This application claims the benefit of priority to Japanese Patent Application No. 2017-095809 filed on May 12, 2017. The entire contents of this application are hereby incorporated herein by reference.
The present invention relates to an outboard motor and a sealing structure for a divisible engine cover used therefor.
The outboard motor described in Japanese Unexamined Patent Application Publication No. H6-234393 includes a motor cowl covering an engine, the motor cowl being divisible into an upper motor cover and a lower motor cover. The boundary between the lower end of the upper motor cover and the upper end of the lower motor cover is sealed with a cover seal that is annular in plan view. The lower motor cover is divisible into a first cover portion and a second cover portion.
The motor cowl described in Japanese Unexamined Patent Application Publication No. H6-234393 has a boundary spanning three parts of the upper motor cover, the first cover portion, and the second cover portion and another boundary continuous with the boundary and existing between the two parts of the first cover portion and the second cover portion. With just the annular, i.e., simply shaped, cover seal disclosed in Japanese Unexamined Patent Application Publication No. H6-234393, it is difficult to seal these boundaries without leakage, and external water may leak through the boundaries and enter into the engine cover. When the water within the engine cover enters into the engine, a problem may occur with the engine.
In order to overcome the previously unrecognized and unsolved challenges described above, a preferred embodiment of the present invention provides an outboard motor including an engine, an engine cover including at least a first cover, a second cover, and a third cover that cover the engine, and a seal. The engine cover includes a first boundary spanning three portions of the first cover, the second cover, and the third cover and a second boundary between two of the three portions and continuous with the first boundary. The seal integrally includes a three-part seal that seals the first boundary and a two-part seal with a structure different from that of the three-part seal and that seals the second boundary.
In accordance with the preferred embodiment described above, the engine cover is divisible into at least the first cover, the second cover, and the third cover, has the first boundary spanning three portions of the three covers and the second boundary between two of the three portions and continuous with the first boundary. The seal integrally includes the three-part seal and the two-part seal, which seal the first boundary and the second boundary and have respective different structures. The seal seals the first boundary and the second boundary with the three-part seal sealing the first boundary and the two-part seal sealing the second boundary. This significantly reduces or prevents external water from leaking through the first boundary and the second boundary, which are boundaries between the covers of the divisible engine cover, and entering into the engine.
In a preferred embodiment of the present invention, the three-part seal may be a molded article and the two-part seal may be an extrusion molded article.
In accordance with the preferred embodiment described above, a clearance gap in the complex shaped first boundary spanning the three portions is filled with the molded three-part seal and a clearance gap in the second boundary spanning the two portions is filled with the extrusion molded two-part seal. This allows the seal to seal the first boundary and the second boundary.
A preferred embodiment of the present invention provides an outboard motor including an engine, a mount on which the engine is mounted, an engine cover, and a sealing structure for the engine cover. The engine cover includes a top portion opposing the engine from above, a front bottom portion opposing the engine from the front, and a side bottom portion opposing the engine from the side. The front bottom portion is located at a position lower than a position of the top portion, and the side bottom portion is located at a position lower than the position of the top portion and rearward of the front bottom portion. The engine cover is coupled to the mount through the front bottom portion and the side bottom portion. The sealing structure includes a first seal. The first seal integrally includes a first portion, a second portion, and a third portion extending from the first portion to the second portion. The first portion seals the boundary between the top portion, the front bottom portion, and the side bottom portion. The second portion seals the boundary between the front bottom portion, the mount, and the side bottom portion. The third portion seals the boundary between the front bottom portion and the side bottom portion.
In accordance with the preferred embodiment described above, an engine cover, which is divisible into three or more covers including at least the top portion, the front bottom portion, and the side bottom portion, includes a boundary between the top portion, the front bottom portion, and the side bottom portion and a boundary between the front bottom portion, the mount, and the side bottom portion. The first seal of the sealing structure seals the boundary between the top portion, the front bottom portion, and the side bottom portion with the first portion; seals the boundary between the front bottom portion, the mount, and the side bottom portion with the second portion; and seals the other boundary extending between these boundaries with the third portion. This structure provides desirable sealing characteristics for a divisible engine cover having such a complex structure. This significantly reduces or prevents external water from leaking through the boundaries between the multiple covers of the divisible engine cover and entering into the engine.
In a preferred embodiment of the present invention, the first portion may be located at a position higher than a position of the second portion, and an upper end of the front bottom portion may include an opposing portion that opposes an upper end of the side bottom portion from within the engine cover. In this case, the first portion integrally includes an inner portion and an outer portion. The inner portion is at least partially located between the opposing portion and the upper end of the side bottom portion. The outer portion extends through the boundary between the outer surface of the upper end of the front bottom portion and the outer surface of the upper end of the side bottom portion so as to be located on the outer surface of the upper end of the front bottom portion. The inner portion includes a water storage groove adjacent to the outer portion and opposing the side bottom portion.
In accordance with the preferred embodiment described above, the first portion seals the boundary between the opposing portion in the upper end of the front bottom portion and the upper end of the side bottom portion with the inner portion and seals the boundary between the outer surface of the upper end of the front bottom portion and the outer surface of the upper end of the side bottom portion with the outer portion. This structure provides desirable sealing characteristics at the boundary between the upper end of the front bottom portion and the upper end of the side bottom portion. This significantly reduces or prevents external water from leaking through the boundary between the upper end of the side bottom portion and the upper end of the front bottom portion and entering into the engine.
Even if external water leaks through the boundary between the outer surface of the upper end of the front bottom portion and the outer surface of the upper end of the side bottom portion and enters into the engine cover, the water is immediately contained in the water storage groove in the inner portion so that it is difficult to reach the engine. This further significantly reduces or prevents water from entering into the engine.
In a preferred embodiment of the present invention, the inner portion may include an upper rib protruding toward the upper end of the side bottom portion and extending rearward from the upper end of the water storage groove.
In accordance with the preferred embodiment described above, water within the water storage groove will be blocked by the upper rib from scattering upward within the engine cover to reach the engine, which further significantly reduces or prevents water from entering into the engine.
In a preferred embodiment of the present invention, a drainage hole may be provided in a lower portion of the engine cover or the mount, and the inner portion may include a guide extending rearward from the lower end of the water storage groove to guide water within the water storage groove to the drainage hole.
In accordance with the preferred embodiment described above, water within the water storage groove is guided through the guide to the drainage hole and discharged out of the engine cover, which further significantly reduces or prevents water from entering into the engine.
In a preferred embodiment of the present invention, an insertion hole, through which a fastening member coupling the opposing portion and the side bottom portion is inserted, may be provided in a penetrating manner in a portion of the inner portion located between the upper rib and the guide.
In accordance with the preferred embodiment described above, even if external water reaches the insertion hole, the water is blocked by the upper rib from scattering upward to reach the engine and also is guided through the guide to the drainage hole to be discharged out of the engine cover. This further significantly reduces or prevents water from entering into the engine.
In a preferred embodiment of the present invention, the sealing structure may further include a second seal that seals the boundary between the top portion and the front bottom portion and the boundary between the top portion and the side bottom portion. In this case, the second seal may surround a portion of the outer portion located between the second seal and the front bottom portion.
In accordance with the preferred embodiment described above, the second seal provides desirable sealing characteristics at the boundary between the top portion and the front bottom portion and the boundary between the top portion and the side bottom portion. This significantly reduces or prevents external water from leaking through these boundaries and entering into the engine.
Further, the second seal surrounds a portion of the outer portion, which seals the boundary between the outer surface of the upper end of the front bottom portion and the outer surface of the upper end of the side bottom portion in the first seal, between the second seal and the front bottom portion. This causes the first seal and the second seal to be continuous with each other. Since the boundary between the top portion, the front bottom portion, and the side bottom portion is thus sealed by both the first seal and the second seal, this structure provides desirable sealing characteristics at the boundary. This significantly reduces or prevents external water from leaking through the boundary and entering into the engine.
In a preferred embodiment of the present invention, the sealing structure may further include a third seal that seals the boundary between the mount and the front bottom portion and the boundary between the mount and the side bottom portion. In this case, the second portion includes a sealing surface that adheres to the third seal from the front at the boundary between the front bottom portion, the mount, and the side bottom portion.
In accordance with the preferred embodiment described above, the third seal provides desirable sealing characteristics at the boundary between the mount and the front bottom portion and the boundary between the mount and the side bottom portion. This significantly reduces or prevents external water from leaking through these boundaries and entering into the engine.
Further, in the first seal, the sealing surface of the second portion adheres tightly to the third seal from the front at the boundary between the front bottom portion, the mount, and the side bottom portion to seal the boundary. This causes the first seal and the third seal to be continuous with each other. Since the boundary is thus sealed by both the first seal and the third seal, desirable sealing characteristics at the boundary are achieved. This significantly reduces or prevents external water from leaking through the boundary and entering into the engine.
In a preferred embodiment of the present invention, a longitudinally extending positioning groove may be provided in the second portion, and the front bottom portion may include a positioning portion fitted into the positioning groove.
In accordance with the preferred embodiment described above, the second portion is preferably positioned laterally to seal the boundary between the front bottom portion, the mount, and the side bottom portion with the lateral position being stabilized. This structure provides desirable sealing characteristics at the boundary and significantly reduces or prevents external water from leaking through the boundary and entering into the engine.
In a preferred embodiment of the present invention, the first portion and the second portion may be molded articles and the third portion may be an extrusion molded article.
In accordance with the preferred embodiment described above, it is possible to achieve a structure in which the first seal integrally includes the first portion, the second portion, and the third portion.
In a preferred embodiment of the present invention, the engine cover may be divisible into the top portion, the front bottom portion, and a pair of the left and right side bottom portions opposing the engine, respectively, from the left and the right. In this case, the sealing structure includes a pair of the left and right first seals. The sealing structure may further include a fourth seal that seals the boundary between the pair of side bottom portions.
In accordance with the preferred embodiment described above, the divisible engine cover has a more complex structure due to it being divided into four or more covers of the top portion, the front bottom portion, and the pair of left and right side bottom portions. The pair of left and right first seals correspond to the pair of left and right side bottom portions.
The left first seal seals the boundary between the top portion, the front bottom portion, and the left side bottom portion with the first portion and seals the boundary between the front bottom portion, the mount, and the left side bottom portion with the second portion. The left first seal seals the other boundary extending between these boundaries with the third portion.
The right first seal seals the boundary between the top portion, the front bottom portion, and the right side bottom portion with the first portion and seals the boundary between the front bottom portion, the mount, and the right side bottom portion with the second portion. The right first seal seals the other boundary extending between these boundaries with the third portion.
Further, the fourth seal seals the boundary between the pair of side bottom portions.
As described heretofore, it is possible to provide desirable sealing characteristics for a divisible engine cover having such a complex structure. This significantly reduces or prevents external water from leaking through the boundaries between the multiple covers of the divisible engine cover and entering into the engine.
The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.
Preferred embodiments of the present invention will hereinafter be described in detail with reference to the accompanying drawings.
The outboard motor 1 includes an outboard motor main body 10 and an installation mechanism (not shown) arranged to install the outboard motor main body 10 on a hull (not shown). Supported by the installation mechanism, the outboard motor main body 10 is turned vertically about a laterally extending horizontal axis 11 and also turned laterally about a vertically extending vertical axis 12. The outboard motor main body 10 includes the propeller 2, an engine 13, a drive shaft 14, a propeller shaft 15, a gear mechanism 16, a casing 17, a mount 18 (see
The engine 13 is, for example, an internal combustion engine or an electric motor. In this preferred embodiment, the engine 13 is preferably an internal combustion engine with a crankshaft (not shown) incorporated therein arranged to rotate about a vertically extending crank axis. The drive shaft 14 is coupled to a lower end of the crankshaft (not shown) of the engine 13 and extends downward.
The propeller shaft 15 extends in in a front to back direction at a position lower than that of the lower end of the drive shaft 14. The gear mechanism 16 couples the lower end of the drive shaft 14 and a front end of the propeller shaft 15. The propeller 2 is attached to a rear end of the propeller shaft 15. The rotation of the drive shaft 14 with the driving of the engine 13 is transmitted by the gear mechanism 16 to the propeller shaft 15. This allows the propeller 2 to be driven and rotated by the engine 13. The rotation axis 2A of the propeller 2 coincides with the central axis of the propeller shaft 15. The rotation of the propeller 2 generates a propulsive force for forward or rearward movement of the hull.
The casing 17 is a vertically extending hollow body housing the drive shaft 14, the propeller shaft 15, and the gear mechanism 16 therein. The propeller shaft 15 and the gear mechanism 16 are housed in a lower case 17A that is a lower end of the casing 17. The propeller 2 is located outside the lower case 17A.
An insertion hole 18B, an exhaust hole 18C located, for example, rearward of the insertion hole 18B, and two drainage holes 18D located, for example, on each of the left and right sides of the exhaust hole 18C are provided in the upper surface of the mount 18. The insertion hole 18B, the exhaust hole 18C, and the drainage holes 18D penetrate through the mount 18 vertically. The drive shaft 14 is inserted through the insertion hole 18B. Exhaust gas from the engine 13 is discharged through the exhaust hole 18C and the interior of the casing 17 out of the outboard motor main body 10. Water, if on the upper surface of the mount 18, falls through the drainage holes 18D and the interior of the casing 17 to be discharged out of the outboard motor main body 10. It is noted that the mount 18 may include a portion of a flow path for cooling water that cools the engine 13 or lubricant that lubricates the engine 13.
The engine cover 19 preferably has a box shape and is located at a position higher than that of the casing 17 to cover the engine 13 (see
The top portion 25 is made of, for example, resin and preferably has a box shape. The top portion 25 includes an opening (not shown) that opens the interior space thereof downward. In this preferred embodiment, the resin is preferably, for example, a thermosetting resin. The lower edge 25A of the top portion 25 has a continuous annular shape to define the opening.
The front bottom portion 27 is made of, for example, metal such as aluminum and integrally includes a horizontal portion 27A and a vertical portion 27B. The horizontal portion 27A preferably has a plate shape with its thickness direction coinciding or substantially coinciding with the vertical direction. The horizontal portion 27A preferably has a semicircular or substantially semicircular shape in plan view. The front edge of the horizontal portion 27A is thus curved in an arcuate shape bulging forward. The rear edge of the horizontal portion 27A is also curved in an arcuate shape bulging forward. The rear edge of the horizontal portion 27A includes a fitting groove 27C extending in a curved manner along the rear edge. The fitting groove 27C is recessed forward and opens rearward. At positions adjacent to the fitting groove 27C in lateral ends of the horizontal portion 27A, drainage holes 27D are provided in a manner vertically penetrating through the horizontal portion 27A.
The vertical portion 27B preferably has a plate shape curved along the front edge of the horizontal portion 27A and extending upward. The front surface of the vertical portion 27B defines a portion of the outer surface of the engine cover 19. In an upper end of the front surface of the vertical portion 27B, there is a horizontal step 27E extending laterally in a curved manner and a pair of left and right vertical steps 27F extending downward from the lateral ends of the horizontal step 27E. The portion of the vertical portion 27B higher than the horizontal step 27E includes an upper end 27G of the front bottom portion 27. The front surface of the upper end 27G is offset rearward by one step from the portion of the front surface of the vertical portion 27B surrounded by the horizontal step 27E and the pair of vertical steps 27F. Opposing portions 27H are provided integrally at the respective lateral ends of the upper end 27G. A screw hole 27I is provided in the left surface of the left opposing portion 27H. A screw hole 27I is also provided in the right surface of the right opposing portion 27H. The portion of the vertical portion 27B rearward of each vertical step 27F will be referred to as a rear portion 27J. The upper end edge of the rear portion 27J is inclined so as to descend as it extends rearward.
The side bottom portion 28 is made of, for example, resin and includes a pair of left and right portions. Of the pair of left and right side bottom portions 28, the left side bottom portion 28 will be referred to as a side bottom portion 28L, while the right side bottom portion 28 will be referred to as a side bottom portion 28R. The side bottom portion 28L and the side bottom portion 28R are preferably laterally symmetric. Each side bottom portion 28 integrally includes a plate-shaped main body 28A extending in a front to back and vertical direction and an extended portion 28B extending in a manner bent from the rear end of the main body 28A toward the other side bottom portion 28. The pair of side bottom portions 28 are coupled through a right end of the extended portion 28B of the side bottom portion 28L and a left end of the extended portion 28B of the side bottom portion 28R. The right end of the extended portion 28B of the side bottom portion 28L and the left end of the extended portion 28B of the side bottom portion 28R will each be referred to as a coupling 28C.
In the side bottom portion 28L, the left surface of the main body 28A and the rear surface of the extended portion 28B defines the outer surface of the side bottom portion 28L and a portion of the outer surface of the engine cover 19. In the side bottom portion 28L, the right surface of the main body 28A and the front surface of the extended portion 28B define the inner surface of the side bottom portion 28L and a portion of the inner surface of the engine cover 19. In the side bottom portion 28R, the right surface of the main body 28A and the rear surface of the extended portion 28B define the outer surface of the side bottom portion 28R and a portion of the outer surface of the engine cover 19. In the side bottom portion 28R, the left surface of the main body 28A and the front surface of the extended portion 28B define the inner surface of the side bottom portion 28R and a portion of the inner surface of the engine cover 19.
In an upper end of the outer surface of each side bottom portion 28, a step 28D extends from the front end of the main body 28A to the coupling 28C. The portion of each side bottom portion 28 higher than the step 28D is an upper end 28E of the side bottom portion 28. The outer surface of the upper end 28E is offset by one step inside the engine cover 19 farther than the portion of the outer surface of the side bottom portion 28 lower than the step 28D. In a front end of the upper end 28E, a recess 28F is recessed inward of the engine cover 19. A bottom portion 28G of the recess 28F is raised in a convex shape on the inner surface of the side bottom portion 28. The bottom portion 28G is provided with an insertion hole 28H penetrating laterally through the bottom portion 28G.
On the inner surface of each side bottom portion 28, there is integrally provided an upper rib 28I protruding inward of the engine cover 19 and extending from the lower end of the bottom portion 28G of the recess 28F to the lower end of the coupling 28C. On the inner surface of each side bottom portion 28, there is integrally provided a lower rib 28J extending from a location rearward of the bottom portion 28G to the lower end of the coupling 28C. The lower rib 28J is located below a portion of the upper rib 28I and extends parallel or substantially parallel with the upper rib 28I to the lower end of the coupling 28C. A fitting groove 28K is provided between the upper rib 28I and the lower rib 28J. The fitting groove 28K extends from a position rearward of the bottom portion 28G to the lower end of the coupling 28C. The portion of the upper rib 28I located forward of the fitting groove 28K and extending to the lower end of the recess 28F will be referred to as an extended section 28M. The lower rib 28J does not exist below the extended section 28M.
Assembly of the divisible engine cover 19 will be described with reference also to
Next, the operator arranges the pair of side bottom portions 28 at a position rearward of the front bottom portion 27 and sandwiches the mount 18 bilaterally with the side bottom portions 28 until the couplings 28C are coupled to each other. Then, the left portion of the outer edge 18A of the mount 18 fits into the fitting groove 28K (not shown) in the side bottom portion 28L from the right, while the right portion of the outer edge 18A fits into the fitting groove 28K in the side bottom portion 28R from the left. This causes the side bottom portions 28 to be coupled to the mount 18. It is noted that the side bottom portions 28 and the mount 18 may be fixed using a fastening member such as a bolt if needed.
The front portion of the main body 28A of the side bottom portion 28L covers the left rear portion 27J of the vertical portion 27B of the front bottom portion 27 from the left. The front portion of the main body 28A of the side bottom portion 28R covers the right rear portion 27J of the main body 28A from the right. In this state, the left and right opposing portions 27H in the upper end 27G of the front bottom portion 27 are opposed from within the engine cover 19 to the bottom portions 28G of the recesses 28F in the upper ends 28E of the side bottom portions 28 located at laterally corresponding positions. In addition, the insertion holes 28H in the bottom portions 28G and the screw holes 27I in the opposing portions 27H are aligned with each other. When the operator assembles coupling members 29 such as bolts through the insertion holes 28H into the screw holes 27I, the opposing portions 27H and the side bottom portions 28 are coupled. This causes the front bottom portion 27 and the side bottom portions 28 to be fixed to each other.
With the pair of side bottom portions 28 being coupled to the front bottom portion 27, the horizontal step 27E of the vertical portion 27B of the front bottom portion 27 and the steps 28D of the side bottom portions 28 are connected to define one annular body (see
The operator then covers the engine 13 with the top portion 25. The lower edge 25A of the top portion 25 then encompasses the annular body defined by the upper end 27G of the front bottom portion 27 and the upper ends 28E of the side bottom portions 28. This causes the top portion 25 to be coupled to the front bottom portion 27 and the side bottom portions 28. It is noted that the top portion 25 may be fixed to the front bottom portion 27 and the side bottom portions 28 using a fastening member such as a bolt if needed.
The assembling of the engine cover 19 and the coupling of the engine cover 19 to the mount 18 are thus completed. In the completed engine cover 19, the front bottom portion 27 is located at a position lower than that of the top portion 25 and the pair of side bottom portions 28 are located at a position lower than that of the top portion 25 and rearward of the front bottom portion 27 (see
A boundary exists between the mount 18 and the engine cover 19 and multiple boundaries exist also in the engine cover 19 itself. The multiple boundaries in the engine cover 19 are, for example, one between the top portion 25 and the front bottom portion 27 and ones between the two portions of the front bottom portion 27 and each side bottom portion 28 (referred to as a second boundary B2; see
The sealing structure 40 includes a first seal 41, a second seal 42, a third seal 43, and a fourth seal 44. The fourth seal 44, the third seal 43, the second seal 42, and the first seal 41 will hereinafter be described in this order.
The fourth seal 44 preferably has a vertically extending columnar shape between the couplings 28C of the pair of side bottom portions 28. The cross-section of the fourth seal 44 in the direction perpendicular or substantially perpendicular to the direction in which the fourth seal 44 extends has a structure shown in
The fourth seal 44 spans the grooves 28N of both side bottom portions 28. In this state, the rib 28P of the side bottom portion 28L is fitted in the space 44C of the fourth seal 44. In the fourth seal 44, the elastic portion 44B surrounds the rib 28P and the first protrusion 44D in the front to back direction and is deformed in a manner following the rib 28P and, in this state, adheres tightly to the rib 28P. The second protrusion 44F is also deformed in a manner sandwiched between the leading end of the rib 28P and the bottom of the groove 28N in the side bottom portion 28R to adhere tightly to the bottom of the groove 28N. This causes the boundary between the couplings 28C of the pair of side bottom portions 28 to be sealed entirely in the vertical direction by the fourth seal 44.
The third seal 43 preferably has an annular shape extending along the annular body defined by the fitting groove 27C in the front bottom portion 27 and the fitting grooves 28K in the side bottom portions 28 (see
The second seal 42 includes a second lower seal 46 and a second upper seal 47 (see
The second lower seal 46 includes a core portion 46A made of, for example, metal and an elastic portion 46B made of, for example, rubber and coating the entire core portion 46A. The core portion 46A preferably has a vertically inverted U-shaped or substantially U-shaped cross-section and the elastic portion 46B also preferably has a U-shaped or substantially U-shaped cross-section corresponding to the core portion 46A. The concave space 46C sandwiched between the core portion 46A opens downward. The elastic portion 46B includes a tongue-shaped first protrusion 46D protruding upward into the space 46C. The first protrusion 46D is provided on one of a pair of flat regions (right flat region in
The second upper seal 47 is made of, for example, rubber and preferably has a band shape extending along a portion of the second lower seal 46 (see
The second upper seal 47 is located on a region rearward of the front portion of the second lower seal 46 and preferably is U-shaped or substantially U-shaped in plan view (see
A pair of left and right first seals 41 are provided correspondingly to the pair of left and right side bottom portions 28 (see
The first portion 51 integrally includes an inner portion 51A and an outer portion 51B. The inner portion 51A preferably has a plate shape with its thickness direction coinciding or substantially coinciding with the lateral direction. The upper edge and the rear edge of the inner portion 51A are bent rightward. A pair of anteroposterior vertical ribs 51C protruding leftward and extending vertically and parallel or substantially parallel to each other are provided in a front end of the left surface of the inner portion 51A. Of the pair of vertical ribs 51C, the forward vertical rib 51C may be referred to as a vertical rib 51CF, while the rearward vertical rib 51C may be referred to as a vertical rib 51CR. The vertical rib 51CF defines a front edge of the inner portion 51A bent leftward. A vertically extending water storage groove 51D is located between and defined by the two vertical ribs 51C.
An upper rib 51E protruding leftward is provided at a position of the left surface of the inner portion 51A below and adjacent to the upper edge. The upper rib 51E is connected to the upper end of the vertical rib 51CF to close the upper end of the water storage groove 51D and extends rearward from the upper end of the water storage groove 51D to just before the rear edge of the inner portion 51A. A rear end of the upper rib 51E may be curved downward. A guide 51F is provided in a lower end of the left surface of the inner portion 51A. The guide 51F is a leftward protruding rib connected to a lower end of the vertical rib 51CF to close the lower end of the water storage groove 51D and extends rearward from the lower end of the water storage groove 51D to just before the rear edge of the inner portion 51A. An insertion hole 51G laterally penetrates a portion of the inner portion 51A that is rearward of the water storage groove 51D and is vertically sandwiched between the upper rib 51E and the guide 51F.
The inner portion 51A further includes an extended portion 51H extending leftward from the left end of the guide 51F and a lower rib 51I protruding leftward and upward from the boundary between the guide 51F and the extended portion 51H. The extended portion 51H is connected to the lower end of the vertical rib 51CF and extends rearward behind the guide 51F. A rear portion 51J of the extended portion 51H is curved downward. A left end of the rear portion 51J is bent downward. The lower rib 51I is connected to the lower end of the vertical rib 51CF and extends along the extended portion 51H. A drainage groove 51K is located between and defined by the extended portion 51H and the lower rib 51I. The drainage groove 51K extends rearward from the lower end of the vertical rib 51CF to be curved downward and opens leftward.
The outer portion 51B preferably has a plate shape with its thickness direction coinciding or substantially coinciding with the lateral direction and inclined with respect to the inner portion 51A in plan view so as to be offset rightward as it extends forward. An upper end 51L of the outer portion 51B protrudes upward above the inner portion 51A. The upper end edge of the outer portion 51B is inclined so as to be offset downward as it extends forward. The rear edge 51M of the outer portion 51B is bent rightward. An upper end of the rear edge 51M defines a portion of the upper end 51L. The upper end of the rear edge 51M protrudes upward above the vertical rib 51CF of the inner portion 51A, and a portion of the rear edge 51M lower than the upper end is connected to the vertical rib 51CF from the left. The lower edge 51N of the outer portion 51B is bent leftward. A rear end of the lower edge 51N is bent downward and connected to the lower end of the vertical rib 51CF from the left. The rear edge 51M and the rear end of the lower edge 51N may be considered to be a portion of the vertical rib 51CF or the vertical rib 51CF may be considered to be a portion of the rear edge 51M and the lower edge 51N. The water storage groove 51D in the inner portion 51A is adjacent to the rear edge 51M from behind.
The second portion 52 preferably has a box shape and its interior space opens downward. The second portion 52 preferably has a triangular or substantially triangular top surface 52A, and a front surface 52B, a sealing surface 52C, and a tapered surface 52D extending downward from the three respective sides of the top surface 52A. The second portion 52 also includes a pressed surface 52E sandwiched between the sealing surface 52C and the tapered surface 52D.
The top surface 52A extends horizontally or substantially horizontally. The front surface 52B extends in or substantially in the lateral direction. A vertically extending positioning groove 52F is provided at a lateral intermediate position of the front surface 52B. The positioning groove 52F penetrates vertically through the second portion 52. A protrusion 52G defining the upper end of the positioning groove 52F and protruding upward is provided on the top surface 52A. The horizontal cross-section of the protrusion 52G preferably is U-shaped or substantially U-shaped narrowing rearward. A rear end of the protrusion 52G is the leading end of the protrusion 52G and is preferably hollow. The interior space in the leading end of the protrusion 52G defines an outlet 52H (see
A projection 52I protruding upward is provided on the top surface 52A. The projection 52I extends rearward from the leading end of the protrusion 52G to be bent leftward. The sealing surface 52C is connected to the right end edge of the front surface 52B and inclined so as to offset rearward as it extends leftward in plan view. The sealing surface 52C may be flat or curved in a manner recessed forward in plan view. The tapered surface 52D is connected to the left end edge of the front surface 52B and inclined so as to offset downward as it extends leftward. The rear end of the upper end edge of the tapered surface 52D is connected to the left end of the upper end edge of the sealing surface 52C. A lower end of the tapered surface 52D may be a vertical surface. The left end of the projection 52I is positioned at approximately the center of the upper end edge of the tapered surface 52D. The pressed surface 52E is bridged between the left end edge of the sealing surface 52C and the rear end edge of the tapered surface 52D and preferably has a triangular or substantially triangular shape widening downward. The pressed surface 52E is inclined so as to offset forward as it extends leftward in plan view.
The third portion 53 preferably has a columnar shape extending front to back between the first portion 51 and the second portion 52 in a manner inclined with respect to the horizontal direction. The cross-section of the third portion 53 in the direction perpendicular or substantially perpendicular to the direction in which the third portion 53 extends has a structure shown in
The third portion 53 includes a core portion 53A made of, for example, metal and an elastic portion 53B made of, for example, rubber and coating the entire core portion 53A. The core portion 53A preferably has a vertically inverted U-shaped or substantially U-shaped cross-section and the elastic portion 53B also preferably has a U-shaped or substantially U-shaped cross-section corresponding to the core portion 53A. The concave space 53C sandwiched between the core portion 53A opens downward. A front end of the elastic portion 53B is connected to the rear portion 51J of the extended portion 51H and the lower rib 51I of the first portion 51, while a rear end of the elastic portion 53B is connected to the protrusion 52G of the second portion 52 (see
The elastic portion 53B includes a tongue-shaped first protrusion 53D protruding leftward and upward in the space 53C. The first protrusion 53D is provided on one of a pair of left and right flat regions (right flat region in
The elastic portion 53B includes a second protrusion 53G protruding upward from an upper end of the core portion 53A. The second protrusion 53G is hollow and preferably has a triangular or substantially triangular cross-section narrowing upward. The interior space of the second protrusion 53G defines a flow path 53H connected to the drainage groove 51K in the first portion 51 (see
The upper edge of the inner portion 51A is engaged with the opposing portion 27H from above, while the rear edge of the inner portion 51A is engaged with the opposing portion 27H from behind. In the inner portion 51A, the vertical rib 51CR, the upper rib 51E, and the lower rib 51I protrude toward the upper end 28E of the side bottom portion 28L and adhere tightly to the inner surface of the side bottom portion 28L. Specifically, the vertical rib 51CR and the upper rib 51E extend leftward to adhere tightly to the right surface of the bottom portion 28G in the upper end 28E, while the lower rib 51I is deformed in a manner following the lower surface of the bottom portion 28G to adhere tightly to the lower surface of the bottom portion 28G. Accordingly, the clearance gap 62 between the opposing portion 27H and the bottom portion 28G is closed by the vertical rib 51CR from the front and also closed by the upper rib 51E and the lower rib 51I from above and below to be opened only rearward. The water storage groove 51D in the inner portion 51A, which is positioned forward of the vertical rib 51CR, is opposed to the upper end 28E of the side bottom portion 28L (particularly a region of the right surface of the bottom portion 28G forward of the insertion hole 28H).
Accordingly, the first boundary B1 between the top portion 25, the front bottom portion 27, and the side bottom portion 28L is sealed by both the first portion 51 and the second lower seal 46.
A pair of upper and lower horizontal walls 27M extending rearward parallel or substantially parallel to each other and a vertical wall 27N extending upward from the front end of the lower horizontal wall 27M are provided on the rear edge of the horizontal portion 27A of the front bottom portion (see
The front region of the fitting groove 28K in each side bottom portion 28 is deeper than the rear region (see the fitting groove 28K in the side bottom portion 28R in
The raised portion 63 includes a sealing surface 63A continuous with the sealing surface 52C of the second portion 52 and the bottom (not shown) of the rear region of the fitting groove 28K, and a pressing surface 63B bent from the front end of the sealing surface 63A to extend laterally outward (leftward in the case of the side bottom portion 28L) in an inclined manner. The sealing surface 63A adheres tightly to the second protrusion 43F of the third seal 43 from the left. The pressing surface 63B presses against the pressed surface 52E of the second portion 52 from the left and behind. This causes the second portion 52 to be urged so as to come close to the second protrusion 43F, according to the mutual inclination between the pressed surface 52E and the pressing surface 63B, and a reaction force from the second protrusion 43F onto the second portion 52 to be generated. Since the reaction force allows to maintain an adequate sealing margin between the sealing surface 52C and the second protrusion 43F, the sealing surface 52C and the second protrusion 43F adhere to each other very tightly.
Of the upper rib 28I and the lower rib 28J vertically sandwiching the fitting groove 28K in each side bottom portion 28, the upper rib 28I protrudes inside the engine cover 19 farther inward than the lower rib 28J to be placed on the top surface 52A of the second portion 52 (see
Accordingly, the boundary between the front bottom portion 27, the mount 18, and the side bottom portion 28L is sealed by both the second portion 52 and the third seal 43. It is noted that the upper horizontal wall 27M is provided with a vertical wall 27R (see also
In accordance with the preferred embodiments described above, the engine cover 19 is divisible into three or more divided covers including the top portion 25, the front bottom portion 27, and the side bottom portions 28 (see
The first seal 41L of the sealing structure 40 seals the boundary (first boundary B1) between the top portion 25, the front bottom portion 27, and the side bottom portion 28L with the first portion 51 (see
The first seal 41R of the sealing structure 40 seals the boundary (first boundary B1) between the top portion 25, the front bottom portion 27, and the side bottom portion 28R with the first portion 51 and seals the boundary between the front bottom portion 27, the mount 18, and the side bottom portion 28R with the second portion 52. The first seal 41R seals the other boundary (the second boundary B2 between the front bottom portion 27 and the side bottom portion 28R) extending between these boundaries with the third portion 53.
The second seal 42 of the sealing structure 40 provides desirable sealing characteristics at the boundary between the top portion 25 and the front bottom portion 27 and the boundary between the top portion 25 and each side bottom portion 28 (see
As described heretofore, it is possible to provide desirable sealing characteristics of the divisible engine cover 19 having such a complex structure. This significantly reduces or prevents external water from entering into the engine 13 through the boundaries between the multiple divided covers in the engine cover 19.
In the first seal 41, the first portion 51 seals the clearance gap 62 between the opposing portion 27H in the upper end 27G of the front bottom portion 27 and the upper end 28E of each side bottom portion 28 with the inner portion 51A (see
Since the inner portion 51A is arranged in a manner offset by one step inside the engine cover 19 farther inward than the outer portion 51B, external water is less likely to reach the inner portion 51A through the boundary between the outer surface of the upper end 27G of the front bottom portion 27 and the outer surface of the upper end 28E of the side bottom portion 28. Even if external water leaks through the boundary between the outer surface of the upper end 27G of the front bottom portion 27 and the outer surface of the upper end 28E of each side bottom portion 28 and enters into the engine cover 19, the water is immediately contained in the water storage groove 51D in the inner portion 51A. It is therefore difficult for the water to reach the engine 13. This further significantly reduces or prevents water from entering into the engine 13.
The interior of the engine cover 19 has a negative pressure due to the air-intake by the engine 13. Water within the water storage groove 51D therefore tends to scatter toward the air-intake structure (not shown) upward and taken into the engine 13. However, the water within the water storage groove 51D is blocked by the upper rib 51E from scattering upward within the engine cover 19 to reach the engine 13, which further significantly reduces or prevents water from entering into the engine 13.
Water within the water storage groove 51D slides on the guide 51F (see
Even if external water reaches the insertion hole 51G and enters the clearance gap 62 between the opposing portion 27H of the inner portion 51A of the front bottom portion 27 and each side bottom portion 28, the water is blocked by the upper rib 51E from scattering upward to reach the engine 13. Further, the water is guided by the guide 51F into the drainage hole 27D and the drainage hole 18D to be discharged out of the engine cover 19. This further significantly reduces or prevents water from entering into the engine 13.
External water may reach not the water storage groove 51D or the insertion hole 51G but the drainage groove 51K (see
The second seal 42 sandwiches the upper end 51L of the outer portion 51B, which seals the boundary between the outer surface of the upper end 27G of the front bottom portion 27 and the outer surface of the upper end 28E of each side bottom portion 28 in the first seal 41, between the same and the front bottom portion 27 (see
In the first seal 41, the sealing surface 52C of the second portion 52 adheres tightly to the third seal 43 from the front at the boundary between the front bottom portion 27, the mount 18, and each side bottom portion 28 to seal the boundary (see
The second portion 52 may be positioned laterally by the positioning groove 52F and the positioning portion 27L to seal the boundary between the front bottom portion 27, the mount 18, and each side bottom portion 28 with the lateral position being stabilized. This provides desirable sealing characteristics at the boundary and thus significantly reduces or prevents external water from leaking through the boundary and entering into the engine 13.
In the thus arranged first seal 41, the first portion 51 and the second portion 52 are preferably molded articles, while the third portion 53 is preferably an extrusion molded article, which makes it possible to achieve the structure in which the first seal 41 integrally includes the first portion 51, the second portion 52, and the third portion 53. The clearance gap at the complex first boundary B1 spanning the three portions of the top portion 25, the front bottom portion 27, and each side bottom portion 28 is filled with the first portion 51, which is a molded article. Further, the clearance gap at the complex boundary spanning the three portions of the front bottom portion 27, the mount 18, and each side bottom portion 28 is filled with the second portion 52, which is also a molded article. The clearance gap at the relatively simple second boundary B2 spanning the two portions of the front bottom portion 27 and each side bottom portion 28 is filled with the third portion 53, which is an extrusion molded article. This allows the first seal 41 to seal together the boundaries.
Although the preferred embodiments of the present invention have been described above, the present invention is not restricted to the contents of these preferred embodiments and various modifications are possible within the scope of the present invention.
For example, only one of the pair of side bottom portions 28 may be provided separately and the other side bottom portion 28 may be integral with the top portion 25 or the front bottom portion 27. In this case, only one first seal 31 may also be provided correspondingly to the separate side bottom portion 28.
Also, features of two or more of the various preferred embodiments described above may be combined.
While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-095809 | May 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4348194 | Walsh | Sep 1982 | A |
4723927 | Walsh | Feb 1988 | A |
4800854 | Boda | Jan 1989 | A |
5069643 | Westberg et al. | Dec 1991 | A |
5360358 | Haman | Nov 1994 | A |
5487687 | Idzikowski | Jan 1996 | A |
5921827 | Ichihashi | Jul 1999 | A |
6663450 | Walczak | Dec 2003 | B1 |
6669517 | Alby | Dec 2003 | B1 |
7621791 | Yazaki | Nov 2009 | B2 |
Number | Date | Country |
---|---|---|
06-234393 | Aug 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20180327067 A1 | Nov 2018 | US |