This invention relates to network test and measurement, and more particularly to over the air mobile device detection.
The ability to accurately classify mobile devices on a WIPS overlays system is important to wireless network administrators.
Since the introduction of portable devices, most notably the first iPhone in 2007, BYOD or Bring your own Device has increased dramatically in enterprise wireless networks. Employees are on average brining 2 to 3 extra wireless devices into work (such as iPhones, iPads, Android phone or tablets, etc.). All of these extra devices were not factored into the design of the enterprise wireless network. Being able to accurately track these devices and separate them from “Stations”, devices which are planned as part of the network, is key to understanding what is the true number of devices that are being allowed to connect to an enterprise network.
Current methods to detect wireless devices in an enterprise network involve the use of hardware sensors that passively sniff 802.11 traffic, for example on the 2.4 GHz and 5 GHz frequencies. The sensors systematically scan through all of the channels on an 802.11 wireless network on a continuous basis, and when a wireless device is detected, it is classified as a Station (a known or expected device, such as an employee laptop), an Access Point, or Ad-Hoc.
In accordance with the disclosure, the ability to classify mobile devices based on frame characteristics and frame content is provided.
Accordingly, it is an advantage of the present disclosure to provide an improved system and method for enterprise network maintenance.
It is a further advantage of the present disclosure to provide an improved system and method for detecting and classifying devices on a wireless network.
The subject matter of the present technology is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and embodiments thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.
The system according to a preferred embodiment of the present technology comprises method and apparatus to accurately classify smart phones, tablets and other BYOD devices on a WIPS overlay system, allowing a wireless administrator to differentiate between approved wireless stations and other wireless devices.
Referring to
The sensor 12 is suitably mounted in a ceiling, for example, or other out of the way location, in an office or factory or other facility to receive and monitor wireless traffic in the area of the sensor's location.
The processor takes the received decoded signals and performs an analysis described in connection with
In operation, the sensor passively monitors wireless network traffic received via antenna 32, and the decoded data is provided to the processor for classifying devices, determining whether a device operating on the wireless network is a station (an approved wireless device configured by the network administrator to be a station on the network) or a mobile device, another device which is not one of the pre-qualified devices on the network.
The sensor observes the network traffic (step 36) and for an individual device's packet traffic determines the vendor OUI (step 38), the Organizationally Unique Identifier, a 24-bit number that is purchased from the Institute of Electrical and Electronics Engineers, Incorporated (IEEE) Registration Authority. This identifier uniquely identifies a vendor, manufacturer, or other organization which manufactures or sells the mobile device, and is included in the MAC id of the transmitting device that is contained in the data transmitted.
When the particular mobile device sends a Probe Request Frame (a frame sent when the device wants to obtain information from another station on the network) additional information becomes available which is used to further classify the mobile device, so the sensor continues monitoring until a Probe Request Frame is observed (block 40), which will provide additional information about the mobile device, allowing identification of the device (block 42), and the sensor then sends that information to the server (block 44). The server can then decide what to do with that data, for example, storing it in database 16 if the device is determined to not be a station, but is instead a BYOD type device.
As an example, a mobile device would send a Probe Request Frame to determine which access points are within range.
The determined vendor OUI for the device might be, for example, Apple, Samsung, Blackberry, HTC, Sony-Ericsson, Nexus, or Microsoft Surface, etc.
The Probe Frame Request includes additional information about the device capabilities, which can also be provided to be stored in the database.
Examples of the additional information for a selected set of current devices include:
As devices are identified, the information is passed to the management server 14, which stores the device information in the database 16. The server in conjunction with the database can determine which devices are stations, and which are ‘mobile devices’ or BYOD type devices. A network administrator can then later study the database information to gain a better understanding of network usage and what kinds and numbers of non-station devices are using the network.
An alternative embodiment is illustrated in
A receiver 30′ connects to antenna 32′, supplying received signals to decoder 34′, which supplies decoded wireless signals to the processor(s) 22′. The receiver, antenna and decoder may be provided as a separate unit 50, which can comprise an adapter card designed to interface with the device 46. The unit 50 may further include additional processing to perform additional analysis, or the analysis can be performed by the mobile device 46.
The operation of the decoder 34′ may also be provided by the processor(s) 22′, in which case the unit 50 would not include a decoder, the raw data from the receiver being provided to processor(s) 22′ for decoding.
In operation, the mobile device 46/unit 50 operate as self-contained units, and do not need to report or connect back to a central server as in the earlier embodiment, therefore, the operational steps correspond to
Accordingly, a passive sensor is provided to analyze 802.11 network traffic, looking for devices and traffic anomalies, automatically detecting whether a wireless device is a station or a mobile device, optionally sending that information to a database for later study and use.
While a preferred embodiment of the technology has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the technology.
Number | Name | Date | Kind |
---|---|---|---|
20090119776 | Palnitkar et al. | May 2009 | A1 |
20110276366 | Goyet et al. | Nov 2011 | A1 |
20130010719 | Shapira | Jan 2013 | A1 |
20130136016 | Lee et al. | May 2013 | A1 |
20130201989 | Hu et al. | Aug 2013 | A1 |
20130250834 | Seok et al. | Sep 2013 | A1 |
20130308618 | Panneerselvam | Nov 2013 | A1 |
20130331130 | Lee | Dec 2013 | A1 |
20140286321 | Balian et al. | Sep 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20140160948 A1 | Jun 2014 | US |