Information
-
Patent Grant
-
6416372
-
Patent Number
6,416,372
-
Date Filed
Tuesday, November 16, 199925 years ago
-
Date Issued
Tuesday, July 9, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Morano; S. Joseph
- Vasudeva; Ajay
Agents
- Knobbe, Martens, Olson & Bear, LLP.
-
CPC
-
US Classifications
Field of Search
US
- 440 88
- 440 89
- 123 195 P
-
International Classifications
-
Abstract
An outboard motor cooling system includes an improved construction to enhancing cooling of the lubrication system, and more particularly, an oil pan of the lubrication system. The oil pan depends from an engine of the outboard motor and into a driveshaft housing. A periphery coolant jacket is provided around the oil pan. A water pool is defined between the oil pan and the driveshaft housing. An exhaust manifold passes through in a hollow of the oil pan and a water curtain is defined between the hollow wall and the exhaust manifold. An upstanding water passage is also disposed through the oil pan. At least one of an upper and lower transverse water jacket extends transversely above or below the oil pan. No drain water from the engine flows through these jackets or passages. The oil pan therefore is sufficiently cooled. In addition, the upper transverse water jacket increases protection of engine components from heat deterioration.
Description
PRIORITY INFORMATION
This application is based on and claims priority to Japanese Patent Application No. 10-324303 filed Nov. 16, 1998.
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to an outboard motor cooling system, and more particularly to an improved cooling system for an oil pan that depends from an engine into a driveshaft housing of an outboard motor.
2. Description of Related Art
An outboard motor generally comprises a drive unit which includes a power head disposed at its top portion, a driveshaft housing depending from the power head and a lower unit further depending from the driveshaft housing. The power head incorporates a powering engine therein and a protective cowling encircling the engine. The driveshaft housing has a driveshaft extending from an output shaft of the engine and downwardly therethrough to the lower unit. The lower unit carries a propulsion device such as a propeller which is mounted on a propeller shaft driven by the driveshaft. The driveshaft housing and the lower unit further contain some sections of an exhaust system for discharging exhaust gasses from the engine outwardly. Actually, exhaust passages and expansion chambers are formed therein and exhaust gasses are discharged to the body of water surrounding the outboard motor through, for example, a hub of the propeller.
The outboard motor further comprises a bracket assembly which includes a swivel bracket and a clamping bracket. The swivel bracket carries the drive unit for pivotal movement about a steering axis extending generally vertically. The clamping bracket is mounted on a transom of an associated watercraft and supports the swivel bracket for pivotal movement about a tilt axis extending generally horizontally.
Some outboard motors recently have employed four-stroke engines as prime movers for such motors. One reason for this tendency is that emissions from a four-stroke engines is cleaner relative to a two-stroke crankcase compression engine. The four-stroke engine typically has a separate oil pan for lubrication of the engine, and usually the oil pan depend from the engine into the driveshaft housing of the outboard motor. Lubricant is pumped to the engine by a lubricant pump and oil drains to the oil pan after lubricating the engine. Because the engine commonly operate at high temperatures, the returning lubricant heats the oil pan.
The outboard motor has a cooling system for cooling the engine with coolant, usually water. More specifically, a water pump is provided in the cooling system and water pumped up by the water pump from the body of water surrounding the outboard motor is delivered to the engine. Conventionally, the cooling system utilizes the same water that has already cooled the engine to cool the oil pan. For this purpose, the oil pan is usually surround by a coolant pool through which the water that has circulated through at least a portion of the engine flows. The coolant pool is formed between an outer wall of the oil pan and an inner wall of the driveshaft. Because the water is already hot, however, the oil pan is not significantly cooled. As a result, an outer wall of the driveshaft is likely to be heated, and can become discolored. This harms the appearance of the outboard motor.
In addition, an exhaust manifold, which is one of the sections of the exhaust system, is positioned to pass through the oil pan. The exhaust gasses flowing through this exhaust manifold also are hot and further heat the oil pan. The heat sink provided by the water passing through the coolant pool in a conventional system therefore may not be sufficient to prevent discoloration of the driveshaft housing and overheating of the lubricant.
Other components of the outboard motor also are affected by the elevated temperature of the oil pan within the drive shaft housing. For instance, such heat may also affect an upper mount of the steering assembly. The steering assembly includes both an upper mount and a lower mount, which are affixed on the drive unit to pivotally support it on the swivel bracket. A steering shaft extends through forward portions of the respective mounts and a steering shaft housing disposed at the rear of the swivel bracket. Rear portions of the respective mounts are affixed to the forward portion of the driveshaft housing so as to be spaced apart vertically from each other. The rear portions contain elastic elements to absorb vibrations generated by the engine and the propeller or shocks exerted upon the drive unit, and to prevent transfer of such to the associated watercraft. The upper mount is usually positioned above and in the proximity to the oil pan. The elastic members of the upper mount tends to be deteriorated by heat transferred from the oil pan. Other components, particularly electrical components, within the protective cowling may be also damaged by the heat.
SUMMARY OF THE INVENTION
The present outboard motor cooling system enhances cooling of the oil pan vis-a-vis conventional outboard motor cooling systems. The cooling system also desirably inhibits discoloration of a driveshaft housing of the outboard motor, as well as deterioration of components positioned above the oil pan, such as, for example, but without limitation, elastic members of an upper mount and engine components.
In accordance with one aspect of the present invention, an outboard motor comprises an internal combustion engine. An oil pan depends from the engine and contains lubricant for lubrication of the engine. A cooling system is provided for cooling at least the engine and the oil pan. The cooling system includes a periphery coolant jacket generally surrounding the oil pan and being supplied with coolant that has not cooled the engine. The cooling system further includes a coolant discharge jacket bypassing the periphery coolant jacket. Coolant that has cooled the engine passes through the coolant discharge jacket.
In accordance with another aspect of the present invention, an outboard motor comprises an internal combustion engine. An oil pan depends from the engine and contains lubricant for lubrication of the engine. A cooling system is provided for cooling at least the engine and the oil pan. The cooling system includes an upstanding coolant passage extending generally vertically through the oil pan and the cooling system supplies coolant to the engine through the upstanding coolant passage.
In accordance with an additional aspect of the present invention, an outboard motor comprises a power head having an internal combustion engine. A housing depends from the power head and supports a propulsion device driven by the engine for propelling an associated watercraft. An oil pan contains lubricant for lubrication of the engine. The oil pan depends into the housing and is spaced from the housing. A cooling system is provided for cooling at least the engine and the oil pan. The cooling system includes a coolant pool defined between the oil pan and the housing. The cooling system supplies coolant that has not cooled the engine to the coolant pool. The cooling system further includes a coolant discharge jacket bypassing the coolant pool. Coolant that has cooled the engine passes through the coolant discharge jacket.
In accordance with another aspect of the present invention, an outboard motor comprises an internal combustion engine. An oil pan depends from the engine and contains lubricant for lubrication of the engine. An exhaust system is provided for discharging exhaust gasses from the engine. The exhaust system includes an exhaust passage that passes through the oil pan. A cooling system is provided for cooling at least the engine and the oil pan. The cooling system includes means for forming a heat sink between the exhaust passage and the oil pan when the engine is operated. In this manner, the amount of heat transfer between the exhaust passage and the oil pan is reduced, i.e., the oil pan and the exhaust passage generally are thermally decoupled from each other.
In accordance with yet another aspect of the present invention, an outboard motor comprises an internal combustion engine. An oil pan depends from the engine and contains lubricant for lubrication of the engine. A cooling system cools at least the engine and the oil pan. The cooling system includes a lower transverse coolant jacket that extends generally transversely below the oil pan. The cooling system supplies coolant that has not cooled the engine. The cooling system further includes a coolant discharge jacket bypassing the lower transverse coolant jacket. Coolant that has cooled the engine passes through the coolant discharge jacket.
In accordance with a further aspect of the present invention, an outboard motor comprises an internal combustion engine. An oil pan depends from the engine and contains lubricant for lubrication of the engine. A cooling system cools at least the engine and the oil pan. The cooling system includes an upper transverse coolant jacket extending generally transversely above the oil pan. The cooling system supplies coolant that has not cooled the engine. The cooling system further includes a coolant discharge jacket bypassing the upper transverse coolant jacket. Coolant that has cooled the engine passes through the coolant discharge jacket.
Further aspects, features and advantages of this invention will become apparent from the detailed description of the preferred embodiment which follow.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of this invention will now be described with reference to the drawings of a preferred embodiment which is intended to illustrate and not to limit the invention.
FIG. 1
is a side elevational view showing an outboard motor in accordance with an embodiment of this invention. An engine, a driveshaft housing and a lower unit are shown largely in cross-section and some components are shown in a wire-frame format. An associated watercraft is also shown partially in section.
FIG. 2
is a diagram showing a flow of coolant through a cooling system employed in the outboard motor.
FIG. 3
is an enlarged cross-sectional side view of the driveshaft housing and shows an oil pan and some sections of the cooling system and an exhaust system in the outboard motor. Some components are shown in a wire-frame format again.
FIG. 4
is a top plan view showing an exhaust guide member of the outboard motor.
FIG. 5
is a top plan view showing the same exhaust guide member of
FIG. 4
on which a pair of upper mount members are disposed.
FIGS.
6
(A) and
6
(B) illustrate the exhaust guide member. FIG.
6
(A) is a side elevational view showing an appearance of the exhaust guide member looked from the position indicated by the arrow
6
(A) in FIG.
5
. FIG.
6
(B) is a cross-sectional, side elevational view thereof taken along the line
6
(B)—
6
(B) in FIG.
5
.
FIG. 7
is a bottom plan view showing the same exhaust guide member of
FIG. 4
on which the pair of upper mount members are disposed.
FIGS.
8
(A),
8
(B) and
8
(C) illustrate a cover member which covers over an upper side of the oil pan. FIGS.
8
(A),
8
(B) and
8
(C) are a top plan view, a cross-sectional side view taken along the line
8
(B)—
8
(B) in FIG.
8
(A) and a bottom plan view, respectively.
FIGS.
9
(A),
9
(B) and
9
(C) illustrate the oil pan and are a top plan view, a bottom plan view and a cross-sectional rear view taken along the line
9
(C)—
9
(C) of FIG.
9
(A), respectively. An oil filter and an exhaust manifold are removed in this figure.
FIGS.
10
(A),
10
(B),
10
(C) and
10
(D) illustrate a lower plate attached to the bottom of the oil pan. FIGS.
10
(A),
10
(B),
10
(C) and
10
(D) are a top plan view, a side view taken along the line
10
(B)—
10
(B) of FIG.
10
(A), a bottom plan view and a cross-sectional rear view taken along the line
10
(D)—
10
(D) of FIG.
10
(A), respectively.
FIGS.
11
(A),
11
(B) and
11
(C) illustrate a first exhaust expansion chamber member and are a top plan view, a cross-sectional side view taken along the line
11
(B)—
11
(B) in FIG.
11
(A) and a cross-sectional front view taken along the line
11
(C)—
11
(C) in FIG.
11
(A), respectively.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
With reference initially to
FIG. 1
, the general overall environment of an exemplary outboard motor will be described. In connection with the following description, including the appended claims, the terms “front,” “forward” and “forwardly” means at or toward the side where the clamping bracket
92
is located. The terms “rear” and “rearwardly” mean at or toward an opposite side of the front side unless stated otherwise.
An outboard motor
20
is shown as attached to a transom
22
of an associated watercraft
24
. The outboard motor
20
generally comprises a drive unit
26
and a bracket assembly
28
. The drive unit
26
includes a power head
30
, a driveshaft housing
32
and a lower unit
34
. The power head
30
is disposed at the top of the drive unit
26
and includes an internal combustion engine
38
, a top protective cowling
40
and a bottom protective cowling
42
.
The engine
38
is of the V6 type and operates on a four-stroke principle. The engine
38
comprises a cylinder block
46
that is formed with a pair of cylinder banks. Each of these cylinder banks defines three vertically spaced, horizontally extending cylinder bores
48
in which pistons reciprocate. The pistons are, in turn, connected to an output shaft or crankshaft
50
via connecting rods. The crankshaft
50
is journaled for rotation and extends generally vertically within a crankcase
52
which closes a forward opening of the cylinder block
46
.
A cylinder head assembly
56
is affixed to the cylinder block
46
to close the other end of the cylinder block
46
. The cylinder head assembly
56
defines a plurality of recesses in its inner face. Each of these recesses cooperate with the respective cylinder bore
48
and the head of the piston to define a combustion chamber. The cylinder head assembly
56
has intake ports and exhaust ports. The intake ports are provided for introducing air fuel mixture to the combustion chambers, while the exhaust ports are provided for discharging exhaust gasses from the combustion chambers. Intake valves
58
and exhaust valves (not shown) are provided for opening and closing the intake ports and exhaust ports. A camshaft
60
is journaled on the cylinder head assembly
58
to operate the intake valves
58
and exhaust valves. The intake valves
58
and exhaust valves are opened when cam lobes
64
of the camshaft
60
push them at proper timings. The camshaft
60
is driven by the crankshaft
50
by means of a timing belt
66
.
An air induction system is provided for introducing air to the combustion chambers. The air induction system generally comprises a plenum chamber
70
and air intake ducts
72
which correspond to the respective cylinder bores
48
. Carburetors or fuel injectors are provided between the plenum chamber
70
and the intake ports for supplying fuel with the air to make an air fuel charge for combustion in the combustion chambers.
Although not shown, spark plugs are affixed on the cylinder head assembly
56
for firing the air fuel charge. A generator
74
is placed at the top of the crankshaft
50
for generating electric power that is applied to the spark plugs and other electrical equipment.
Burnt charges or exhaust gasses are discharged through an exhaust system. Some sections of the exhaust system are contained in the driveshaft housing
32
and will be described below.
Since these types of four stoke engines are well known in the art, a further description is not believed to be necessary to permit those skilled in the art to practice the invention.
The top and bottom cowlings
40
,
42
generally completely encircle the engine
38
to protect it. For instance, water is prevented from splashing over the engine
38
. The top cowling
40
is detachably affixed to the bottom cowling
42
so as to ensure access to the engine
38
for maintenance.
The driveshaft housing
32
depends from the power head
30
and the lower unit
34
, in turn, depends from the driveshaft housing
32
. A driveshaft
78
extends generally vertically through the driveshaft housing
32
and is driven by the crankshaft
50
. The driveshaft
78
drives a propeller shaft
80
which extends generally horizontally within the lower unit
34
through a forward, neutral, reverse transmission
82
including a bevel gear. The propeller shaft
80
has a propeller
84
at its outer end. Thus, the propeller
84
is powered by the engine
38
through the driveshaft
78
and propeller shaft
80
.
The drive unit
26
is mounted on the associated watercraft
24
by the bracket assembly
28
which comprises a swivel bracket
90
and a clamping bracket
92
. The swivel bracket
90
carries the drive unit
20
for pivotal movement about the axis of a steering shaft
94
which extends generally vertically through a steering housing section
96
of the swivel bracket
90
. An upper mount
100
and a lower mount
102
are affixed on the drive unit
26
to pivotally support it on the swivel bracket
90
. That is, the steering shaft
94
extends through forward portions of the respective mounts
100
,
102
and the steering shaft housing section
96
disposed at the rear of the swivel bracket
90
. The steering shaft
94
is fitted in the forward portions of the respective mounts
100
,
102
in spline connections. Meanwhile, rear portions of the respective mounts
100
,
102
are affixed to the forward portion of the driveshaft housing
32
so as to be spaced apart vertically from each other. The rear portions of the respective mounts
100
,
102
contain elastic elements
104
to absorb vibrations generated by the engine
38
and the propeller
84
or shocks exerted upon the drive unit
26
and prevent them from being conducted to the associated watercraft
24
. A steering lever
106
extends forwardly from the upper mount
100
so that an operator of the outboard motor
20
can steer it with the lever
106
. A throttle control lever (not shown) may be also attached on the steering lever
106
.
The clamping bracket
92
is mounted on the transom
22
of the associated watercraft
24
and supports the swivel bracket
90
for pivotal movement about the axis of a tilt shaft
108
. A hydraulic tilt device
110
is affixed between the swivel bracket
90
and the clamping bracket
92
for tilt and trim movements of the drive unit
26
.
The hydraulic tilt device
110
comprises a housing having a cavity, a piston slidably supported within the cavity and a piston rod affixed on the piston and extends beyond the cavity. The housing is affixed to a pivot shaft
120
which extends generally horizontally and journaled on a lower portion of the clamping bracket
92
for pivotal movement. The piston rod, in turn, is affixed to a pivot shaft
122
which also extends generally horizontally and is journaled on and between upper portions of the clamping bracket
92
and the swivel bracket
90
for pivotal movement.
When the piston rod expands and contracts with the reciprocal movement of the piston, the drive unit
26
as well as the swivel bracket
90
is tilted up or down within a trim adjusted range or a tilt range. The tilt range exists higher than the trim adjusted range. In the view of
FIG. 1
, because the drive unit
26
is in a fully trimmed down position, the swivel bracket
90
almost entirely conceals itself within the clamping bracket
92
.
The bottom cowling
42
is configured as a tray-shape. At the bottom of the bottom cowling
42
, an exhaust guide member
126
is affixed. The engine
38
is anchored to the exhaust guide member
126
. An Exhaust manifold
128
depends from the exhaust guide member
126
. The exhaust ports of the cylinder head assembly
56
communicate with the exhaust manifold
128
. A first exhaust expansion chamber
130
is defined in an expansion chamber member
131
disposed downstream of the exhaust manifold
128
within the driveshaft housing
32
. A second expansion chamber
132
is defined downstream of the first expansion chamber
130
and in the lower unit
34
.
Exhaust gasses from the exhaust ports of the cylinder head assembly
56
are collected by the exhaust manifold
128
and then flow through the exhaust expansion chambers
131
,
132
. When passing through the expansion chambers
131
,
132
, the exhaust gasses are expanded and lose their energy. Exhaust noise is attenuated accordingly. The exhaust gasses are finally discharged to the body of water surrounding the outboard motor
20
through a bore
134
formed in a hub of the propeller
84
.
As is typical, the outboard motor
20
includes a lubrication system provided for lubricating engine components. An oil pan
138
depends from the exhaust guide member
126
although a cover member
140
is inserted between the guide member
126
and the oil pan
138
. The upper mounts
100
are positioned above and in the proximity to the oil pan
138
. Further, engine components exist above the upper mounts
100
within the protective cowlings
40
,
42
. A lower member
144
is affixed to the bottom of the oil pan
138
. The structure of the oil pan
138
including the cover member
140
and the lower member
144
will be described in more detail shortly.
Lubricant is reserved in this oil pan
138
and an lubricant pump
146
is provided around the driveshaft
78
for circulating the lubricant in the oil pan
138
within the engine
38
. The lubricant pump
146
is driven by the driveshaft
78
.
The lubricant is pumped up from the oil pan
138
by the lubricant pump
146
and circulates around internal portions of the engine for lubrication of engine components such as the crankshaft
74
, piston and the camshaft
60
. The lubricant then returns to the oil pan
138
again.
The outboard motor
20
further has a cooling system for cooling down heated components including engine components, exhaust system components and the oil pan
138
. The water out of and surrounding the motor
20
is utilized as coolant for this cooling system. The cooling system includes a water pump
150
, a pressure control valve
152
, a water inlet port
154
, a water outlet port
156
, water supply conduits or jackets and drain conduits or jackets. The water pump
150
is provided around the driveshaft
78
to be driven thereby. Although the cooling system will be described in more detail later, a supply conduit
158
, a water pool
160
and drain jacket
162
are shown in FIG.
1
.
It should be noted that basically the components including the power head
30
except the top cowling
40
, driveshaft housing
32
, the lower unit
34
, the exhaust guide member
126
, the oil pan
138
, the cover member
140
, lower member
144
, the exhaust manifold
128
and the exhaust expansion chamber member
131
are made of metal such as aluminum alloy. In addition, they are assembled with each other by bolt connections whether they are shown or not.
With reference to
FIGS. 2 through 11
, the structure or construction of the oil pan
138
and the cooling system will be described.
For easy understanding of the exhaust gas flow paths and water channels, these components will be indicated by suffix letters after the respective reference numerals which are assigned in these figures. The respective letters will indicate the specific exhaust gas flow or water channels as follows:
(a): exhaust gas flow;
(b): water channel from the water pump
150
before a branch to the pressure control valve
152
;
(c): water channel to the engine
38
after the branch to the pressure control valve
152
;
(d): water channel discharged from the engine
38
;
(e) and (g): water channel branched off from the channel (c) to an internal wall
166
(see FIG.
9
(C)) in the oil pan
138
surrounding the exhaust manifold
128
:
(f): water channel branched off from the channel (b) and having the pressure control valve
152
;
(k): water channel branched off from the channel (b) to a periphery water jacket
138
k.
Incidentally, letters (i), (j), (o) and (z) are also assigned to indicate an inlet port, a water jacket, an outlet port and lubricant reservoir, respectively.
With reference to
FIG. 2
, the flow of cooling water in these channels (a) to (k) will be described. The water is introduced into the cooling system by operation of the water pump
150
. The water goes through the channel (b) toward the channel (c). Before reaching the channel (c), some water goes to the pressure control valve
152
in the channel (f). The pressure control valve
152
includes a ball
172
and a spring
174
that urges the ball
172
to close the channel (f) and only permits a water flow from the channel (b) to the channel (f) when the pressure of the water is greater than a preset magnitude. Meanwhile, the water that has reached the channel (c) is directed into one of two banks, each of which goes to exhaust passages
176
of the cylinder bores
48
. The water then passes along the periphery of an exhaust collector portion
180
and the combustion chambers
182
. The water joins together downstream of the combustion chambers
182
and again is split to the banks and still goes to the respective cylinder bores
48
. Downstream of the cylinder bores
48
, thermostats
184
are provided in both split channels (c). The thermostats
184
open unless water temperature is lower than a preset value (for example, more than 60° C.) and the water goes to the discharge channel (d). If the water temperature is lower than the preset value, the thermostats
184
will not open (a very small amount can still flow under this condition) and the water pressure exceeds the predetermined magnitude to open the pressure control valve
152
. The pressure is relieved accordingly by the pressure control valve
152
and the water, in turn, goes to the channel (f).
It should be noted that the pressure control valve
152
may open for other reasons and that an only condition for opening of the pressure control valve
152
is that the pressure of the water flowing the channels exceeds the preset magnitude.
The actual water channels (b) to (k), as well as the exhaust gas flow (a), will be described by reference to
FIGS. 3 through 11
.
As seen in
FIGS. 4 through 7
, the exhaust guide member
126
has a pair of recesses
190
to receive the upper mount
100
. A bore
126
a
is formed at almost the center position of the exhaust guide member
126
through which the exhaust gasses flow downwardly. In front of the bore
126
a
and also at both lateral sides of the bore
126
a
, slits
126
e
are formed. Also, behind the bore
126
a
, a pair of openings
126
c
are formed. A pair of discharge openings
126
d
are formed at both outer sides of the lateral slits
126
e
further. The pressure control valve
152
is affixed on the exhaust guide member
126
in a valve chamber
188
.
As best seen in
FIG. 3
, the oil pan
138
is affixed to the cover member
140
by bolts
192
and anchored to the exhaust guide member
126
along with the cover member
140
and also the exhaust manifold
128
by bolts
194
. The cover member
140
not only covers the oil pan
138
but also forms an upper transverse water jacket
126
fj
(see FIGS.
7
and
8
(A)) with the exhaust guide member
126
therebetween. A pair of inlet ports
126
fi
for the water jacket
126
fj
are formed at both sides of the pressure control valve
152
in the valve chamber
188
. A water channel
126
b
is also formed under the pressure control valve
152
(see
FIG. 6
) at the bottom of the exhaust guide member
126
. The water flowing through the channel
126
b
, thus, passes through the pressure control valve
152
if it is opened and flows into the upper transverse water jacket
126
fj
. If the pressure control valve
152
is not opened, the water flowing the channel
126
b
goes to the channel (c) including the openings
126
c
. The channel (c) is formed in the cover member
140
as described shortly.
As seen in FIGS.
8
(A),
8
(B) and
8
(C), the cover member
140
has a bore
140
a
communicating with the bore
126
a
, three slits
140
e
communicating with the slits
126
e
and a pair of openings
140
co
communicating with the openings
126
c
. The channel (c) or
140
c
is formed as a hollow passage and runs from the rear to the forward in the cover member
140
. The water flows therethrough and goes out from the openings
140
co
toward the engine
38
. A conduit
140
b
passes through the conduit
140
b
vertically and hence an inlet port
140
bi
and an outlet port
140
bo
are defined at both lower and upper ends. A pair of discharge openings
140
d
communicating with the discharge openings
126
d
are further formed at both outer sides of the lateral slits
140
e
. The conduit
140
c
has an opening
140
g
elongating transversely at its forward end bottom portion.
The upper transverse water jacket
126
fj
has a certain extent that can isolate the oil pan
138
from the upper mount
100
and extends generally horizontally. To put it more precisely, it slightly inclines forwardly. Drains
140
f
are formed at the most forward and rear portions of the jacket
126
fj
. The water flowing through the transverse water jacket
126
fj
, therefore, can remove the heat existing at the upper portion of the oil pan
138
. Besides, the upper transverse jacket
126
fj
prevents the heat in the oil pan
138
from being radiated to the upper mount
100
.
As seen in FIG.
8
(C), the drains
140
f
exist out of a circular rib
198
which meets with a circular rib
200
(see FIG.
9
(A)) of the oil pan
138
so that no water falls down into a lubricant reservoir
138
z
of the oil pan
138
.
As described above, the oil pan
138
depends from the cover member
140
. The lubricant reservoir
138
z
is configured generally as a circular shape so as to make the hollow
202
at its center portion. The hollow
202
narrows at its top portion to form an inner flange
204
there. An opening
138
a
still exists therein. Bolt holes
206
are provided at the four corners of the inner flange
204
and the bolts
194
are affixed therethrough. The exhaust manifold
128
extends generally vertically through the hollow
202
.
Slits
138
e
communicating with the slits
140
e
of the cover member
140
are formed in front of the opening
138
a
and also both sides thereof. An aperture
138
g
communicating with the opening
140
g
is also formed behind the opening
138
a
. The water branched off from the channel (c) and passing through the slits
126
e
,
140
e
,
138
e
, the opening
140
g
and the aperture
138
g
falls down along the wall
166
of the hollow
202
. This down flow of the water makes a water curtain between the wall
166
of the hollow
202
and the exhaust manifold
128
. The heat that the exhaust manifold
128
as well as the exhaust gasses passing therethrough holds is prevented from conducting to the lubricant reservoir
138
z.
The oil pan
138
has a periphery water jacket
138
k
. Actually, as best seen in FIG.
9
(B), the periphery water jacket
138
k
consists of three jacket sections and generally surrounds the lubricant reservoir
138
z
. The periphery water jacket
138
k
is unitarily formed with the oil pan
138
and extends upwardly from the bottom of the oil pan
138
and almost halfway thereof.
The water to the periphery water jacket
138
k
is supplied from the supply conduit
158
(see
FIG. 3
) through a lower transverse water jacket
144
bj
(see FIG.
10
(A)) which is formed between the bottom of the oil pan
138
and the lower member
144
. For this purpose, the lower member
144
is affixed to the oil pan
138
by bolts, although they are not shown. The lower transverse water jacket
144
bj
has a certain extent like the upper transverse water jacket
126
fj
and extends generally horizontally. It may slightly incline rearwardly.
Drains
138
ko
(see
FIG. 3
) are formed at each top portion of the jacket sections of the periphery water jacket
138
k
and the water overflowing in the periphery water jacket
138
k
is drained to the water pool
160
defined between the oil pan
138
and the driveshaft housing
32
.
The periphery water jacket
138
k
is effective to remove the heat held by the oil pan
138
because it is unified with the oil pan
138
and fresh water is supplied thereto. The term “fresh” means that the water has not circulated within the engine
38
and is directly supplied from the water pump
150
.
The oil pan
138
has an upstanding water passage
138
b
at the rear thereof. The remainder of the water that does not go to the periphery water jacket
138
k
flows into this upstanding water passage
138
b
and goes up toward the upper transverse water jacket
126
fj
. As a matter of course, the water passing through the upstanding passage
138
b
is fresh and hence the heat in the oil pan
138
is removed more effectively. Besides, the isolation of the upper mount
100
from the heat of the oil pan
138
is also achieved efficiently, because this fresh water may flow through the upper transverse water jacket
126
fj.
The water drained to the water pool
160
from the periphery water jacket
138
k
is discharged to the second expansion chamber
132
or directly to the water outlet port
156
through apertures
205
,
207
formed at almost the bottom portion of the driveshaft housing
32
(see FIG.
3
). The water drained to the second expansion chamber
132
is discharged to the body of water surrounding the outboard motor
20
through the bore of the propeller
84
with exhaust gasses. Meanwhile, the water drained to the outlet port
156
is directly to the surrounding water. However, because the apertures
205
,
207
are relatively small, usually the water accumulates in the water pool
160
. An overflow port
160
do
(see FIG.
9
(C)) is formed at nearly the top portion of the discharge passage
138
d
of the oil pan
138
. When the water in the water pool
160
reaches the level of the overflow port
160
do
, it flows into the discharge passage
138
d
. The water pool
160
is particularly effective for preventing the driveshaft housing
32
from being discolored, although it is still effective for removing the heat of the oil pan
138
.
The water discharge passages
138
d
extends downwardly therethrough. The discharge passages
138
d
communicate with the discharge openings
140
d
of the cover member
140
. Thus, the water circulated around the engine water jackets flows down through the discharge openings
126
d
of the exhaust guide member
126
, the discharge openings
140
d
of the cover member
140
and the discharge passages
138
d
toward the lower member
144
.
As seen in
FIG. 3
, an oil strainer
208
is affixed to the bottom of the cover member
140
so as to exist in the lubricant reservoir
138
z
. A strainer element
210
is fitted at the inlet portion of the strainer
208
. Lubricant in the oil pan
138
is supplied to the engine
38
through the strainer
210
by the lubricant pump
146
. Foreign particles are removed by the strainer element
210
before entering the lubricant pump
146
.
As seen, for example, in FIG.
10
(A), the lower member
144
has a bore
144
a
communicating with the exhaust manifold
128
through which the exhaust gasses pass. Around the bore
144
a
, a water receiver
144
e
is formed. The water of the water curtain falling down along the wall
166
of the hollow
202
is received by this water receiver
144
e
. The water receiver
144
e
has a drain slit
144
eo
in front of the exhaust bore
144
a
and a pair of drain apertures
144
eh
at sidelong behind thereof. Further around the water receiver
144
e
, the lower transverse water jacket
144
bj
is formed. An inlet opening
144
bi
for the water jacket
144
bj
is provided at the most forward portion of the lower member
144
.
The opposite side (bottom) of the lower member
144
is mated with the top of the exhaust expansion chamber member
131
. A water discharge jacket
144
d
communicating with the discharge openings
144
di
is formed on this side with the exhaust expansion chamber member
131
so as to collect the drain behind the exhaust bore
144
a
. The drain apertures
144
eh
are also opened to the water discharge jacket
144
d.
As seen in FIGS.
11
(A) through
11
(C), the exhaust expansion chamber member
131
, in turn, has a discharge opening
131
d
. The discharge opening
131
d
is connected with the drain jacket
162
(see
FIG. 3
) in the driveshaft housing
32
. The water going down through the drain jacket
162
is, then, discharged to the body of water surrounding the outboard motor
20
through the water outlet port
156
formed in the lower unit
34
. The expansion chamber member
131
has also a slit
131
e
which communicates with the slit
144
e
of the lower member
144
and the water coming down through the slit
131
e
goes down to the second expansion chamber
132
through the aperture
205
and is finally discharged to the surrounding body of water.
At the most forward portion of the expansion chamber member
131
, an opening
131
b
is formed and the top of the supply conduit
158
is fitted therein (see FIG.
3
). The water passing up through the water conduit
158
is supplied to the lower transverse water jacket
144
bj.
The first expansion chamber
130
is defined in the expansion chamber member
131
as described above. The capacity of the expansion chamber
130
is relatively large and the exhaust gasses passing through the exhaust manifold
128
is abruptly expanded in this chamber
130
. Because of this, energy of the exhaust gasses is released and exhaust noise is reduced accordingly. The lower end of this chamber
130
is narrowed and the second expansion chamber
132
again has a large capacity. The same situation, therefore, occurs again in this second expansion chamber
132
.
In summary, exhaust gasses from the engine
38
are collected by the exhaust manifold
128
and are directed down to the first exhaust expansion chamber
130
and then the second exhaust expansion chamber
132
. Finally, they are discharged to the body of water surrounding the outboard motor
20
through the bore
134
formed in the hub of the propeller
84
.
On the other hand, cooling water is introduced from the surrounding water through the water inlet port
154
by the water pump
150
and goes up to the lower transverse water jacket
144
bj
formed between the lower member
144
and the bottom of the oil pan
138
through the supply conduit
158
. The water flows transversely below the oil pan
138
within the lower transverse water jacket
144
bj
and then primarily goes up to the engine
38
through the upstanding water passage
138
b
. Some of the water, however, goes to the periphery water jacket
138
k
. If the pressure control valve
152
is opened, the reminder of the water flows transversely through the upper transverse water jacket
126
fj
formed between the cover member
140
and the exhaust guide member
126
.
Before going to the engine
38
, some water is branched off and falls down through the slits
126
e
,
140
e
,
138
e
, the opening
140
g
and the aperture
130
g
along the wall
166
of the hollow
202
in the oil pan
138
. By this flow, the water curtain is made. The water then goes down through the slit
144
e
or the drain jacket
162
to the apertures
205
,
206
to be discharged.
The water discharged from the engine
38
goes down through the water discharge jacket comprising the openings
126
d
,
140
d
and the discharge passage
138
d
. The water discharge jacket bypasses the periphery water jacket
138
k
, the water pool
160
and the upper and lower transverse water jackets
126
fj
,
144
bj.
The water in the periphery water jacket
138
k
is discharged to the water pool
160
through the drains
138
k
. Also, the water passing through the upper transverse water jacket
126
fj
is discharged to the water pool
160
through the drains
140
f
. Then, the water goes to the apertures
205
,
207
to be discharged or flows into the discharge passage
138
d
through the overflow port
160
do
and then yes to the aperture
207
.
As described above, the oil pan
138
is surrounded by the periphery water jacket
138
k
in one aspect of the present invention and the water pool
160
in another aspect thereof. The water curtain is also made to prevent the heat of the exhaust manifold
128
from conducting to the oil pan
138
in a further aspect of this invention. Also, the upper transverse water jacket
126
fj
and/or the lower transverse water jacket
144
bj
are provided in other aspects of the present invention. Further, the cooling water supplied to the engine
38
passes through the upstanding passage
138
b
which is disposed through the oil pan
138
. No drain water from the engine
38
passes through these water jackets or flows as the water curtain. The water from the engine
38
rather flows through the water discharge jacket comprising the openings
126
d
,
140
d
and the discharge passage
138
d
. Thus, the oil pan
138
in the cooling system of the embodiment is cooled down more powerfully than in the conventional cooling system.
Also, the water pool
160
is defined between the oil pan
138
and the driveshaft housing
32
and the water into the water pool
160
has not been circulated within the engine
38
. This water pool
160
can, therefore, prevent the driveshaft housing
32
from becoming discolored.
Further, the upper transverse water jacket
126
fj
is disposed above the oil pan
138
and hence the radiant heat of the oil pan
138
is precluded from being radiated to the components within the protective cowling
40
. The components cannot be jeopardized by the heat of the oil pan
138
. If the upper mount
100
is positioned above the upper transverse water jacket
126
fj
like in this embodiment, the elastic members
104
of the upper transverse water jacket
126
fj
is also prevented from being deteriorated by the heat of the oil pan
138
. In other words, the elastic members
104
should not have greater heat-resistance. The nature of anti-vibration can be given much priority in selecting a material for the elastic member
104
.
Although this invention has been described in terms of a certain preferred embodiment, other embodiments apparent to those of ordinary skill in the art are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by the claims that follow.
Claims
- 1. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system cooling at least said engine and said oil pan, said cooling system including a periphery coolant jacket generally juxtaposing at least two sides of said oil pan and being supplied with coolant that has not cooled said engine, the oil pan comprising an outer wall having a first wall portion and a second wall portion which are unitarily formed with the oil pan, the first and second wall portions being disposed adjacent one another and having a space defined therebetween, the periphery coolant jacket being disposed in the space between the first and second outer wall portions, and a coolant discharge jacket bypassing said periphery coolant jacket, the coolant discharge jacket receiving coolant from the engine.
- 2. An outboard motor as set forth in claim 1, wherein said coolant discharge jacket is unitarily formed with said oil pan.
- 3. An outboard motor as set forth in claim 1, wherein said cooling system further includes an upstanding coolant passage extending generally vertically through said oil pan, and said cooling system supplies coolant to said engine through said upstanding coolant passage.
- 4. An outboard motor as set forth in claim 1, wherein said cooling system further includes a water pump for delivering water to both of said engine and said periphery coolant jacket.
- 5. An outboard motor as set forth in claim 1 additionally comprising a power head including said engine, and a housing depending from said power head, said coolant discharge jacket being spaced apart from said housing.
- 6. An outboard motor as set forth in claim 1 additionally comprising a power head having said engine, a housing depending from said power head and containing said oil pan therein, and said oil pan being spaced from said housing to define a coolant pool there between so that the coolant pool substantially surrounds at least a portion of the periphery water jacket, and said coolant pool is supplied with coolant.
- 7. An outboard motor as set forth in claim 6, wherein said periphery coolant jacket communicates with said coolant pool, and the coolant in said periphery coolant jacket is delivered to said coolant pool.
- 8. An outboard motor as set forth in claim 1, wherein said outboard motor further comprises an exhaust system to discharge exhaust gasses from said engine, said exhaust system includes an exhaust passage passing through said oil pan, and said cooling system further includes means for forming a heat sink between said exhaust passage and said oil pan when said engine is operated, said means being separate from the periphery coolant jacket.
- 9. An outboard motor as set forth in claim 1, wherein said engine operates on a four stroke principle.
- 10. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system cooling at least said engine and said oil pan, said cooling system including a periphery coolant jacket generally juxtaposing at least a portion of said oil pan and being supplied with coolant that has not cooled said engine, said cooling system further including an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant, and a coolant discharge jacket bypassing said periphery coolant jacket, said coolant discharge jacket receiving coolant from said engine.
- 11. An outboard motor as set forth in claim 10, wherein said periphery coolant jacket generally juxtaposes at least two sides of said oil pan.
- 12. An outboard motor as set forth in claim 11, wherein said periphery coolant jacket generally juxtaposes at least two sides of said oil pan.
- 13. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system cooling at least said engine and said oil pan, said cooling system including a periphery coolant jacket generally juxtaposing at least a portion of said oil pan and being supplied with coolant that has not cooled said engine, said cooling system further including a lower coolant jacket extending generally transversely below said oil pan and being supplied with coolant, the lower coolant jacket formed between the oil pan and a lower member, the lower member being inclined so that coolant flows generally upwardly through the lower coolant jacket, and a coolant discharge jacket bypassing said periphery coolant jacket, the coolant discharge jacket receiving coolant from the engine.
- 14. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, and a cooling system to cool at least said engine and said oil pan, said cooling system including an upstanding coolant passage extending generally vertically through said oil pan, said cooling system supplying coolant to said engine through said upstanding coolant passage, said cooling system further including an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant.
- 15. An outboard motor as set forth in claim 14, wherein said upstanding coolant passage is unitarily formed with said oil pan.
- 16. An outboard motor as set forth in claim 14, wherein said cooling system further includes a lower coolant jacket extending generally transversely below said oil pan and being supplied with coolant.
- 17. An outboard motor as set forth in claim 16, wherein the coolant passing through said lower coolant jacket is supplied to said engine through said upstanding coolant passage.
- 18. An outboard motor as set forth in claim 14, wherein said outboard motor further comprises an exhaust system to discharge exhaust gasses from said engine, said exhaust system includes an exhaust passage passing through said oil pan, and said cooling system further includes means for forming a heat sink between said exhaust passage and said oil pan when said engine is operated.
- 19. An outboard motor comprising a power head including an internal combustion engine, a housing depending from said power head and containing an oil pan therein, said oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system to cool at least said engine and said oil pan, said cooling system including an upstanding coolant passage extending generally vertically through said oil pan, said cooling system supplying coolant to said engine through said upstanding coolant passage, said oil pan having an integrally formed water jacket configured to generally juxtapose at least two sides of the oil pan, and said oil pan being spaced apart from said housing to define a coolant pool between the oil pan water jacket and the housing.
- 20. An outboard motor as set forth in claim 19, wherein the cooling system further includes an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant.
- 21. An outboard motor comprising a power head having an internal combustion engine, a housing depending from said power head and containing a propulsion device driven by said engine for propelling an associated watercraft, an oil pan containing lubricant for lubrication of said engine, said oil pan depending into said housing and spaced apart from said housing, and a cooling system to cool at least said engine and said oil pan, said cooling system including a periphery cooling jacket surrounding at least two sides of the oil pan and a coolant pool defined between said oil pan periphery coolant jacket and said housing, said cooling system also including a coolant supply conduit that communicates with the engine and with the periphery coolant jacket such that coolant that has not cooled said engine is supplied to said periphery coolant jacket, said periphery coolant jacket having an outlet for delivering coolant to the coolant pool, said cooling system further including a coolant discharge jacket bypassing said periphery coolant jacket and coolant pool and arranged within the cooling system to receive coolant that has cooled said engine.
- 22. An outboard motor as set forth in claim 21, wherein the coolant in said coolant pool is discharged to said coolant discharge jacket.
- 23. An outboard motor as set forth in claim 22, wherein said coolant pool communicates with said coolant discharge jacket through an overflow port, and the coolant in said coolant pool overflows to said discharge jacket through said overflow port.
- 24. An outboard motor as set forth in claim 21, wherein said discharge jacket is unitarily formed with said oil pan.
- 25. An outboard motor as set forth in claim 21, wherein said outboard motor further comprises an exhaust system for discharging exhaust gasses from said engine, said exhaust system includes an exhaust passage passing through said oil pan, and said cooling system further includes means for forming a heat sink between said exhaust passage and said oil pan when said engine is operated.
- 26. An outboard motor as set forth in claim 21, wherein said cooling system additionally includes an upper coolant jacket extending generally transversely above said oil pan and supplied with coolant.
- 27. An outboard motor as set forth in claim 21, wherein said cooling system additionally includes a lower coolant jacket extending generally transversely below said oil pan and supplied with coolant.
- 28. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, an exhaust system for discharging exhaust gasses from said engine, said exhaust system including an exhaust passage passing through said oil pan, a cooling system for cooling at least said engine and said oil pan, and said cooling system including means for forming a heat sink between said exhaust passage and said oil pan when said engine is operated, said cooling system further including an upper coolant jacket extending generally transversely above said oil pan.
- 29. An outboard motor as set forth in claim 28, wherein said exhaust passage includes a passage member depending from an exhaust guide member affixed to said engine, said upper coolant jacket is formed with jacket members including said exhaust guide member, said cooling system further includes a pressure control valve for regulating pressure of the coolant to said engine, and said pressure control valve is attached to said exhaust guide member.
- 30. An outboard motor as set forth in claim 28, wherein said means arranged to receive coolant for a coolant jacket of said engine.
- 31. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system for cooling at least said engine and said oil pan, said cooling system including an upper transverse coolant jacket extending generally transversely above said oil pan, and said cooling system supplying coolant that has not cooled said engine to the upper transverse coolant jacket, and said cooling system further including a coolant discharge jacket bypassing said upper transverse coolant jacket and arranged to receive coolant from the engine.
- 32. An outboard motor as set forth in claim 31 additionally comprising a power head having said engine, a housing depending from said power head and containing said oil pan therein, said housing having at least one support member affixed thereto, a bracket assembly for mounting said housing on an associated watercraft at said support member for pivotal movement at least about a steering axis, and said upper transverse coolant jacket being positioned between said oil pan and said support member.
- 33. An outboard motor as set forth in claim 32, wherein said support member is affixed to said housing by an elastic element.
- 34. An outboard motor as set forth in claim 31 additionally comprising a power head having said engine, a housing depending from said power head and containing said oil pan therein, and said upper transverse coolant jacket being positioned between said oil pan and said engine.
- 35. An outboard motor as set forth in claim 31, wherein said upper transverse coolant jacket is configured generally to isolate thermally said oil pan from said support member.
- 36. An outboard motor as set forth in claim 31, wherein said cooling system further includes a pressure control valve for regulating pressure of the coolant to said engine, and the coolant from said pressure control valve is disposed upstream of said transverse coolant jacket.
- 37. An outboard motor as set forth in claim 31, wherein said upper transverse coolant jacket is formed with upper jacket members that includes a cover member of said oil pan.
- 38. An outboard motor as set forth in claim 37, wherein said cooling system further includes a pressure control valve for regulating pressure of the coolant to said engine, and said pressure control valve is disposed on said upper jacket members.
- 39. An outboard motor as set forth in claim 31, wherein said cooling system further includes a lower transverse coolant jacket extending generally transversely below said oil pan.
- 40. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, an exhaust system to discharge exhaust gasses from said engine, said exhaust system including an exhaust passage passing through said oil pan, and a cooling system for cooling at least said engine and said oil pan, said cooling system including a lower transverse coolant jacket extending generally transversely below said oil pan, said cooling system arranged to supply coolant to said engine through said lower transverse coolant jacket, said lower transverse coolant jacket having an inlet port and an outlet port which are disposed opposite to each other on opposite sides of said exhaust passage, and said cooling system further including a coolant discharge jacket arranged to bypass said lower transverse coolant jacket and arranged within the cooling system to receive coolant from said engine.
- 41. An outboard motor as set forth in claim 40, wherein said lower transverse coolant jacket is formed with lower jacket members including a lower member attached to said oil pan.
- 42. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant to lubricate said engine, and a cooling system arranged to cool at least said engine and said oil pan, said cooling system including a periphery coolant jacket generally surrounding said oil pan and being unitarily formed with the oil pan, a coolant supply conduit arranged to communicate with the engine and with the periphery coolant jacket such that coolant that has not cooled said engine is supplied to said periphery coolant jacket, and a coolant discharge jacket arranged to bypass said periphery coolant jacket, the coolant discharge jacket arranged to receive coolant from the engine.
- 43. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, and a cooling system to cool at least said engine and said oil pan, said cooling system including an upstanding coolant passage extending generally vertically through said oil pan, said cooling system supplying coolant to said engine through said upstanding coolant passage, said cooling system further including an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant, said cooling system additionally including a lower coolant jacket extending generally transversely below said oil pan and being supplied with coolant.
- 44. An outboard motor as set forth in claim 43, wherein the coolant passing through said lower coolant jacket is supplied to said engine through said upstanding coolant passage.
- 45. An outboard motor as set forth in claim 43, wherein the upper coolant jacket is selectively engagable.
- 46. An outboard motor as set forth in claim 43, wherein the upper coolant jacket is inclined.
- 47. An outboard motor comprising a power head having an internal combustion engine, a housing depending from said power head and containing a propulsion device driven by said engine for propelling an associated watercraft, an oil pan containing lubricant for lubrication of said engine, said oil pan depending into said housing and spaced apart from said housing, and a cooling system to cool at least said engine and said oil pan, said cooling system including a coolant pool defined between said oil pan and said housing, said cooling system also including a coolant supply conduit that communicates with the engine and with the coolant pool such that coolant that has not cooled said engine is supplied to said coolant pool, said cooling system further including a coolant discharge jacket bypassing said coolant pool and arranged within the cooling system to receive coolant that has cooled said engine, wherein the coolant in said coolant pool is discharged to said coolant discharge jacket.
- 48. An outboard motor as set forth in claim 47, wherein said coolant pool communicates with said coolant discharge jacket through an overflow port, and the coolant in said coolant pool overflows to said discharge jacket through said overflow port.
- 49. An outboard motor as set forth in claim 47 additionally comprising an oil pan coolant jacket, and the oil pan coolant jacket supplies coolant to the coolant pool.
- 50. An outboard motor comprising a power head having an internal combustion engine, a housing depending from said power head and containing a propulsion device driven by said engine for propelling an associated watercraft, an oil pan containing lubricant for lubrication of said engine, said oil pan depending into said housing and spaced apart from said housing, and a cooling system to cool at least said engine and said oil pan, said cooling system including a coolant pool defined between said oil pan and said housing, said cooling system also including a coolant supply conduit that communicates with the engine and with the coolant pool such that coolant that has not cooled said engine is supplied to said coolant pool, said cooling system further including a coolant discharge jacket bypassing said coolant pool and arranged within the cooling system to receive coolant that has cooled said engine, said cooling system additionally including an upper coolant jacket extending generally transversely above said oil pan and supplied with coolant.
- 51. An outboard motor comprising a power head having an internal combustion engine, a housing depending from said power head and containing a propulsion device driven by said engine for propelling an associated watercraft, an oil pan containing lubricant for lubrication of said engine, said oil pan depending into said housing and spaced apart from said housing, and a cooling system to cool at least said engine and said oil pan, said cooling system including a coolant pool defined between said oil pan and said housing, said cooling system also including a coolant supply conduit that communicates with the engine and with the coolant pool such that coolant that has not cooled said engine is supplied to said coolant pool, said cooling system further including a coolant discharge jacket bypassing said coolant pool and arranged within the cooling system to receive coolant that has cooled said engine, said cooling system additionally including a lower coolant jacket extending generally transversely below said oil pan and supplied with coolant.
- 52. An outboard motor comprising an internal combustion engine, an oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system cooling at least said engine and said oil pan, said cooling system including a periphery coolant jacket generally juxtaposing at least two sides of said oil pan and being supplied with coolant that has not cooled said engine, said cooling system further including an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant, and a coolant discharge jacket bypassing said periphery coolant jacket, said coolant discharge jacket receiving coolant from said engine.
- 53. An outboard motor comprising a power head including an internal combustion engine, a housing depending from said power head and containing an oil pan therein, said oil pan depending from said engine and containing lubricant for lubrication of said engine, a cooling system to cool at least said engine and said oil pan, said cooling system including an upstanding coolant passage extending generally vertically through said oil pan, said cooling system supplying coolant to said engine through said upstanding coolant passage, and said oil pan being spaced apart from said housing to define a coolant pool between the oil pan and the housing, wherein the cooling system further includes an upper coolant jacket extending generally transversely above said oil pan and being supplied with coolant.
- 54. An outboard motor configured to be mounted on an associated watercraft, the outboard motor comprising an internal combustion engine, an oil pan depending from the engine and containing lubricant for lubrication of the engine, a cooling system for cooling at least the engine and the oil pan, a bracket assembly for mounting the motor on the watercraft, and a support member configured to engage the bracket assembly so that the motor is pivotable relative to the bracket assembly about a steering axis, and the cooling system comprises a coolant jacket arranged generally transversely above the oil pan and between the oil pan and the support member, the cooling system supplying coolant to the coolant jacket.
- 55. The outboard motor of claim 54, wherein the coolant jacket is arranged generally between the engine and the oil pan.
- 56. The outboard motor of claim 54, wherein the coolant jacket is generally horizontal.
- 57. The outboard motor of claim 56, wherein the coolant jacket is slightly inclined.
- 58. The outboard motor of claim 54, wherein the coolant jacket is selectively provided with coolant from the cooling system.
- 59. The outboard motor of claim 58, wherein the cooling system has a control valve upstream of the coolant jacket.
- 60. The outboard motor of claim 56, wherein the cooling system supplies the coolant jacket with coolant that has not cooled the engine.
- 61. The outboard motor of claim 54, wherein the support member comprises an elastic element.
Priority Claims (2)
Number |
Date |
Country |
Kind |
10-324302 |
Nov 1998 |
JP |
|
10-324303 |
Nov 1998 |
JP |
|
US Referenced Citations (41)