The present disclosure relates generally to medical devices used to treat tissue, including bone. More specifically, in certain embodiments, the present disclosure relates to medical devices used to displace tissue using an expandable member, such as a balloon.
The embodiments disclosed herein will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. These drawings depict only typical embodiments, which will be described with additional specificity and detail through use of the accompanying drawings in which:
Tissue treatment devices may include elongate members, expandable members, and other components. In some instances, an elongate member of a tissue treatment device may be advanced to a treatment location and an expandable member expanded to displace tissue. For example, a bone displacement device may be disposed within a vertebra of a patient and an expandable member expanded to displace portions of the vertebra. Similarly, such devices may be utilized in other areas of the body with other types of tissue. For convenience, including when describing the illustrated embodiments, this disclosure references “bone displacement” or “bone displacement devices,” however, such disclosure may be analogously applied to devices, elements, and procedures configured to displace or otherwise treat tissue in other portions of the body.
A bone displacement device may include an elongate outer tube. A stylet may be coaxially disposed within the outer tube. A proximal portion of the outer tube and the stylet shaft may be attached to a handle. In some embodiments, the stylet comprises a plurality of pull wires coaxially disposed within a shaft of the stylet. A distal portion of the stylet may be articulated when a tension force is applied to the plurality of pull wires. In some embodiments, a portion of the handle is configured as an actuator to articulate the stylet. For example, in some embodiments, the handle comprises a rotatable grip having female threads configured to engage with male threads of a pull member. The threads may include thread stops to limit rotation of the rotatable grip. A distal portion of the plurality of pull wires is coupled to the pull member. In such embodiments, rotation of the rotatable grip in the first direction proximally displaces the pull member and thus applies a tension force to the pull wires to articulate the distal portion of the stylet. The handle may also include a side port having a valve.
Certain bone displacement devices include an expandable member, such as a balloon. The expandable member may be disposed at a distal portion of the bone displacement device. In some embodiments, a proximal portion of the expandable member is attached to a distal portion of the outer tube via a tie layer. A distal portion of the expandable member can be attached to a tip tie tube. The tip tie tube may be longitudinally displaceable over the distal portion of the stylet. A protective sleeve may be disposed around the balloon when the bone displacement device is in its package, and displaced proximally over the outer tube to engage with the handle when the bone displacement device is ready to use.
In certain instances, a bone displacement device may be used by a practitioner to treat a fractured bone, such as a vertebral bone. The practitioner may displace bone by inflating an expandable member at a distal end of the bone displacement device to create a cavity into which a bone stabilizing material, such as bone cement, may be injected. The rotatable grip may be rotated in a first direction to apply a tension force to pull wires to articulate a distal portion of the bone displacement device. The distal portion of the bone displacement device may be directed—via articulation of the distal portion and/or displacement of the entire bone displacement device—to a desired location within the bone. The expandable member can be expanded to displace bone tissue adjacent the expandable member to create a cavity. The bone displacement device can be removed from the bone to allow for injection of bone cement into the cavity.
Embodiments may be understood by reference to the drawings, wherein like parts are designated by like numerals throughout. It will be readily understood by one of ordinary skill in the art having the benefit of this disclosure that the components of the embodiments, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the disclosure, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
It will be appreciated that various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. Many of these features may be used alone and/or in combination with one another.
The phrases “coupled to” and “in communication with” refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to or in communication with each other even though they are not in direct contact with each other. For example, two components may be coupled to or in communication with each other through an intermediate component.
The directional terms “distal” and “proximal” are given their ordinary meaning in the art. That is, the distal end of a medical device means the end of the device furthest from the practitioner during use. The proximal end refers to the opposite end, or the end nearest the practitioner during use. As specifically applied to a bone displacement device, the proximal end of the device refers to the end nearest the handle and the distal end refers to the opposite end, the end nearest a working tip of the device. If at one or more points in a procedure a physician changes the orientation of a bone displacement device, as used herein, the term “proximal end” always refers to the handle end of the device (even if the distal end is temporarily closer to the physician).
“Fluid” is used in its broadest sense, to refer to any fluid, including both liquids and gases as well as solutions, compounds, suspensions, etc., which generally behave as fluids.
In the illustrated embodiment, the stylet 140 is shown to comprise a tubular shaft 141. The shaft 141 may be formed from any suitable rigid material, such as stainless steel, titanium, nitinol, etc. A proximal end of the shaft 141 may be fixedly coupled to the handle 110 at a location proximal of the proximal end of the inner tube 135. One or more pull wires 142 can be coaxially disposed within the shaft 141. In the illustrated embodiment, the pull wires 142 include a plurality of pull wires comprising seven pull wires. In other embodiments, the number of pull wires 142 may be three, four, five, six, eight, or more pull wires. The pull wires 142 may extend proximally from the shaft 141 and be fixedly coupled to the distal end of the shaft 141. The pull wires 142 may be formed from any suitable material with high tensile strength. For example, the pull wires 142 may be formed from stainless steel, titanium, nitinol, etc. A diameter of the pull wires 142 may range from about 0.005 inch to about 0.030 inch.
Referring again to
In the illustrated embodiment, the proximal end of the outer tube 131 is coupled to the body 111 at a location distal to the side port 124, and the inner tube 135 is coupled to the body 111 at a location proximal to the side port 124. Further, a proximal end of the shaft 141 can be coupled to the body 111 at a location proximal to the inner tube 135.
The rotatable grip 112 may be configured to be rotated around a longitudinal axis of the handle 110. As depicted, the rotatable grip 112 may comprise laterally extending wings 113 configured to be gripped by a user. In other embodiments, the rotatable grip 112 may comprise any suitable feature to facilitate gripping and rotation of the rotatable grip 112. For example, the rotatable grip 112 may comprise a knob including grippable features, such as ridges, bumps, recesses, textured surface, etc.
The rotatable grip 112 may comprise a chamber 119 configured to receive a pull member 116. As shown in the figures, and discussed below, the pull member 116 of the illustrated embodiment is configured as non-rotatable relative to the rotatable grip 112, or configured not to rotate with the rotatable grip 112. The chamber 119 may include a female thread 114 configured to engage a male thread 117 of the pull member 116. The female thread 114 may comprise proximal and distal female thread stops 115. In the illustrated embodiment, the female thread stops 115 may include a flat face oriented perpendicular to a longitudinal axis of the rotatable grip 112. In another embodiment, the female thread stops 115 may include a tapered face. The pull member 116 may include a male thread 117 configured to engage with the female thread 114. The male thread 117 may comprise proximal and distal male thread stops 118. In the illustrated embodiment, the male thread stops 118 may include a flat face oriented perpendicular to a longitudinal axis of the pull member 116. In another embodiment, the male thread stops 118 may include a tapered face. The female thread stops 115 can be configured to engage with the male thread stops 118 to prevent over-rotation of the rotatable grip 112 in both a first direction and a second direction. In some instances, over-rotation of the rotatable grip 112 may result in excess strain or breakage of the shaft 141 and/or one or more of the individual pull wires 148. Thus, the threads may be configured with a positive stop to minimize excess force and subsequent breakage. In another embodiment, the chamber 119 may include a male thread 117 and male thread stops 118 while the pull member 116 includes a female thread 114 and female thread stops 115.
In the illustrated embodiment, the proximal ends of the pull wires 142 may be fixedly coupled to the pull member 116. When the rotatable grip 112 is rotated in the first direction, the pull member 116 is displaced proximally, causing a tension force to be equally or substantially equally applied to all of the individual pull wires 148. Embodiments wherein one or more individual pull wires 148 transmit an uneven or larger portion of the tension force are likewise within the scope of this disclosure. The tension force on the pull wires 142 may result in a tension force being applied to the distal end of the stylet 140 and articulation of the distal portion of the bone displacement device 100, as shown in
Rotation of the rotatable grip 112 in the second direction may displace the pull member 116 distally and release the tension force on the pull wires 142, resulting in the distal portion of the bone displacement device 100 returning to a straight configuration, as shown in
The balloon 151 may comprise a double balloon wall 152 configured to expand radially outward without stretching when air or fluid is injected into the balloon 151, for example, through the annular space 139. Embodiments wherein the balloon wall comprises more or fewer layers are likewise within the scope of this disclosure. A thickness of the double balloon wall 152 may range from about 0.020 mm to about 0.038 mm or from about 0.025 mm to about 0.030 mm. A length of the balloon 151 when not inflated or expanded may range from about 10 mm to about 30 mm. The balloon 151 may be formed of any suitable non-compliant polymeric material, such as engineered plastic polyurethane (e.g., Isoplast®), nylon, polybutylene terephthalate, etc. A proximal portion of the balloon 151 may be sealingly coupled to the distal end of the outer tube 131. A tie layer 153 may be disposed between the balloon wall 152 and the outer tube 131 to facilitate bonding of the balloon wall 152 to the outer tube 131. In other embodiments, the tie layer 153 is not used to facilitate bonding of the balloon wall 152 to the outer tube 131. The tie layer 153 may be formed from a polyurethane material having an intermediate hardness that is between the hardness of the material of the balloon 151 and the hardness of the material of the outer tube 131. The balloon wall 152 may be bonded to the tie layer 153 and the outer tube 131 using any suitable technique, such as heat, radio frequency, solvent bonding, gluing, etc.
A distal portion of the balloon 151 may be sealingly coupled to the distal end of the inner tube 135. A tip tie tube 155 may be disposed between the balloon wall 152 and the inner tube 135. The tip tie tube 155 may be formed from a material similar to the tie layer 153. In some embodiments, the tip tie tube 155 may comprise a braided structure. The tip tie tube 155 may extend proximally over the distal portion 137 of the inner tube 135 and the distal portion 145 of the shaft 141. The tip tie tube 155 and shaft 141 may configured in a “piston/cylinder” type arrangements where the shaft 141 is allowed to move with respect to the tip tie tube when the balloon 151 is inflated or deflated. For example, the tip tie tube 155 may be configured to piston proximally over the shaft 141 when the balloon 151 is inflated and to piston distally over the shaft 141 when the balloon 151 is deflated. The tip tie tube 155 may be configured to facilitate bonding of the balloon wall 152 to the inner tube 135. In other embodiments, the tip tie tube 155 may provide structural support to the inner tube 135 to prevent kinking of the inner tube 135 when inserted into a vertebral bone.
The seal of the proximal end of the balloon 151 to the outer tube 131 and the seal of the distal end of the balloon 151 to the inner tube 135 may form a balloon chamber 156 configured to be pressurized. The balloon chamber 156 may be pressurized up to a pressure of about 60 atm. The balloon 151 may be expanded to a diameter of from about 10 mm to about 30 mm.
As shown in
During use, in some instances, the shaft 141 may break at one of the laser cuts 147 when the shaft 141 is articulated. This may be due to external forces (such as from the bone) acting on the shaft 141. In the event of a breakage, the pull wires 142 may prevent a portion of the shaft 141 distal to the break from breaking away from a remainder of the shaft 141. Even if one of the individual pull wires 148 also breaks, the remaining individual pull wires 148 may retain attachment to the distal end of the shaft 141. Furthermore, embodiments wherein the pull wires 142 collectively fill the shaft lumen 143, even in an event of a break in the shaft 141, the pull wires 142 may maintain the coaxial arrangement of the shaft 141, inner tube 135, and outer tube 131 and prevent leakage of air or fluid from the bone displacement device 100 caused by damage to the inner tube 135 and/or outer tube 131 by a broken end of the shaft 141 of a pull wire 148.
In use, a bone displacement device may be used to displace bone tissue. A distal end of the bone displacement device may be inserted into a vertebral bone, for example, through an introducer cannula. A distal portion of the bone displacement device may be articulated when a rotatable grip is rotated in a first direction, causing one or more pull members to be displaced proximally. Proximal displacement of the pull member may apply a tension force to pull wires disposed within a stylet shaft and coupled to the pull member. The tension force applied to the pull wires can cause a distal portion of a stylet to articulate the distal portion of the bone displacement device. The articulated bone displacement device can be directed to a desired location within the vertebral bone. A syringe may be coupled to a side port of a handle. Air or fluid may be delivered through the side port to an expandable member (e.g., balloon) disposed adjacent the distal end of the bone displacement device. The air or fluid may expand the expandable member to displace adjacent bone tissue.
The stylet 240 is shown to comprise a tubular shaft 241 having a proximal portion 244. A proximal end of the shaft 241 may be fixedly coupled to the handle 210 at a location proximal of the proximal end of the outer tube 231. One or more pull wires 242 can be disposed within the shaft 241.
Referring again to
In the illustrated embodiment, the proximal end of the outer tube 231 can be coupled to the body 211 at a location distal to the side port 224. The shaft 241 can be coupled to the body 211 at a location proximal to the outer tube 231.
The rotatable grip 212 may be configured to be rotatable around a longitudinal axis of the handle 210. The rotatable grip 212 may comprise generally laterally and proximally extending wings 213 configured to be gripped by a user. The rotatable grip 212 may comprise a chamber 219 configured to receive a pull member 216. The chamber 219 may include a female thread 214 configured to engage a male thread 217 of the pull member 216. The female thread 214 may comprise proximal and distal thread stops 215. The male thread 217 may comprise proximal and distal thread stops 218. The female thread stops 215 can be configured to engage with the male thread stops 218 to prevent over-rotation of the rotatable grip 212 in both a first direction and a second direction.
In the illustrated embodiment, the proximal ends of the pull wires 242 may be fixedly coupled to the pull member 216. When the rotatable grip 212 is rotated in the first direction, the pull member 216 can be displaced proximally, causing a tension force to be applied to the pull wires 242. The tension force on the pull wires 242 may result in a tension force being applied to the distal end of the shaft 241 and articulation of the shaft 241 and the bone displacement device 200, as shown in
Rotation of the rotatable grip 212 in the second direction may displace the pull member 216 distally and release the tension force on the pull wires 242, resulting in the distal portion of the bone displacement device 200 returning to a substantially straight configuration, as shown in
The balloon 251 may comprise a balloon wall, such as a double balloon wall 252 configured to expand radially outward without stretching when air or fluid is injected into the balloon 251 through the annular space 239. A proximal portion of the balloon 251 may be sealingly coupled to the distal end of the outer tube 231. A tie layer 253 may be disposed between the balloon wall 252 and the outer tube 231 to facilitate bonding of the balloon wall 252 to the outer tube 231.
A distal portion of the balloon 251 may be sealingly coupled to a distal end of a tip tie tube 255. The tip tie tube 255 may extend proximally over the distal portion 245 of the shaft 241. The tip tie tube 255 and shaft 241 may configured in a “piston/cylinder” type arrangements where the shaft 214 is allowed to move with respect to the tip tie tube when the balloon 251 is inflated or deflated. For example, the tip tie tube 255 may be configured to piston proximally over the shaft 241 when the balloon 251 is inflated and to piston distally over the shaft 241 when the balloon 251 is deflated. A plug 254 may be sealingly disposed within the distal end of the tip tie tube 255.
The seal of the proximal end of the balloon 251 to the outer tube 231 and the seal of the distal end of the balloon 251 to the tip tie tube 255 may form a balloon chamber 256 configured to be pressurized. The balloon chamber 256 may be pressurized up to a pressure of about 60 atm. The balloon 251 may be expanded to a diameter of from about 10 mm to about 30 mm.
As shown in
The handle 310 may comprise a body 311. The body 311 may comprise a side port 324 extending laterally from a longitudinal axis of the body 311. The side port 324 may be in fluid communication with an annular space (339 of
In the illustrated embodiment, the proximal end of the outer tube 331 can be coupled to the body 311 at a location distal to the side port 324. The inner tube 335 can be coupled to the body 311 at a location proximal to the outer tube 331.
A proximal portion of the balloon 351 may be sealingly coupled to the distal end of the outer tube 331. A tie layer 353 may be disposed between a balloon wall 352 and the outer tube 331 to facilitate bonding of the balloon wall 352 to the outer tube 331. A distal portion of the balloon 351 may be sealingly coupled to the distal end of the inner tube 335. A tip tie tube 355 may be disposed between the balloon wall 352 and the inner tube 335. The tip tie tube 355 may extend proximally over the distal portion 337 of the inner tube 335 and the distal portion 345 of the shaft 341. The tip tie tube 355 and shaft 341 may be configured to move in a piston/cylinder configuration when the balloon 351 is inflated and deflated. For example the tip tie tube 335 may move proximally over the shaft 341 when the balloon 351 is inflated, as shown in
In the depicted embodiment, the protective sleeve 460 may include a tubular body 461 and a grip 463 coupled to the tubular body 461. A distal end 464 of the tubular body 461 may be formed in a funnel shape to facilitate passage of the protective sleeve 460 distally over the expandable member 450 when not expanded. A proximal end of the tubular body 461 may be sized to be releasably received into a recess 465 disposed at a distal end of a body 411 of the handle 410, as shown in
As depicted in the illustrated embodiment, the grip 463 has an oval shape. In other embodiments, the grip 463 may have any suitable shape that is grippable with fingers of a user. For example, the grip 463 may have a rectangular, square, circular, or triangular shape, etc. In some embodiments, the grip 463 may include grip enhancing features, such as ridges, bumps, recesses, etc. In another embodiment, the grip 463 may include indicia (e.g., an arrow) to indicate the direction the protective sleeve 460 could be moved prior to use of the bone displacement device 400.
The protective sleeve 460 may be disposed over the expandable member 450 during a manufacturing assembly of and prior to packaging of the bone displacement device 400. In preparation for a treatment procedure, a user can remove the bone displacement device 400 from its package in the package state, as shown in
Any methods disclosed herein comprise one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified.
References to approximations are made throughout this specification, such as by use of the term “substantially.” For each such reference, it is to be understood that, in some embodiments, the value, feature, or characteristic may be specified without approximation. For example, where qualifiers such as “about” and “substantially” are used, these terms include within their scope the qualified words in the absence of their qualifiers. For example, where the term “substantially perpendicular” is recited with respect to a feature, it is understood that in further embodiments, the feature can have a precisely perpendicular configuration.
Similarly, in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment.
The claims following this written disclosure are hereby expressly incorporated into the present written disclosure, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims. Moreover, additional embodiments capable of derivation from the independent and dependent claims that follow are also expressly incorporated into the present written description.
Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Moreover, the order of the steps or actions of the methods disclosed herein may be changed by those skilled in the art without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order or use of specific steps or actions may be modified. The scope of the invention is therefore defined by the following claims and their equivalents.
This application claims priority to U.S. Provisional Patent Application No. 62/902,144, filed on Sep. 18, 2019 and titled, “Osteotome with Inflatable Portion and Multiwire Articulation,” which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2688329 | Wallace | Sep 1954 | A |
3140623 | Hoose | Jul 1964 | A |
3228400 | Armao | Jan 1966 | A |
3503385 | Stevens | Mar 1970 | A |
3625200 | Muller | Dec 1971 | A |
3664344 | Bryne | May 1972 | A |
3794039 | Kollner et al. | Feb 1974 | A |
3908637 | Doroshow | Sep 1975 | A |
4033331 | Guss et al. | Jul 1977 | A |
4131597 | Bluethgen et al. | Dec 1978 | A |
4236520 | Anderson | Dec 1980 | A |
4276880 | Malmin | Jul 1981 | A |
4294251 | Grennwald et al. | Oct 1981 | A |
4337773 | Raftopoulos et al. | Jul 1982 | A |
4386717 | Koob | Jun 1983 | A |
4399814 | Pratt, Jr. et al. | Aug 1983 | A |
4411266 | Cosman | Oct 1983 | A |
4456017 | Miles | Jun 1984 | A |
4473077 | Noiles | Sep 1984 | A |
4476861 | Dimakos et al. | Oct 1984 | A |
4578061 | Lemelson | Mar 1986 | A |
4586923 | Gould et al. | May 1986 | A |
4595006 | Burke et al. | Jun 1986 | A |
4619263 | Frisbie et al. | Oct 1986 | A |
4627434 | Murray | Dec 1986 | A |
4641654 | Samson et al. | Feb 1987 | A |
4653489 | Tronzo | Mar 1987 | A |
4668295 | Bajpai | May 1987 | A |
4719968 | Speros | Jan 1988 | A |
4722948 | Sanderson | Feb 1988 | A |
4731054 | Billeter et al. | Mar 1988 | A |
4742817 | Kawashima et al. | May 1988 | A |
4747840 | Ladika et al. | May 1988 | A |
4748969 | Wardle | Jun 1988 | A |
4784638 | Ghajar et al. | Nov 1988 | A |
4795602 | Pretchel et al. | Jan 1989 | A |
4842603 | Draenert | Jun 1989 | A |
4843112 | Gerhart et al. | Jun 1989 | A |
4846814 | Ruiz | Jul 1989 | A |
4865586 | Hedberg | Sep 1989 | A |
4869906 | Dingeldein et al. | Sep 1989 | A |
4888366 | Chu et al. | Dec 1989 | A |
4900303 | Lemelson | Feb 1990 | A |
4961730 | Bodicky et al. | Oct 1990 | A |
4961731 | Poncy | Oct 1990 | A |
4963151 | Ducheyene et al. | Oct 1990 | A |
4969870 | Kramer et al. | Nov 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
4982730 | Royce | Jan 1991 | A |
4998923 | Samson et al. | Mar 1991 | A |
5004501 | Faccioli | Apr 1991 | A |
5017627 | Bonfield | May 1991 | A |
5046513 | O'Leary et al. | Sep 1991 | A |
5049137 | Thompson | Sep 1991 | A |
5049157 | Mittelmeier et al. | Sep 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5085861 | Gerhart et al. | Feb 1992 | A |
5088991 | Weldon | Feb 1992 | A |
5092891 | Kummer et al. | Mar 1992 | A |
5103804 | Abele | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112303 | Pudenz et al. | May 1992 | A |
5114414 | Buchbinder | May 1992 | A |
5116305 | Milder et al. | May 1992 | A |
5147334 | Moss | Sep 1992 | A |
5156606 | Chin | Oct 1992 | A |
5163431 | Greip | Nov 1992 | A |
5184757 | Giannuzzi | Feb 1993 | A |
5188619 | Myers | Feb 1993 | A |
5196201 | Larsson et al. | Mar 1993 | A |
5197971 | Bonutti | Mar 1993 | A |
5211631 | Sheaff | May 1993 | A |
5231989 | Middleman et al. | Aug 1993 | A |
5242082 | Giannuzzi | Sep 1993 | A |
5264214 | Rhee et al. | Nov 1993 | A |
5266248 | Ohtsuka et al. | Nov 1993 | A |
5269750 | Grulke et al. | Dec 1993 | A |
5282821 | Donahue | Feb 1994 | A |
5284128 | Hart | Feb 1994 | A |
5285795 | Ryan et al. | Feb 1994 | A |
5295980 | Ersek | Mar 1994 | A |
5296026 | Monroe et al. | Mar 1994 | A |
5308342 | Sepetka et al. | May 1994 | A |
5322064 | Lundquist | Jun 1994 | A |
5322505 | Krause et al. | Jun 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5336699 | Cooke et al. | Aug 1994 | A |
5343877 | Park | Sep 1994 | A |
5352715 | Wallace et al. | Oct 1994 | A |
5356629 | Sander | Oct 1994 | A |
5360416 | Ausherman et al. | Nov 1994 | A |
5368598 | Hasson | Nov 1994 | A |
5372587 | Hammerslag | Dec 1994 | A |
5378234 | Hammerslag et al. | Jan 1995 | A |
5380307 | Chee et al. | Jan 1995 | A |
5385563 | Gross | Jan 1995 | A |
5389073 | Imran | Feb 1995 | A |
5425770 | Piez et al. | Jun 1995 | A |
5431168 | Webster, Jr. | Jul 1995 | A |
5431639 | Shaw | Jul 1995 | A |
5437636 | Snoke et al. | Aug 1995 | A |
5449301 | Hanna et al. | Sep 1995 | A |
5449351 | Zohmann | Sep 1995 | A |
5458597 | Edwards et al. | Oct 1995 | A |
5480382 | Hammerslag et al. | Jan 1996 | A |
5484424 | Cottenceau et al. | Jan 1996 | A |
5489275 | Thompson et al. | Feb 1996 | A |
5496330 | Bates et al. | Mar 1996 | A |
5512610 | Lin | Apr 1996 | A |
5514130 | Baker | May 1996 | A |
5514137 | Coutts | May 1996 | A |
5531715 | Engelson et al. | Jul 1996 | A |
5535922 | Maziarz | Jul 1996 | A |
5549542 | Kovalcheck | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554114 | Wallace et al. | Sep 1996 | A |
5571085 | Accisano, III | Nov 1996 | A |
5571088 | Lennox | Nov 1996 | A |
5574075 | Draemert | Nov 1996 | A |
5599346 | Edwards et al. | Feb 1997 | A |
5616121 | McKay | Apr 1997 | A |
5620447 | Smith et al. | Apr 1997 | A |
5620467 | Wagner | Apr 1997 | A |
5624396 | McNamara et al. | Apr 1997 | A |
5628771 | Mizukawa et al. | May 1997 | A |
5637090 | McGee | Jun 1997 | A |
5637091 | Hakky et al. | Jun 1997 | A |
5662680 | Desai | Sep 1997 | A |
5681282 | Eggers et al. | Oct 1997 | A |
5681289 | Wilcox et al. | Oct 1997 | A |
5681317 | Caldarise | Oct 1997 | A |
5685826 | Bonutti | Nov 1997 | A |
5695513 | Johnson et al. | Dec 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697909 | Eggers et al. | Dec 1997 | A |
5700157 | Chung | Dec 1997 | A |
5704926 | Sutton | Jan 1998 | A |
5709697 | Ratcliff et al. | Jan 1998 | A |
5725568 | Hastings | Mar 1998 | A |
5735829 | Cherian | Apr 1998 | A |
5741320 | Thornton et al. | Apr 1998 | A |
5766153 | Eggers et al. | Jun 1998 | A |
5800408 | Strauss et al. | Sep 1998 | A |
5810804 | Gough | Sep 1998 | A |
5810867 | Zarbateny et al. | Sep 1998 | A |
5820592 | Hammerslag et al. | Oct 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5833692 | Cesarini et al. | Nov 1998 | A |
5847046 | Jiang et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5851212 | Zirps et al. | Dec 1998 | A |
5855577 | Murphy-Chutorian et al. | Jan 1999 | A |
5858003 | Atala | Jan 1999 | A |
5860952 | Quinn | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5891027 | Tu | Apr 1999 | A |
5902251 | Vanhooydonk | May 1999 | A |
5902839 | Lautenschlager et al. | May 1999 | A |
5914356 | Erbe | Jun 1999 | A |
5921956 | Grinberg et al. | Jul 1999 | A |
5928239 | Mirza | Jul 1999 | A |
5931829 | Burbank et al. | Aug 1999 | A |
5944715 | Goble et al. | Aug 1999 | A |
5947964 | Eggers | Sep 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5997581 | Khalili | Dec 1999 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6027487 | Crocker | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6048346 | Reiley et al. | Apr 2000 | A |
6059739 | Baumann | May 2000 | A |
6063078 | Wittkampf | May 2000 | A |
6064902 | Haissaguerre | May 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6066176 | Oshida | May 2000 | A |
6073051 | Sharkey et al. | Jun 2000 | A |
6080801 | Draenert et al. | Jun 2000 | A |
6099514 | Sharkey et al. | Aug 2000 | A |
6106524 | Eggers et al. | Aug 2000 | A |
6106539 | Fortier | Aug 2000 | A |
6110155 | Baudino | Aug 2000 | A |
6123702 | Swanson | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6146355 | Biggs | Nov 2000 | A |
6156254 | Andrews et al. | Dec 2000 | A |
6183435 | Bumbalough et al. | Feb 2001 | B1 |
6203507 | Wadsworth et al. | Mar 2001 | B1 |
6203574 | Kawamura | Mar 2001 | B1 |
6228052 | Pohndorf | May 2001 | B1 |
6228904 | Yadav et al. | May 2001 | B1 |
6231569 | Bek et al. | May 2001 | B1 |
6231615 | Preissman | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6258086 | Ashley et al. | Jul 2001 | B1 |
6270476 | Santoianni et al. | Aug 2001 | B1 |
6280413 | Clark et al. | Aug 2001 | B1 |
6280434 | Kinoshita et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6280473 | Lemperle et al. | Aug 2001 | B1 |
6283960 | Ashley | Sep 2001 | B1 |
6291547 | Lyles | Sep 2001 | B1 |
6312428 | Eggers | Nov 2001 | B1 |
6312454 | Stockel et al. | Nov 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6348055 | Preissman | Feb 2002 | B1 |
6352533 | Ellman et al. | Mar 2002 | B1 |
6358251 | Mirza | Mar 2002 | B1 |
6375659 | Erbe et al. | Apr 2002 | B1 |
6383188 | Kuslich et al. | May 2002 | B2 |
6383190 | Preissman | May 2002 | B1 |
6395007 | Bhatnagar et al. | May 2002 | B1 |
6408889 | Komachi | Jun 2002 | B1 |
6409722 | Hoey et al. | Jun 2002 | B1 |
6428894 | Babich et al. | Aug 2002 | B1 |
6437019 | Rusin et al. | Aug 2002 | B1 |
6440138 | Reiley et al. | Aug 2002 | B1 |
6447506 | Swanson et al. | Sep 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6464683 | Samuelson et al. | Oct 2002 | B1 |
6478793 | Cosman et al. | Nov 2002 | B1 |
6479565 | Stanley | Nov 2002 | B1 |
6484904 | Horner et al. | Nov 2002 | B1 |
6506217 | Arnett | Jan 2003 | B1 |
6511471 | Rosenman et al. | Jan 2003 | B2 |
6524296 | Beals | Feb 2003 | B1 |
6565588 | Clement et al. | May 2003 | B1 |
6575969 | Rittman et al. | Jun 2003 | B1 |
6575978 | Peterson et al. | Jun 2003 | B2 |
6576249 | Gendler et al. | Jun 2003 | B1 |
6582446 | Marchosky | Jun 2003 | B1 |
6592559 | Pakter et al. | Jul 2003 | B1 |
6599961 | Pienkowski et al. | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6607496 | Poor | Aug 2003 | B1 |
6607544 | Boucher et al. | Aug 2003 | B1 |
6613054 | Scribner et al. | Sep 2003 | B2 |
6620162 | Kuslich et al. | Sep 2003 | B2 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623448 | Slater | Sep 2003 | B2 |
6638268 | Naizi | Oct 2003 | B2 |
6641587 | Scribner et al. | Nov 2003 | B2 |
6645213 | Sand et al. | Nov 2003 | B2 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6676665 | Foley et al. | Jan 2004 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6689823 | Bellare et al. | Feb 2004 | B1 |
6692532 | Healy et al. | Feb 2004 | B1 |
6716216 | Boucher et al. | Apr 2004 | B1 |
6719761 | Reiley et al. | Apr 2004 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6726691 | Osorio et al. | Apr 2004 | B2 |
6730095 | Olson, Jr. et al. | May 2004 | B2 |
6740090 | Cragg et al. | May 2004 | B1 |
6740093 | Hochschuler et al. | May 2004 | B2 |
6743239 | Kuehn et al. | Jun 2004 | B1 |
6746451 | Middleton et al. | Jun 2004 | B2 |
6752863 | Lyles et al. | Jun 2004 | B2 |
6753007 | Haggard et al. | Jun 2004 | B2 |
6770079 | Bhatnagar et al. | Aug 2004 | B2 |
6814734 | Chappuis et al. | Nov 2004 | B2 |
6814736 | Reiley et al. | Nov 2004 | B2 |
6818001 | Wulfman et al. | Nov 2004 | B2 |
6832984 | Stelzer et al. | Dec 2004 | B2 |
6835193 | Epstein et al. | Dec 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6863672 | Reiley et al. | Mar 2005 | B2 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6869445 | Johnson | Mar 2005 | B1 |
6875219 | Arramon | Apr 2005 | B2 |
6881214 | Cosman et al. | Apr 2005 | B2 |
6887246 | Bhatnagar et al. | May 2005 | B2 |
6899715 | Beaty | May 2005 | B1 |
6899719 | Reiley et al. | May 2005 | B2 |
6907884 | Pellegrino et al. | Jun 2005 | B2 |
6913594 | Coleman et al. | Jul 2005 | B2 |
6916306 | Jenkins et al. | Jul 2005 | B1 |
6923813 | Phillips | Aug 2005 | B2 |
6945956 | Waldhauser et al. | Sep 2005 | B2 |
6953594 | Lee et al. | Oct 2005 | B2 |
6955716 | Xu et al. | Oct 2005 | B2 |
6976987 | Flores | Dec 2005 | B2 |
6979312 | Shimada | Dec 2005 | B2 |
6979352 | Reynolds | Dec 2005 | B2 |
6981981 | Reiley et al. | Jan 2006 | B2 |
6991616 | Bencini et al. | Jan 2006 | B2 |
6998128 | Haggard et al. | Feb 2006 | B2 |
7004930 | Marshall | Feb 2006 | B2 |
7004945 | Boyd et al. | Feb 2006 | B2 |
7008433 | Voellmicke et al. | Mar 2006 | B2 |
7018460 | Xu et al. | Mar 2006 | B2 |
7022133 | Yee et al. | Apr 2006 | B2 |
7029468 | Honebrink | Apr 2006 | B2 |
7044954 | Reiley et al. | May 2006 | B2 |
7059330 | Makower et al. | Jun 2006 | B1 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066942 | Treace | Jun 2006 | B2 |
RE39196 | Ying et al. | Jul 2006 | E |
7081122 | Reiley et al. | Jul 2006 | B1 |
7081161 | Genge et al. | Jul 2006 | B2 |
7091258 | Neubert et al. | Aug 2006 | B2 |
7091260 | Kūhn | Aug 2006 | B2 |
7094202 | Nobis et al. | Aug 2006 | B2 |
7094286 | Liu | Aug 2006 | B2 |
7108696 | Daniel et al. | Sep 2006 | B2 |
7109254 | Müller et al. | Sep 2006 | B2 |
7112205 | Carrison | Sep 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7138442 | Smith et al. | Nov 2006 | B2 |
7153306 | Ralph et al. | Dec 2006 | B2 |
7153307 | Scribner et al. | Dec 2006 | B2 |
7156843 | Skarda | Jan 2007 | B2 |
7156845 | Mulier | Jan 2007 | B2 |
7166121 | Reiley et al. | Jan 2007 | B2 |
7172629 | McKay et al. | Feb 2007 | B2 |
7179255 | Lettice et al. | Feb 2007 | B2 |
7186234 | Dahla et al. | Mar 2007 | B2 |
7186761 | Soffiati et al. | Mar 2007 | B2 |
7226481 | Kuslich et al. | Jun 2007 | B2 |
7252671 | Scribner et al. | Aug 2007 | B2 |
7267683 | Sharkey et al. | Sep 2007 | B2 |
7270661 | Dahla et al. | Sep 2007 | B2 |
7294127 | Leung | Nov 2007 | B2 |
7465318 | Sennett et al. | Dec 2008 | B2 |
7480533 | Cosman et al. | Jan 2009 | B2 |
7503920 | Siegal | Mar 2009 | B2 |
7544196 | Bagga et al. | Jun 2009 | B2 |
7559932 | Truckai et al. | Jul 2009 | B2 |
7569054 | Michelson | Aug 2009 | B2 |
7572263 | Preissman | Aug 2009 | B2 |
7591822 | Olson, Jr. et al. | Sep 2009 | B2 |
7625364 | Corcoran et al. | Dec 2009 | B2 |
7641664 | Pagano | Jan 2010 | B2 |
7731720 | Sand et al. | Jun 2010 | B2 |
7811291 | Liu et al. | Oct 2010 | B2 |
7824403 | Vaska | Nov 2010 | B2 |
7842041 | Liu et al. | Nov 2010 | B2 |
7887543 | Sand et al. | Feb 2011 | B2 |
7905884 | Simonton et al. | Mar 2011 | B2 |
7918874 | Siegal | Apr 2011 | B2 |
7972340 | Sand et al. | Jul 2011 | B2 |
7976542 | Cosman | Jul 2011 | B1 |
8034071 | Scribner et al. | Oct 2011 | B2 |
8246627 | Vanleeuwen et al. | Aug 2012 | B2 |
8518036 | Leung | Aug 2013 | B2 |
8583260 | Knudson | Nov 2013 | B2 |
8591507 | Kramer et al. | Nov 2013 | B2 |
8663226 | Germain | Mar 2014 | B2 |
RE44883 | Cha | May 2014 | E |
8758349 | Germain et al. | Jun 2014 | B2 |
8827981 | Liu et al. | Sep 2014 | B2 |
8864760 | Kramer et al. | Oct 2014 | B2 |
8936631 | Nguyen | Jan 2015 | B2 |
9113974 | Germain | Aug 2015 | B2 |
9125671 | Germain et al. | Sep 2015 | B2 |
9161809 | Germain et al. | Oct 2015 | B2 |
9421057 | Germain | Aug 2016 | B2 |
9743938 | Germain et al. | Aug 2017 | B2 |
20010011174 | Reiley et al. | Aug 2001 | A1 |
20010023349 | Van Tassel et al. | Sep 2001 | A1 |
20020007180 | Wittenberger et al. | Jan 2002 | A1 |
20020013600 | Scribner et al. | Jan 2002 | A1 |
20020026195 | Layne et al. | Feb 2002 | A1 |
20020026197 | Foley et al. | Feb 2002 | A1 |
20020068929 | Zvuloni | Jun 2002 | A1 |
20020068974 | Kuslich et al. | Jun 2002 | A1 |
20020077595 | Hundertmark et al. | Jun 2002 | A1 |
20020082605 | Reiley et al. | Jun 2002 | A1 |
20020115742 | Trieu et al. | Aug 2002 | A1 |
20020128638 | Chauvel et al. | Sep 2002 | A1 |
20020133148 | Daniel et al. | Sep 2002 | A1 |
20020156483 | Voellmicke et al. | Oct 2002 | A1 |
20020188299 | Reiley et al. | Dec 2002 | A1 |
20020188300 | Arramon et al. | Dec 2002 | A1 |
20030014094 | Hammack et al. | Jan 2003 | A1 |
20030032929 | McGuckin | Feb 2003 | A1 |
20030036763 | Bhatnagar et al. | Feb 2003 | A1 |
20030043963 | Yamagami et al. | Mar 2003 | A1 |
20030050644 | Boucher et al. | Mar 2003 | A1 |
20030069522 | Jasobsen et al. | Apr 2003 | A1 |
20030073979 | Naimark et al. | Apr 2003 | A1 |
20030130664 | Boucher et al. | Jul 2003 | A1 |
20030163085 | Tanner et al. | Aug 2003 | A1 |
20030191489 | Reiley et al. | Oct 2003 | A1 |
20030195547 | Scribner et al. | Oct 2003 | A1 |
20030212394 | Pearson et al. | Nov 2003 | A1 |
20030212395 | Woloszko et al. | Nov 2003 | A1 |
20030220414 | Axen et al. | Nov 2003 | A1 |
20030225432 | Baptiste et al. | Dec 2003 | A1 |
20030233096 | Osorio et al. | Dec 2003 | A1 |
20040023384 | Fukaya | Feb 2004 | A1 |
20040023784 | Yu et al. | Feb 2004 | A1 |
20040024081 | Trieu et al. | Feb 2004 | A1 |
20040024398 | Hovda et al. | Feb 2004 | A1 |
20040024409 | Sand et al. | Feb 2004 | A1 |
20040024410 | Olson et al. | Feb 2004 | A1 |
20040034384 | Fukaya | Feb 2004 | A1 |
20040044096 | Smith et al. | Mar 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040059328 | Daniel et al. | Mar 2004 | A1 |
20040087936 | Stern et al. | May 2004 | A1 |
20040087994 | Suddaby | May 2004 | A1 |
20040092946 | Bagga et al. | May 2004 | A1 |
20040097612 | Rosenberg et al. | May 2004 | A1 |
20040111136 | Sharkey et al. | Jun 2004 | A1 |
20040127987 | Evans et al. | Jul 2004 | A1 |
20040133208 | Weikel et al. | Jul 2004 | A1 |
20040138758 | Evans et al. | Jul 2004 | A1 |
20040153064 | Foley et al. | Aug 2004 | A1 |
20040153115 | Reiley et al. | Aug 2004 | A1 |
20040158237 | Abboud et al. | Aug 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040167562 | Osorio et al. | Aug 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040210231 | Broucher et al. | Oct 2004 | A1 |
20040215343 | Hochschuler et al. | Oct 2004 | A1 |
20040220577 | Cragg | Nov 2004 | A1 |
20040220680 | Yamamoto et al. | Nov 2004 | A1 |
20040225296 | Reiss et al. | Nov 2004 | A1 |
20040226479 | Lyles et al. | Nov 2004 | A1 |
20040230309 | Dimauro et al. | Nov 2004 | A1 |
20040236186 | Chu | Nov 2004 | A1 |
20040247644 | Bratt et al. | Dec 2004 | A1 |
20040267271 | Scribner et al. | Dec 2004 | A9 |
20050027245 | Sachdeva et al. | Feb 2005 | A1 |
20050033303 | Chappuis et al. | Feb 2005 | A1 |
20050038383 | Kelley et al. | Feb 2005 | A1 |
20050038422 | Maurice | Feb 2005 | A1 |
20050043737 | Reiley et al. | Feb 2005 | A1 |
20050055030 | Falahee | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050070844 | Chow et al. | Mar 2005 | A1 |
20050070912 | Voellmicke | Mar 2005 | A1 |
20050070915 | Mazzuca et al. | Mar 2005 | A1 |
20050090852 | Layne et al. | Apr 2005 | A1 |
20050113836 | Lozier et al. | May 2005 | A1 |
20050119650 | Sanders et al. | Jun 2005 | A1 |
20050124989 | Suddaby | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050177168 | Brunnett et al. | Aug 2005 | A1 |
20050177210 | Lueng et al. | Aug 2005 | A1 |
20050182412 | Johnson et al. | Aug 2005 | A1 |
20050182413 | Johnson et al. | Aug 2005 | A1 |
20050187556 | Stack et al. | Aug 2005 | A1 |
20050199156 | Khairoun et al. | Sep 2005 | A1 |
20050209557 | Carroll et al. | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050234425 | Miller et al. | Oct 2005 | A1 |
20050240193 | Layne et al. | Oct 2005 | A1 |
20050251266 | Maspero et al. | Nov 2005 | A1 |
20050251267 | Winterbottom et al. | Nov 2005 | A1 |
20050261683 | Veldhuizen et al. | Nov 2005 | A1 |
20050283148 | Janssen | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060024348 | Engqvist et al. | Feb 2006 | A1 |
20060025763 | Nelson et al. | Feb 2006 | A1 |
20060041033 | Bisig et al. | Feb 2006 | A1 |
20060052743 | Reynolds | Mar 2006 | A1 |
20060064101 | Arramon | Mar 2006 | A1 |
20060074433 | McGill et al. | Apr 2006 | A1 |
20060084977 | Lieberman | Apr 2006 | A1 |
20060085009 | Truckai et al. | Apr 2006 | A1 |
20060100635 | Reiley et al. | May 2006 | A1 |
20060100706 | Shadduck et al. | May 2006 | A1 |
20060106392 | Embry | May 2006 | A1 |
20060106459 | Truckai et al. | May 2006 | A1 |
20060116689 | Albans et al. | Jun 2006 | A1 |
20060116690 | Pagano | Jun 2006 | A1 |
20060122623 | Truckai et al. | Jun 2006 | A1 |
20060142732 | Karmarkar et al. | Jun 2006 | A1 |
20060149268 | Truckai et al. | Jul 2006 | A1 |
20060149281 | Reiley et al. | Jul 2006 | A1 |
20060156959 | Engqvist et al. | Jul 2006 | A1 |
20060184106 | McDaniel et al. | Aug 2006 | A1 |
20060184192 | Markworth et al. | Aug 2006 | A1 |
20060200121 | Mowery | Sep 2006 | A1 |
20060206116 | Yeung | Sep 2006 | A1 |
20060206136 | Sachdeva et al. | Sep 2006 | A1 |
20060217704 | Cockburn et al. | Sep 2006 | A1 |
20060217736 | Kaneko | Sep 2006 | A1 |
20060229625 | Truckai et al. | Oct 2006 | A1 |
20060229631 | Reiley et al. | Oct 2006 | A1 |
20060235417 | Sala | Oct 2006 | A1 |
20060259023 | Abboud et al. | Nov 2006 | A1 |
20060264819 | Fischer et al. | Nov 2006 | A1 |
20060264945 | Edidin et al. | Nov 2006 | A1 |
20060266372 | Miller et al. | Nov 2006 | A1 |
20060270750 | Almen et al. | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060276797 | Botimer | Dec 2006 | A1 |
20060276819 | Osorio et al. | Dec 2006 | A1 |
20060293687 | Bogert | Dec 2006 | A1 |
20070006692 | Phan | Jan 2007 | A1 |
20070010845 | Gong et al. | Jan 2007 | A1 |
20070016130 | Leeflang et al. | Jan 2007 | A1 |
20070016211 | Botimer | Jan 2007 | A1 |
20070021769 | Scribner et al. | Jan 2007 | A1 |
20070043373 | Sala | Feb 2007 | A1 |
20070055201 | Seto et al. | Mar 2007 | A1 |
20070055260 | Cragg | Mar 2007 | A1 |
20070055266 | Osorio et al. | Mar 2007 | A1 |
20070055275 | Schaller | Mar 2007 | A1 |
20070055277 | Osorio et al. | Mar 2007 | A1 |
20070055278 | Osorio et al. | Mar 2007 | A1 |
20070055279 | Sand et al. | Mar 2007 | A1 |
20070055281 | Osorio et al. | Mar 2007 | A1 |
20070055283 | Scribner | Mar 2007 | A1 |
20070055284 | Osorio | Mar 2007 | A1 |
20070055285 | Osorio et al. | Mar 2007 | A1 |
20070055300 | Osorio et al. | Mar 2007 | A1 |
20070055382 | Osorio et al. | Mar 2007 | A1 |
20070059281 | Moseley et al. | Mar 2007 | A1 |
20070067034 | Chirico et al. | Mar 2007 | A1 |
20070093840 | Pacelli | Apr 2007 | A1 |
20070114248 | Kovac | May 2007 | A1 |
20070118142 | Krueger et al. | May 2007 | A1 |
20070118143 | Ralph et al. | May 2007 | A1 |
20070142842 | Krueger et al. | Jun 2007 | A1 |
20070156130 | Thistle | Jul 2007 | A1 |
20070162042 | Dunker | Jul 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070185231 | Liu et al. | Aug 2007 | A1 |
20070197935 | Reiley | Aug 2007 | A1 |
20070198023 | Sand et al. | Aug 2007 | A1 |
20070203500 | Gordon | Aug 2007 | A1 |
20070211563 | Devries | Sep 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070260223 | Scheibe et al. | Nov 2007 | A1 |
20070260257 | Phan | Nov 2007 | A1 |
20070270876 | Kuo et al. | Nov 2007 | A1 |
20070276319 | Betts | Nov 2007 | A1 |
20070282305 | Goldfarb et al. | Dec 2007 | A1 |
20080004615 | Woloszko et al. | Jan 2008 | A1 |
20080033422 | Turner et al. | Feb 2008 | A1 |
20080058725 | Scribner et al. | Mar 2008 | A1 |
20080058821 | Maurer et al. | Mar 2008 | A1 |
20080058827 | Osorio et al. | Mar 2008 | A1 |
20080058840 | Albrecht | Mar 2008 | A1 |
20080065020 | Ralph et al. | Mar 2008 | A1 |
20080065087 | Osorio et al. | Mar 2008 | A1 |
20080065137 | Boucher | Mar 2008 | A1 |
20080065190 | Osorio et al. | Mar 2008 | A1 |
20080086142 | Kohm et al. | Apr 2008 | A1 |
20080140079 | Osorio et al. | Jun 2008 | A1 |
20080183165 | Buysee et al. | Jul 2008 | A1 |
20080183265 | Bly | Jul 2008 | A1 |
20080195112 | Liu et al. | Aug 2008 | A1 |
20080208255 | Siegal | Aug 2008 | A1 |
20080221608 | Betts | Sep 2008 | A1 |
20080228192 | Beyer et al. | Sep 2008 | A1 |
20080249481 | Crainich | Oct 2008 | A1 |
20080249525 | Lee et al. | Oct 2008 | A1 |
20080255571 | Truckai et al. | Oct 2008 | A1 |
20080269766 | Justis | Oct 2008 | A1 |
20080269796 | Reiley et al. | Oct 2008 | A1 |
20080287741 | Ostrovsky et al. | Nov 2008 | A1 |
20080294167 | Schumacher et al. | Nov 2008 | A1 |
20090076517 | Reiley et al. | Mar 2009 | A1 |
20090105775 | Mitchell et al. | Apr 2009 | A1 |
20090131867 | Liu et al. | May 2009 | A1 |
20090131886 | Liu et al. | May 2009 | A1 |
20090131945 | Liu et al. | May 2009 | A1 |
20090131948 | Liu | May 2009 | A1 |
20090131950 | Liu et al. | May 2009 | A1 |
20090131986 | Lee | May 2009 | A1 |
20090182427 | Liu et al. | Jul 2009 | A1 |
20090198243 | Melsheimer | Aug 2009 | A1 |
20090264862 | Neidert et al. | Oct 2009 | A1 |
20090264892 | Beyar et al. | Oct 2009 | A1 |
20090292289 | Sand et al. | Nov 2009 | A9 |
20090293687 | Nino et al. | Dec 2009 | A1 |
20090299282 | Lau et al. | Dec 2009 | A1 |
20100057087 | Cha | Mar 2010 | A1 |
20100082033 | Germain | Apr 2010 | A1 |
20100114184 | Degtyar | May 2010 | A1 |
20100121332 | Crainich et al. | May 2010 | A1 |
20100152724 | Marion et al. | Jun 2010 | A1 |
20100160922 | Liu et al. | Jun 2010 | A1 |
20100211076 | Germain et al. | Aug 2010 | A1 |
20100274270 | Patel | Oct 2010 | A1 |
20100298832 | Lau | Nov 2010 | A1 |
20110034884 | Pellegrino et al. | Feb 2011 | A9 |
20110098701 | McIntyre et al. | Apr 2011 | A1 |
20110160737 | Steffen et al. | Jun 2011 | A1 |
20110190831 | Mafi et al. | Aug 2011 | A1 |
20110251615 | Truckai et al. | Oct 2011 | A1 |
20110295261 | Germain | Dec 2011 | A1 |
20110295262 | Germain et al. | Dec 2011 | A1 |
20110301590 | Podhajsky et al. | Dec 2011 | A1 |
20120065543 | Ireland | Mar 2012 | A1 |
20120130381 | Germain | May 2012 | A1 |
20120143298 | Just et al. | Jun 2012 | A1 |
20120158004 | Burger et al. | Jun 2012 | A1 |
20120191095 | Burger et al. | Jul 2012 | A1 |
20120239049 | Truckai | Sep 2012 | A1 |
20120265186 | Burger et al. | Oct 2012 | A1 |
20120277582 | Mafi | Nov 2012 | A1 |
20120277730 | Salahieh | Nov 2012 | A1 |
20120330180 | Pellegrino et al. | Dec 2012 | A1 |
20120330301 | Pellegrino et al. | Dec 2012 | A1 |
20130006232 | Pellegrino | Jan 2013 | A1 |
20130006257 | Lee | Jan 2013 | A1 |
20130041377 | Kuntz | Feb 2013 | A1 |
20130072941 | Tan-Malecki et al. | Mar 2013 | A1 |
20130197563 | Saab et al. | Aug 2013 | A1 |
20130231654 | Germain | Sep 2013 | A1 |
20130237795 | Carr | Sep 2013 | A1 |
20130261615 | Kramer et al. | Oct 2013 | A1 |
20130261621 | Kramer et al. | Oct 2013 | A1 |
20130345709 | Burger et al. | Dec 2013 | A1 |
20140135779 | Germain | May 2014 | A1 |
20140163566 | Phan et al. | Jun 2014 | A1 |
20140236144 | Krueger et al. | Aug 2014 | A1 |
20140316413 | Burger et al. | Oct 2014 | A1 |
20140350542 | Kramer et al. | Nov 2014 | A1 |
20140357983 | Toomey | Dec 2014 | A1 |
20140371740 | Germain et al. | Dec 2014 | A1 |
20150216594 | Prakash | Aug 2015 | A1 |
20150297246 | Patel et al. | Oct 2015 | A1 |
20150313614 | Germain | Nov 2015 | A1 |
20160120584 | Tieu et al. | May 2016 | A1 |
20160228131 | Brockman et al. | Aug 2016 | A1 |
20170095291 | Harrington | Apr 2017 | A1 |
20180264231 | Scheibe | Sep 2018 | A1 |
20200078066 | Purdy et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
2785207 | Jul 2011 | CA |
88203061 | Nov 1988 | CN |
2841051 | Nov 2006 | CN |
20314010 | Jan 2015 | DE |
3260069 | Dec 2017 | EP |
2004242936 | Sep 2004 | JP |
2008510530 | Apr 2008 | JP |
2008528081 | Jul 2008 | JP |
2008541878 | Nov 2008 | JP |
2010063887 | Mar 2010 | JP |
2011500156 | Jan 2011 | JP |
1993004634 | Mar 1993 | WO |
1996013297 | May 1996 | WO |
1996020752 | Jul 1996 | WO |
1997003611 | Feb 1997 | WO |
2002003870 | Jan 2002 | WO |
2003101308 | Dec 2003 | WO |
2005039390 | May 2005 | WO |
2005122938 | Dec 2005 | WO |
2006058223 | Jun 2006 | WO |
2007036815 | Apr 2007 | WO |
2007087400 | Aug 2007 | WO |
2008076330 | Jun 2008 | WO |
2008084479 | Jul 2008 | WO |
2009065085 | May 2009 | WO |
2009155319 | Dec 2009 | WO |
2010039894 | Apr 2010 | WO |
2010081187 | Jul 2010 | WO |
2010135602 | Nov 2010 | WO |
2010135606 | Nov 2010 | WO |
2011066465 | Jun 2011 | WO |
2011066465 | Jun 2011 | WO |
2011114602 | Sep 2011 | WO |
2011137357 | Nov 2011 | WO |
2011137377 | Nov 2011 | WO |
2012071464 | May 2012 | WO |
2013147990 | Oct 2013 | WO |
2014093673 | Jun 2014 | WO |
2016183178 | Nov 2016 | WO |
Entry |
---|
US 7,063,700 B2, 06/2006, Michelson (withdrawn) |
Office Action dated Jan. 26, 2011 for U.S. Appl. No. 11/941,764. |
Office Action dated Jul. 12, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated Jul. 12, 2017 for U.S. Appl. No. 13/083,411. |
Office Action dated Jul. 25, 2011 for U.S. Appl. No. 11/941,733. |
Office Action dated Jul. 29, 2013 for U.S. Appl. No. 13/098,116. |
Office Action dated Jul. 30, 2013 for U.S. Appl. No. 13/083,411. |
Office Action dated Sep. 1, 2010 for U.S. Appl. No. 12/029,428. |
Office Action dated Sep. 6, 2017 for U.S. Appl. No. 15/211,359. |
Office Action dated Sep. 26, 2017 for U.S. Appl. No. 15/388,598. |
Office Action dated Oct. 2, 2018 for U.S. Appl. No. 14/139,372. |
Office Action dated Nov. 7, 2019 for U.S. Appl. No. 15/675,315. |
Office Action dated Dec. 3, 2012 for U.S. Appl. No. 12/571,174. |
Office Action dated Dec. 9, 2009 for U.S. Appl. No. 12/262,064. |
Office Action dated Jul. 12, 2016 for U.S. Appl. No. 14/887,007. |
Office Action dated Sep. 10, 2013 for U.S. Appl. No. 12/571,174. |
International Search Report and Written Opinion dated Jan. 22, 2009 for PCT/US2008/83698. |
International Search Report and Written Opinion dated Feb. 7, 2018 for PCT/US2017/058303. |
International Search Report and Written Opinion dated Feb. 21, 2018 for PCT/US2017/063281. |
International Search Report and Written Opinion dated Mar. 30, 2018 for PCT/US2017/065328. |
International Search Report and Written Opinion dated Apr. 23, 2016 for PCT/US2018/012372. |
International Search Report and Written Opinion dated Jul. 20, 2010 for PCT/US2010/035687. |
European Examination Report dated Jan. 27, 2022 for EP18180753.8. |
International Search Report and Written Opinion dated Jul. 26, 2011 for PCT/US2011/034628. |
International Search Report and Written Opinion dated Aug. 25, 2009 for PCT/US2009/035726. |
International Search Report and Written Opinion dated Nov. 20, 2009 for PCT/US2009/059113. |
Notice of Allowance dated Jan. 4, 2017 for U.S. Appl. No. 13/302,927. |
Notice of Allowance dated Jan. 18, 2017 for U.S. Appl. No. 13/097,998. |
Notice of Allowance dated Feb. 19, 2020 for U.S. Appl. No. 15/675,315. |
Notice of Allowance dated Feb. 21, 2019 for U.S. Appl. No. 14/139,372. |
Notice of Allowance dated Apr. 3, 2019 for U.S. Appl. No. 15/349,715. |
Notice of Allowance dated Apr. 9, 2014 for U.S. Appl. No. 12/578,455. |
Notice of Allowance dated Apr. 23, 2018 for U.S. Appl. No. 13/083,411. |
Notice of Allowance dated May 3, 2017 for U.S. Appl. No. 14/815,620. |
Notice of Allowance dated May 11, 2018 for U.S. Appl. No. 14/453,427. |
Notice of Allowance dated May 26, 2015 for U.S. Appl. No. 13/098,116. |
Notice of Allowance dated Aug. 8, 2019 for U.S. Appl. No. 15/836,125. |
Notice of Allowance dated Aug. 9, 2019 for U.S. Appl. No. 15/836,241. |
Notice of Allowance dated Aug. 24, 2018 for U.S. Appl. No. 15/388,598. |
Notice of Allowance dated Sep. 20, 2019 for U.S. Appl. No. 15/793,509. |
Notice of Allowance dated Oct. 28, 2016 for U.S. Appl. No. 13/853,397. |
Notice of Allowance dated Nov. 8, 2013 for U.S. Appl. No. 12/578,455. |
Notice of Allowance dated Nov. 9, 2017 for U.S. Appl. No. 14/815,812. |
Notice of Allowance dated Nov. 18, 2016 for U.S. Appl. No. 13/097,998. |
Notice of Allowance dated Nov. 25, 2013 for U.S. Appl. No. 12/571,174. |
Notice of Allowance dated Nov. 25, 2016 for U.S. Appl. No. 13/853,397. |
Notice of Allowance dated Dec. 13, 2018 for U.S. Appl. No. 15/917,454. |
Notice of Allowance dated Dec. 28, 2017 for U.S. Appl. No. 15/211,359. |
Notice of Allowance dated Aug. 31, 2016 for U.S. Appl. No. 14/887,007. |
Office Action dated Jan. 18, 2017 for U.S. Appl. No. 14/815,620. |
Office Action dated Jan. 26, 2017 for U.S. Appl. No. 14/815,812. |
Office Action dated Feb. 3, 2016 for U.S. Appl. No. 13/853,397. |
Office Action dated Feb. 10, 2015 for U.S. Appl. No. 13/083,411. |
Office Action dated Feb. 23, 2010 for U.S. Appl. No. 11/941,733. |
Office Action dated Feb. 23, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated Mar. 1, 2017 for U.S. Appl. No. 15/211,359. |
Office Action dated Jun. 11, 2020 for U.S. Appl. No. 15/822,864. |
Office Action dated Jun. 12, 2009 for U.S. Appl. No. 11/941,733. |
Office Action dated Jun. 21, 2013 for U.S. Appl. No. 13/215,098. |
Office Action dated Jun. 22, 2018 for U.S. Appl. No. 15/917,454. |
Office Action dated Jun. 25, 2015 for U.S. Appl. No. 13/853,397. |
Office Action dated Jun. 29, 2018 for U.S. Appl. No. 15/449,591. |
Office Action dated Jul. 11, 2017 for U.S. Appl. No. 14/815,812. |
Office Action dated Oct. 30, 2018 for U.S. Appl. No. 15/349,715. |
Office Action dated Nov. 3, 2008 for U.S. Appl. No. 11/941,764. |
Office Action dated Nov. 3, 2008 for U.S. Appl. No. 12/029,428. |
Office Action dated Nov. 5, 2008 for U.S. Appl. No. 11/941,733. |
Office Action dated Nov. 12, 2013 for U.S. Appl. No. 13/083,411. |
Office Action dated Nov. 25, 2016 for U.S. Appl. No. 13/083,411. |
Office Action dated Dec. 2, 2009 for U.S. Appl. No. 12/029,428. |
European Examination Report dated Dec. 19, 2017 for EP13767383.6. |
European Search Report dated Jul. 1, 2019 for EP16793433.0. |
European Search Report dated May 29, 2020 for EP17874650.9. |
European Search Report dated Jun. 8, 2017 for EP17154660.9. |
European Search Report dated Jun. 16, 2020 for EP17863626.2. |
European Search Report dated Jul. 1, 2020 for EP17878602.6. |
European Search Report dated Nov. 15, 2017 for EP09818476.5. |
European Search Report dated Nov. 16, 2016 for EP14772615.2. |
International Search Report and Written Opinion dated Jan. 9, 2012 for PCT/US2011/034185. |
Office Action dated Mar. 21, 2011 for U.S. Appl. No. 12/029,428. |
Office Action dated Apr. 19, 2018 for U.S. Appl. No. 15/388,598. |
Office Action dated Apr. 24, 2017 for U.S. Appl. No. 14/453,427. |
Office Action dated Apr. 26, 2010 for U.S. Appl. No. 12/029,428. |
Office Action dated May 1, 2009 for U.S. Appl. No. 12/261,987. |
Office Action dated May 5, 2010 for U.S. Appl. No. 11/941,764. |
Office Action dated May 6, 2019 for U.S. Appl. No. 15/675,315. |
Office Action dated May 13, 2009 for U.S. Appl. No. 12/029,428. |
Office Action dated May 17, 2010 for U.S. Appl. No. 12/261,987. |
Office Action dated May 21, 2014 for U.S. Appl. No. 13/098,116. |
Office Action dated May 24, 2012 for U.S. Appl. No. 12/578,455. |
Office Action dated May 31, 2016 for U.S. Appl. No. 14/815,620. |
Office Action dated Jun. 4, 2018 for U.S. Appl. No. 15/349,715. |
Office Action dated Jun. 8, 2009 for U.S. Appl. No. 11/941,764. |
Office Action dated Jun. 10, 2020 for U.S. Appl. No. 15/822,944. |
Office Action dated Dec. 11, 2009 for U.S. Appl. No. 12/261,987. |
Office Action dated Dec. 20, 2019 for U.S. Appl. No. 15/862,441. |
Office Action dated Dec. 26, 2019 for U.S. Appl. No. 15/822,864. |
Office Action dated Feb. 27, 2013 for U.S. Appl. No. 12/578,455. |
Disc-O-Tech confidence Cement System at http://www.disc-o-tech.com/Articles/Article.asp?CategoryID=4&ArticleID=168 accessed, ,Dec. 3, 2007. |
Dai, et al., Bone-Particle-Impregnated Bone Cement: an in vivo weight-bearing study, Journal Biomedical Materials Search, vol. 25 ,Jul. 30, 1990 ,141-156. |
Hasenwinkel, et al.,“A Novel High-Viscosity, Two-Solution Acrylic Bone Cement: Effect of Chemical Composition on Properties”, J. Biomed Mater. Res. vol. 47, No. 1 ,1999 ,36-45. |
Klawitter, et al.,Application of Porous Ceramics for the Attachment of Load Bearing Internal Orthopedic Applications, J. Biomed. Mater. Res. Symp., 2(1) ,1972 ,61-229. |
Liu, et al.,Bone-Particle-Impregnanted Bone Cement: An In Vitro Study, Journal of Biomedical Materials Research, vol. 21 ,1987 ,247-261. |
Park, et al.,Biomaterials: An Introduction—Second Edition, Plenum Press ,1992 ,177-178. |
Park, et al.,The Materials Properties of Bone-Particle Impregnated PMMA, Journal of Biomedical Engineering, vol. 108 ,1986 ,141-148. |
European Search Report dated Oct. 18, 2023 for EP20865049.9. |
Number | Date | Country | |
---|---|---|---|
20210077170 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62902144 | Sep 2019 | US |