The present disclosure relates to exhaust systems and methods of assembling exhaust systems for marine propulsion devices having an internal combustion engine.
The following U.S. Patents and Patent Application are incorporated herein by reference, in entirety.
U.S. Pat. No. 8,783,217 discloses a cooling system for a marine engine that is provided with various cooling channels and passages which allow the rates of flow of its internal streams of water to be preselected so that heat can be advantageously removed at varying rates for different portions of the engine. In addition, the direction of flow of cooling water through the various passages assists in the removal of heat from different portions of the engine at different rates so that overheating can be avoided in certain areas, such as the exhaust manifold and cylinder head, while overcooling is avoided in other areas, such as the engine block.
U.S. Pat. No. 8,763,566 discloses a cooling system for a marine engine that is provided with various cooling channels which allow the advantageous removal of heat at different rates from different portions of the engine. A split flow of water is conducted through the cylinder head, in opposite directions, to individually cool the exhaust port and intake ports at different rates. This increases the velocity of coolant flow in the downward direction through the cylinder head to avoid the accumulation of air bubbles and the formation of air pockets that could otherwise cause hot spots within the cylinder head. A parallel coolant path is provided so that a certain quantity of water can bypass the engine block and avoid overcooling the cylinder walls.
U.S. Pat. No. 8,696,394 discloses a marine propulsion system that comprises an internal combustion engine, a cooling circuit carrying cooling fluid that cools the internal combustion engine, a sump holding oil that drains from the internal combustion engine, and a heat exchanger receiving the cooling fluid. The oil that drains from the internal combustion engine to the sump passes through and is cooled by the heat exchanger.
U.S. Pat. No. 8,540,536 discloses a cooling system for a marine engine that has an elongated exhaust conduit comprising a first end receiving hot exhaust gas from the marine engine and a second end discharging the exhaust gas; and an elongated cooling water jacket extending adjacent to the exhaust conduit. The cooling water jacket receives raw cooling water at a location proximate to the second end of the exhaust conduit, conveys raw cooling water adjacent to the exhaust conduit to thereby cool the exhaust conduit and warm the raw cooling water, and thereafter discharges the warmed cooling water to cool the internal combustion engine.
U.S. Pat. No. 8,500,501 discloses an outboard marine drive that includes a cooling system drawing cooling water from a body of water in which the outboard marine drive is operating, and supplying the cooling water through cooling passages in an exhaust tube in the driveshaft housing, a catalyst housing, and an exhaust manifold, and thereafter through cooling passages in the cylinder head and the cylinder block of the engine. A 3-pass exhaust manifold is provided. A method is provided for preventing condensate formation in a cylinder head, catalyst housing, and exhaust manifold of an internal combustion engine of a powerhead in an outboard marine drive.
U.S. Pat. No. 8,479,691 discloses a cooling system for a marine engine that is provided with various cooling channels which allow the advantageous removal of heat at different rates from different portions of the engine. A split flow of water is conducted through the cylinder head, in opposite directions, to individually cool the exhaust port and intake ports at different rates. This increases the velocity of coolant flow in the downward direction through the cylinder head to avoid the accumulation of air bubbles and the formation of air pockets that could otherwise cause hot spots within the cylinder head. A parallel coolant path is provided so that a certain quantity of water can bypass the engine block and avoid overcooling the cylinder walls.
U.S. Pat. No. 8,402,930 discloses a cooling system for a marine engine is provided with various cooling channels and passages which allow the rates of flow of its internal streams of water to be preselected so that heat can be advantageously removed at varying rates for different portions of the engine. In addition, the direction of flow of cooling water through the various passages assists in the removal of heat from different portions of the engine at different rates so that overheating can be avoided in certain areas, such as the exhaust manifold and cylinder head, while overcooling is avoided in other areas, such as the engine block.
U.S. Pat. No. 8,038,493 discloses a catalyzed exhaust system for an outboard motor engine that locates its catalyst device in a catalyst housing above an adapter plate which supports the engine and separates it from the driveshaft housing. The exhaust gas is directed initially in an upwardly direction and then is turned downwardly to provide space for location and easy access to the catalyst device. A coolant, such as water drawn from a body of water, is reversed in direction of flow several times in order to advantageously fill certain cooling channels in an upward direction. In addition, various coolant channels are vented to remove potential pockets of air in their upper regions.
U.S. patent application Ser. No. 14/543,458 discloses an outboard marine propulsion device that comprises an internal combustion engine having a cylinder head and a cylinder block and an exhaust manifold that discharges exhaust gases from the engine towards a vertically elongated exhaust tube. The exhaust manifold has a plurality of inlet runners that receive the exhaust gases from the engine, and a vertically extending collecting passage that conveys the exhaust gases from the plurality of inlet runners upwardly to a bend that redirects the exhaust gases downwardly towards the exhaust tube. A cooling water jacket is on the exhaust manifold and conveys cooling water alongside the exhaust manifold. A catalyst housing is coupled to the exhaust manifold and a cooling water jacket is on the catalyst housing and carries cooling water alongside the catalyst housing. A catalyst is disposed in the catalyst housing.
This Summary is provided to introduce a selection of concepts that are further described herein below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
An outboard marine propulsion device comprises an internal combustion engine. At least one engine cooling passage conveys cooling water through the internal combustion engine. An exhaust manifold comprises a plurality of exhaust runners and an exhaust log. The plurality of exhaust runners axially conveys exhaust gases from the internal combustion engine to the exhaust log. A cooling jacket on the exhaust manifold comprises an exhaust log cooling jacket that conveys the cooling water along an outer surface of the exhaust log and a plurality of exhaust runner cooling passages that each axially convey the cooling water along an outer surface of a respective one of the plurality of exhaust runners from the exhaust log cooling jacket to the engine cooling passage. Methods of making outboard marine propulsion devices are also disclosed.
The present disclosure is described with reference to the following Figures. The same numbers are used throughout the Figures to reference like features and like components.
An exhaust manifold 20 is bolted onto the cylinder head 16. The exhaust manifold 20 has a plurality of exhaust runners 22 and an exhaust log 24. The exhaust runners 22 extend transversely to the exhaust log 24 and axially convey exhaust gases from the internal combustion engine 12 to the exhaust log 24, as shown by solid arrows in
The cooling water flows from the exhaust log cooling water jacket 52 into a plurality of exhaust runner cooling passages 54 that each axially convey the cooling water along an outer surface 56 (see
Referring now to
Referring to
In certain examples, the cross-sectional area of the exhaust runner cooling passages 54 can be different than each other. For example, the highest exhaust runner cooling passage can have a larger cross-sectional area than the relatively lower exhaust runner cooling passages so that more of the cooling water is conveyed along the outer surface of the highest exhaust runner than the outer surfaces of the lower exhaust runners.
Referring now to
Through research and experimentation, the present inventors have determined that by flowing the cooling water axially along the outer surfaces of the exhaust runners, rather than perpendicularly to the exhaust runners, the amount of the outer surface of the exhaust runner having a water jacket can be tailored to achieve specific amounts of heat exchange at the exhaust runners. This geometry provides additional design flexibility and permits tailoring of the shape of the water jacket. In the illustrated example, the bottom inner surfaces of the exhaust runners are without a water jacket. The present inventors have found that this advantageously causes an increase in the temperature of the lower inner surface of the runners, which causes evaporation of any condensation that might accumulate in the exhaust passage in this area. This design also provides tool access for spark plugs. In certain examples the resulting cooling water passages can have the inverted U-shape shown in
Through research and experimentation, the inventors have found that disposing a gasket 64 between the exhaust manifold 20 and the cylinder head 16 allows the designer to control/tailor the amount of cooling water flow around each exhaust runner. In the illustrated example, the majority of cooling water flows through the square-shaped hole 68 above the highest exhaust runner 22. Smaller cooling water holes 70 are provided at the bottom edges of the cooling passages on all three exhaust runners 22 and at the top edges of the lower exhaust runners 22. This arrangement can be varied from that which is shown. Advantageously, the size and placement of the holes in the gasket 64 can be varied to tailor/control the amount of cooling water flowing past each exhaust runner 22 and the location at which the cooling water flows. In the illustrated example, by routing the majority of the cooling water to the cylinder head 16 upstream of the exhaust runners 22, the lower exhaust runners 22 were allowed to function with warmer metal temperatures. This was found to minimize condensation issues inside the exhaust passages. The holes can favorably be placed in areas that are likely to be stagnant areas, leading to boiling if the holes had not been there.
During research and development, the present inventors found that incorporating the telltale 72 at the top of the 180 degree bend portion 26 provides several advantages. For example, the cooling jacket 50 on the bend portion 26 is the highest point in the cooling circuit. Adding the telltale 72 at the highest point allows the telltale 72 to vent air from the cooling circuit and also allows the cooling circuit to be completely filled with cooling water. Optionally, the water in the telltale 72 can be routed to other cooling jackets, such as through a fuel cooler cooling jacket or a voltage regulator cooling jacket, and/or discharge directly overboard. Also, by pulling the cooling water out of the telltale 72 prior to the exhaust log 24, the amount of cooling water flowing over the exhaust runners 22 was reduced, which minimized over-cooling at low engine speeds/low engine loads.
In other examples, the cooling circuit shown in
Referring to
The present disclosure thus provides methods of making outboard marine engines that include providing an internal combustion engine 12 having an engine cooling passage 58 that conveys cooling water through the internal combustion engine 12. An exhaust manifold 20 is mounted (e.g. bolted) onto the internal combustion engine 12 and includes a plurality of exhaust runners 22 and an exhaust log 24. The exhaust runners 22 axially convey exhaust gases from the internal combustion engine 12 to the exhaust log 24. Cooling jackets 50, 52, 54 are provided on the exhaust manifold 20 and includes an exhaust log cooling jacket 52 that conveys cooling water along an outer surface of the exhaust log 24 and a plurality of exhaust runner cooling passages 54 that each axially convey the cooling water along an outer surface 56 of the respective one of the exhaust runners 22 between the exhaust log 24 and the engine cooling passages 58.
The methods can further include providing a gasket 64 between the cylinder head 16 and the cooling jackets 50, 52, 54. The gasket 64 can include a plurality of exhaust holes 66 through which exhaust gases are conveyed and further include a plurality of cooling water holes 68, 70 through which cooling water is conveyed. The cooling water holes 68, 70 can selectively be formed with different cross-sectional areas and locations so as to tailor the amount of cooling water and location of cooling water flow past the exhaust runners 22.
A telltale 72 can be incorporated into the cooling circuit and the location(s) of the telltale can be selected to provide the functional advantages described herein above.
In the above description, certain terms have been used for brevity, clarity, and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. The different systems and method steps described herein may be used alone or in combination with other systems and methods. It is to be expected that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1783714 | Horning | Dec 1930 | A |
5306185 | Lassanske et al. | Apr 1994 | A |
6039012 | Motoyama | Mar 2000 | A |
6302754 | Kashima | Oct 2001 | B1 |
6511355 | Woodward | Jan 2003 | B1 |
6662555 | Ishii | Dec 2003 | B1 |
7704111 | Ito et al. | Apr 2010 | B2 |
7954314 | Bruestle et al. | Jun 2011 | B1 |
8038493 | Broman et al. | Oct 2011 | B1 |
8298026 | Ochiai | Oct 2012 | B2 |
8402930 | Taylor et al. | Mar 2013 | B1 |
8444447 | Ochiai | May 2013 | B2 |
8479691 | Taylor et al. | Jul 2013 | B1 |
8500501 | Taylor et al. | Aug 2013 | B1 |
8540536 | Eichinger et al. | Sep 2013 | B1 |
8696394 | Langenfeld et al. | Apr 2014 | B1 |
8763566 | Taylor et al. | Jul 2014 | B1 |
8783217 | Taylor et al. | Jul 2014 | B1 |
20020034900 | Kato | Mar 2002 | A1 |
20080166935 | Ito et al. | Jul 2008 | A1 |
20090130928 | Taylor | May 2009 | A1 |