slight loosening of the screws, to the extent that the plate may show a slight clearance with respect to these bones or portions of bone. This loosening occurs in particular when the bone(s) are more or less brittle, or when the anatomy of this bone or these bones is such that they do not provide vast possibilities of insertion of the screws, as it is particularly the case for an arthrodesis of cervical vertebrae.
The assembly of support structure of an intervertebral graft to a bony plate may also not prove totally satisfactory with the existing materials.
The purpose of the present invention is to remedy these essential shortcomings.
The osteosynthesis or arthrodesis material affected comprises, in a manner known in itself, a bony plate and at least one object intended to be connected to this plate or for attaching this plate to a bone.
In this view, in the material in question,
According to one embodiment, the band comprises a smooth face on its face delineating the hole and the object comprises a facetted portion, for example a hexagonal portion, whereas the facets are consecutive and two consecutive facets delineates together a ridge; the ridges, in angular positions of the object, bear against the band to allow said object to pivot and, in other angular positions of the object, each facet may abut against this smooth face of the band, the elastic recall of this band thus locking the object.
According to another embodiment, the band comprises, on the edge thereof delineating the hole, complementary locking means which project towards the interior of the hole, which complementary locking means come into engagement with the locking means of said object. The band can be deformed elastically towards the exterior of the hole, over a distance at least equal to the height of the locking means.
Said complementary locking means included in the band may be formed by a series of notches and said object may be a screw for fixing the plate to a bone, this screw comprising a series of notches forming said locking means included in the object.
Said complementary locking means may be formed by at least one locking toe and said object may be a setting prop and/or a support structure of an intervertebral graft such as an intervertebral cage, this setting prop and/or this support structure comprising reception cavities of said locking toes, these cavities forming said locking means included in the object.
The hole aforementioned of the plate may be circular or oblong. In the latter case, said slot extends along one of the elongated edges delineating longitudinally the hole, as well as possibly along a portion of at least one of the curved edges delineating the ends of the hole, if it is necessary to obtain the flexible elasticity requested.
The axis of the hole aforementioned may be provided along an axis perpendicular to the plate or non perpendicular to this plate. In both cases, the locking means included in the plate have faces arranged parallel to the axis of the hole and the locking means included in the object have faces arranged parallel to the axis of the object, to enable the locking means included in the object to come into co-operation with the locking means included in the plate when the object is engaged in the hole.
According to a particularly interesting use of the invention, the plate is intended to be used for realising a vertebral arthrodesis, notably a cervical arthrodesis with implantation by anterior route, first of all.
This plate may be ‘X’-shaped and include four holes provided in its branches.
The central portion of the plate is intended to be placed opposite the intervertebral space, and the holes of the branches are intended to receive the fixing screw of the plate against the anterior face of the vertebral bodies.
A hole or the holes situated at at least one longitudinal end of the plate may be oblong. In this case, this or these holes are advantageously orientated so that their longitudinal axis are parallel to the longitudinal axis of the plate. This orientation of the hole(s), together with the facet(s) situated proximate the smooth face(s) of the band(s), allows the screw(s) to slightly slide within the hole(s) so as to allow an adjustment of the position of the screw(s) with respect to the plate.
The plate may be formed, as seen laterally, into a chevron, in order to reconstruct anatomic lordosis of the vertebrae.
For better understanding, the invention is again described below with reference to the appended schematic drawing representing, by way of non limiting example, two possible embodiments of the material in question.
FIGS. 10 to 12 are planar views of three plates according to another embodiment;
For simplification purposes, the elements or portions of elements appearing as identical or similar from one embodiment to the next, are designated by the same digital references.
The plate 2 is “X”-shaped and includes four oblong holes 4 provided the branches 5 thereof, parallel to the longitudinal axis of each of these branches 5, to accommodate the screw 3. As it appears on
The plate 2 also comprise a central countersunk hole 6 enabling assembly thereof on a setting prop and/or the assembly of a support structure of an intervertebral graft, such as an intervertebral cage. As shown by
The plate 2 is made of titanium or of titanium alloy of type currently used to produce osteosynthesis or arthrodesis material, in particular the so-called “T40”-titanium or the so-called “TA6V”-titanium alloy.
As it appears on the Figures, each branch 5 possesses a through slot 7 which extends along one of the elongated edges delineating longitudinally the hole 4 as well as along portions of curved edges delineating the ends of this hole 4. The latter and this slot 7 thereby delineate together a band of material 8 which is flexibly elastic, this band 8 comprising, on its edge delineating the hole 4, notches 9 which project towards the interior of the hole 4.
The width of the slot 7 and said flexible elasticity are such that these notches 9 normally adopt a position directed towards the interior of the hole 4, but that the band 8 may be deformed elastically towards the exterior of this hole 4, over a distance at least equal to the height of the notches 9.
As shown more particularly on
Each screw 3 may be tightened clockwise and shows a series of notches 10 provided below its head 11. As shown on
As can be understood with reference to
It appears on
The hole 6 is intended to receive an intervertebral cage 3, visible on
As appears on FIGS. 7 to 9, this cage 3 comprises an assembly stud exhibiting a groove delineated by a proximal neck 16 and a distal neck 17.
The proximal neck 16 possesses two nicks 20 liable to be engaged on the toes 9 and is of such thickness that it may come into engagement behind these toes 9 when the distal neck 17, which is deprived of nicks, abuts against the toes 9 and the cage 3 is pivoted around its longitudinal axis.
The zone 18 of the stud situated between the necks 16, 17 comprises two nicks superimposed on the nicks 20 of the neck 16, two housings 10 accommodating toes 9 and two ramps 22 separating these nicks from these housings 10.
As can be understood with reference to the drawing, from the insertion position of said stud in the hole 6, the cage 3 may be pivoted around 90°, which leads the ramps 22 to push the toe 9 integral with the band 8 until the housings 10 face the toes 9. The elastic recall of the band 8 then brings the toe 9 integral with the band 8 into the corresponding nick, which ensures locking of the cage 3 with respect to the plate 2.
The hole 6 of the plate 2 according this second embodiment may obviously accommodate a screw 3 fitted with notches 11 having shapes corresponding to that of the toes 9.
FIGS. 10 to 12 show three plates 2 of different length according to another embodiment. These plates 2 show tapered portions and comprise the holes 4 at their lateral zones, which are widened. According to their sizes, they may present one or several holes 6, notably three holes 6 as shown on
Each plate 2 comprises a slot 7 along each hole 4 and 6, forming a band 8 whereof the central portion is rectilinear. This band 8 shows a smooth face on its side delineating the hole 4 or 6, this smooth face forming a locking means for the screws 3 or 30 represented on
According to the size of a plate 2, the holes may be adjusted to the screws 3 and 30, as is the case of the holes 4 situated on the left of the plate shown by
The plates 2 represented on FIGS. 10 to 12 are part of a set of plates of different sizes.
The screws 3 and 30 each comprise a hexagonal facetted portion 10, said facets being consecutive and two consecutive facets delineating together a ridge. These ridges, in angular positions of these screws 3, 30, bear against the band 8 to allow said screws to pivot in the holes 4 and 6 and, in other angular positions of these screws 3, 30, each facet may abut against this smooth face of the band 8, the elastic recall of this band 8 thus locking the screws 3, 30.
The screw 30 comprises a thread enabling said screw to be tightened in a tapered bore included in the intervertebral implant 3 and thus enables assembly of this implant 3 on a plate 2 by screwing, as shown on
According to a further embodiment shown on
It appears from the foregoing that the invention brings a decisive improvement to the previous art, by providing an osteosynthesis or arthrodesis material enabling perfect immobilisation of the bones or of portions of bones treated. Indeed, this material ensures perfect hold of the complete tightening of the screws even when the bone(s) undergo repeated loads and/or the bone(s) are more or less brittle, and/or the anatomy of the bone(s) treated only enables reduced insertion depth of the screw in this bone or these bones, and enables perfect assembly of a cage 3 to the plate 2.
It goes without saying that the invention is not limited to the embodiment described above with exemplification purposes, but conversely includes all the embodiment variations covered by the appended claims. Thus, one or several holes 4 may be circular, and one or several holes 4 may be provided according an axis non perpendicular to this plate; the faces aforementioned of the notches 9 only have faces arranged parallel to the axis of the hole 4 and the faces aforementioned of the notches 10 remain arranged parallel to the axis of the screw 3, to enable the notches 10 to come into co-operation with the notches 9 when the screw 3 is engaged in the hole 4.
Number | Date | Country | Kind |
---|---|---|---|
02 02422 | Feb 2002 | FR | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/FR03/00620 | Feb 2003 | US |
Child | 10925960 | Aug 2004 | US |