Outboard motor including water-cooled V-engine

Information

  • Patent Grant
  • 6715454
  • Patent Number
    6,715,454
  • Date Filed
    Tuesday, May 14, 2002
    22 years ago
  • Date Issued
    Tuesday, April 6, 2004
    20 years ago
Abstract
An outboard motor includes a water-cooled V-engine. The engine includes right and left cylinder block portions each having plural cylinders formed therein. The cylinders of each cylinder block portion are vertically juxtaposed. Cylinder heads are disposed behind the cylinder block portions. The outboard motor has horizontal and vertical shafts. The outboard motor can tilt up on the horizontal shaft and pivot sideways on the vertical shaft. The cylinders of each cylinder block portion have a cooling jacket formed therein. The lowermost cylinder has a discharge portion formed at an outermost part thereof. The discharge portion is designed to discharge out cooling water remaining in the cooling jacket.
Description




FIELD OF THE INVENTION




The present invention relates generally to an outboard motor including a water-cooled V-engine having cooling water jackets formed therein, and in particular to the engine designed such that cooling water such as sea water remaining in the cooling water jackets is readily discharged out of the outboard motor when the outboard motor is tilted up and pivoted either rightward or leftward.




BACKGROUND OF THE INVENTION




Outboard motors having water-cooled engines are well known in the art and attached to sterns of boats. The outboard motors may be tilted up out of water for the purpose of maintenance. At this time, cooling water such as sea water remaining in cooling water jackets formed in the engines should be discharged out so as to prevent corrosion or rusting of the engines.




Japanese Utility Model Laid-Open Publication No. SHO 63-158530 discloses an outboard motor including an engine having cooling water jackets formed therein. When the outboard motor is tilted up and pivoted sideways, the cooling water jackets discharge out unwanted cooling water, which remains therein, through a discharge port formed at an underside of a lowermost cylinder of the engine.




Because the engine is an in-line engine having cylinders provided in vertical juxtaposition, the remaining cooling water can be discharged out of the outboard motor.




Engines for use in the outboard motors include a water-cooled V-engine having two sets or rows of vertically juxtaposed plural cylinders provided at right and left sides thereof. Each set of the cylinders is spaced a predetermined angle (a first angle) away from a central longitudinal axis of a boat. If the outboard motor employing such a V-engine is tilted up and pivoted rightward (or otherwise leftward) by a second angle, the set of the cylinders provided at the right side (or otherwise the left side) of the engine is spaced away from the axis of the boat by angles obtained by adding up the second angle to the first angle. As a result, cooling water within the cooling water jackets would not be satisfactorily discharged out of the discharge port formed in the lowermost cylinder.




SUMMARY OF THE INVENTION




An object of the present invention is to provide an outboard motor including a V-engine designed to smoothly discharge out cooling water remaining therein when the outboard motor is tilted up and pivoted sideways.




According to one aspect of the present invention, there is provided an outboard motor including a water-cooled V-engine, a horizontal shaft, and a vertical shaft, the outboard motor being tiltable up on the horizontal shaft and pivotable sideways on the vertical shaft. The water-cooled V-engine comprises right and left cylinder block portions each having plural cylinders formed therein, the cylinders being vertically juxtaposed, and cylinder heads disposed behind the right and left cylinder block portions, respectively. The plural cylinders of each of the right and left cylinder block portions have a cooling jacket formed therein, the cooling jacket allowing cooling water to flow therethrough to thereby cool the plural cylinders, and the right and left cylinder block portions have discharge portions formed at the lowermost cylinders thereof, the discharge portions each communicating with the cooling jacket of the plural cylinders of each of the right and left cylinder block portions, for discharging out cooling water remaining in the cooling jacket.




In the illustrated embodiment as described hereinafter, the lowermost cylinders have the discharge portions positioned at the same level as centers thereof. Therefore, when the outboard motor is tilted up and pivoted sideways for the purpose of maintenance, the cooling water remaining in the cooling jackets is smoothly discharged out through the discharge portions. It thus becomes possible to advantageously protect the engine of the outboard motor against corrosion or rusting.




By thus providing the cylinders with only the discharge portions, the drainage of the cooling water remaining in the cooling jackets can be achieved. The discharge portions may be piped.




In a preferred form of the present invention, the cooling jackets of the right and left cylinder block portions include inside bottom portions inclined forwardly of the outboard motor, the inside bottom portions each being contiguous with the discharge portions, such that the cooling water remaining in the cooling jackets is successively directed along the inside bottom portions into the discharge portions when the outboard motor is tilted up.




The inside bottom portions are continuous with the discharge portions. The inside bottom portions are inclined forwardly of the outboard motor. When the outboard motor is tilted up for the purpose of maintenance, the cooling water remaining within the cooling jackets is directed along the inside bottom portions into the discharge portions. The cooling water is then drained out of the discharge portions.




Preferably, the cooling water discharged from the discharge portions is discharged out of the outboard motor through a cooling water supplying pipe for supplying cooling water to the cooling jackets.











BRIEF DESCRIPTION OF THE DRAWINGS




Certain preferred embodiments of the present invention will hereinafter be described in detail, by way of example only, with reference to the accompanying drawings, in which:





FIG. 1

is a side elevation view of an outboard motor of the present invention attached to a stern;





FIG. 2

is a view of the outboard motor as viewed in a direction designated


2


;





FIG. 3

is a view illustrating an upper part of the outboard motor, an engine cover being shown in vertical cross-section to reveal inner components such as an engine of the outboard motor;





FIG. 4

is a cross-sectional view taken along line


4





4


of

FIG. 4

with an intake muffler and an intake manifold of the engine omitted for the purpose of illustrating the engine;





FIG. 5

is a view illustrating, in cross-section, lowermost cylinders of the engine;





FIG. 6

is a cross-sectional view taken along line


6





6


of

FIG. 5

; and





FIG. 7

is a view schematically illustrating how cooling water flows within cooling water jackets formed in the engine;











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to

FIG. 1

, an outboard motor


1


includes an engine cover


27


. A stern bracket


2


is positioned at a front part of the outboard motor


1


. More specifically, the stern bracket


2


is disposed below the engine cover


27


. The outboard motor


1


is detachably mounted via the stern bracket


2


to a stern


101


of a boat


100


.




The outboard motor


1


includes a horizontal shaft


3


. The outboard motor


1


mounted to the stern


101


is free to tilt or pivot up on the horizontal shaft


3


to undergo tilting movement about a horizontal axis. The outboard motor


1


, when tilted up, is shown by a double-dot-and-dash line A of FIG.


1


. The outboard motor


1


, when tilted up, is exposed to the air with a screw


31


positioned above the surface


102


of water.




The outboard motor


1


includes a vertical shaft


4


. In addition to pivoting up, the outboard motor


1


can pivot sideways on the vertical shaft


4


to undergo sidewise pivotal movement about a vertical axis to thereby turn a boat. As shown by a solid line in

FIG. 2

, for example, the outboard motor


1


can pivot rightward. The boat can be propelled straight with the outboard motor


1


held in a neutral position as shown by a double-dot-dash line B.




With respect to FIG.


3


and

FIG. 4

, the outboard motor


1


includes a water-cooled V-six engine


5


having two sets or rows of three cylinders


7


each oriented horizontally.




The three cylinders


7


of each row are vertically disposed side by side. Each cylinder


7


has a piston


8


slidably fitted therein. The engine


5


includes a cylinder block


6


taking the form of a V when viewed in plan (FIG.


4


). A crankcase


9


is disposed at a front side of the cylinder block


6


. The respective pistons


8


are connected to a crankshaft


10


.




Cylinder heads


11


,


11


are disposed behind the cylinder block


6


. Cylinder head covers


12


,


12


are positioned behind the cylinder heads


11


,


11


. Exhaust manifolds


13


R,


13


L are disposed alongside the cylinder heads


11


,


11


. Each exhaust manifold


13


has an exhaust passageway


14


formed therein. A mount case


15


for supporting the engine


5


is disposed below the cylinder block


6


. The mount case


15


has an inside space formed in a rear part thereof. The exhaust passageway


14


communicates with an exhaust pipe


44


through the inside space of the mount case


15


, as will be discussed later. An extension case


29


has an exhaust gas expansion chamber


45


formed therein. The respective exhaust pipes


44


,


44


extend through such an exhaust gas expansion chamber


45


. Exhaust gas flows through the exhaust passageways


14


,


14


and the exhaust pipes


44


,


44


out of an exit formed at a lower part of the outboard motor


1


. Such a lower part of the outboard motor is normally submerged in water.




A generator


16


is disposed at an upper portion of a front part of the engine


5


. A first drive pulley


17


is mounted on an upper end of the crankshaft


10


. A second drive pulley


18


is also mounted on the upper end of the crankshaft


10


. The pulley


18


is positioned above the pulley


17


in coaxial relation thereto. A belt


20


runs over the pulley


18


and a driven pulley


19


of the generator


16


. The pulleys


18


,


19


and the belt


20


thus arranged are to transmit an output from the engine


5


to the generator


16


. When supplied with the output of the engine


5


, the generator


16


is energized to produce electricity.




Camshafts have their ends projecting upwardly from the cylinder heads


11


,


11


. Each camshaft is driven by a camshaft pulley


21


. Guide pulleys


22


,


22


,


22


are disposed near the pulleys


21


,


21


. A belt


23


runs over the pulleys


17


,


21


,


21


,


22


,


22


,


22


. With this arrangement, the camshafts are driven by the output from the engine


5


.




A box-shaped intake muffler (intake silencer)


24


is disposed above these pulleys and belts. The intake muffler


24


has its rear part communicating with an intake passageway formed in a throttle valve device


25


. The throttle valve device


25


is connected to an intake manifold


26


disposed behind the cylinder head covers


12


,


12


.




The engine cover


27


covers the engine


5


. An under cover


28


disposed below the engine cover


27


covers the mount case


15


. The extension case


29


extends downwardly from the under cover


28


. Provided under the extension case


29


is a gear case


30


(FIG.


1


). The screw


31


projects rearwardly from the gear case


30


. The crankshaft


10


has its lower end connected to a vertical drive shaft. The vertical drive shaft is to transmit the output from the engine


5


to the screw


31


. When supplied with the output from the engine


5


, the screw


31


is driven.




In

FIG. 4

, the intake muffler


24


and the intake manifold


26


are not shown for the purpose of explaining the engine


5


.




Right and left cylinder block portions (right and left cylinder banks)


6


R,


6


L of the cylinder block


6


have a space


32


formed therebetween. The exhaust manifolds


13


R,


13


L are disposed outside the right and left cylinder block portions


6


R,


6


L, respectively.




Each cylinder


7


has a cylinder bore


7




a


disposed therewithin. The cylinder head


11


has combustion chambers


11




a


formed therein.




Reference is made to FIG.


5


and FIG.


6


. There are shown lowermost cylinders


6




a


,


6




a


of the right and left cylinder block portions


6


R,


6


L. Around the cylinder bores


7




a


,


7




a


of the lowermost cylinders


6




a


,


6




a


, there are provided cooling water jackets (cooling jackets)


33




a


,


33




a


. It should be noted that the cooling water jackets


33




a


,


33




a


surround cylinder bores of the uppermost and middle cylinders


7


,


7


as well as those of the lowermost cylinders


6




a


,


6




a.






Each cooling water jacket


33




a


communicates with both a cooling water jacket


33




b


provided around the combustion chamber


11




a


and a cooling water jacket


33




c


provided around the exhaust passageway


14


.




Each of the lowermost cylinders


6




a


,


6




a


has an outermost part


6




b


. The outermost part


6




b


has a discharge portion


34


positioned at the same level as the center C of the cylinder bore


7




a


of the lowermost cylinder


6




a.






The discharge portion


34


is of cylindrical configuration and protrudes outwardly from the outermost part


6




b


. The discharge portion


34


has a passageway


34


′ formed therein. The passageway


34


′ of the discharge portion


34


communicates with a water passageway


33




d


forming in part the cooling water jacket


33




a


surrounding the cylinder bores, and an outlet of the cooling water jacket


33




a


opens directly to the discharge portion


34


. The cylindrical discharge portion


34


has a fitting


34




a


inserted into the passageway


34


′ thereof. The fitting


34




a


is a pipe and its outer end connected to a drainage tube


35


.




The discharge portions


34


,


34


discharge cooling water remaining within the cooling water jackets


33




a


,


33




a


when the engine


5


is out of operation, as will be described hereafter.




Cooling water passages


36


,


36


are formed at right and left sides of the mount case


15


. The mount case


15


has a cooling water introducing passageway


37


formed therein. The passageway


37


is provided between the passages


36


,


36


. The passageway


37


communicates with a cooling water supplying pipe


38


. Cooling water such as sea water is pumped up through the pipe


38


into the passageway


37


. The cooling water within the passageway


37


is then introduced into the cooling water jackets


33




a


,


33




a


through introduction ports


39


,


39


formed in the cylinder block portions


6


R,


6


L.




The drainage tubes


35


,


35


communicate with the cooling water jackets


33




c


,


33




c.






When the engine


5


and a pump


42


(see

FIG. 7

) become out of operation, cooling water within the water passageways


33




d


,


33




d


flows back into the drainage tubes


35


,


35


through the cooling water jackets


33




c


,


33




c


, the cooling water passages


36


,


36


and the cooling water supplying pipe


38


out of an intake port


41


(see FIG.


7


).




Discussion will be made as to the flow of cooling water with reference to FIG.


7


.




When the pump


42


is actuated, cooling water such as sea water is pumped up through the intake port


41


into the pipe


38


, as shown by arrows. The intake port


41


is provided with a strainer


41


′. The cooling water is then forced through the introduction ports


39


,


39


into the cooling water jackets


33




a


,


33




a


to thereby cool the respective cylinder bores of the cylinders of the cylinder block portions


6


R,


6


L, as shown by arrows.




Part of the pumped cooling water flows through branch passages


38




a


,


38




a


and the passages


36


,


36


into the cooling water jackets


33




c


,


33




c


of the exhaust manifolds


13


R,


13


L to thereby cool the exhaust passageways


14


,


14


. The cooling water thus introduced into the cooling water jackets


33




a


,


33




a


,


33




c


,


33




c


flows into the cooling water jackets


33




b


,


33




b


of the cylinder heads


11


,


11


to thereby cool the combustion chambers.




The exhaust manifolds


13


R,


13


L are connected to mount case inside passage members


43


,


43


. The cooling water passages


36


,


36


are provided around the passage members


43


,


43


, respectively. Each cooling water passage


36


is connected to the branch passage


38




a


provided upstream of the pipe


38


. The part of the cooling water flows through the branch passages


38




a


,


38




a


into the cooling water passages


36


,


36


to thereby cool the passage members


43


,


43


.




The mount case inside passage members


43


,


43


have their lower ends connected to the exhaust pipes


44


,


44


, respectively. These pipes


44


,


44


extend within the exhaust gas expansion chamber


45


. Exhaust gas and the cooling water flow through the pipes


44


,


44


and the chamber


45


, respectively, out of the outboard motor


1


.




Covers


46


,


46


are disposed on the mount case


15


in such a manner as to allow the connection of the exhaust manifolds


13


R,


13


L to the mount case inside passage members


43


,


43


.




Thermostats


49


,


49


are positioned atop the cooling water jackets


33




a


,


33




a


of the cylinder block portions


6


R,


6


L. As shown in

FIG. 4

, the cooling water jackets


33




c


and a discharge passage


47


are provided around the exhaust manifold. The cooling water jackets


33




a


,


33




a


are connected via connection paths


48


,


48


to the discharge passages


47


,


47


, as shown in FIG.


7


.




The thermostats


49


,


49


are opened when temperature of the cooling water within the cooling water jackets


33




a


,


33




a


exceeds a given value. With the thermostats


49


,


49


opened, the cooling water flows through the connection paths


48


,


48


into the discharge passages


47


,


47


. The cooling water in the discharge passages


47


,


47


is then discharged into the chamber


45


. The discharge passages


47


,


47


have their exits


47




a


,


47




a


communicating with discharge apertures


15




a


,


15




a


. These apertures


15




a


,


15




a


are in communication with the exhaust gas expansion chamber


45


.




Referring back to FIG.


3


and

FIG. 5

, the cooling water jackets


33




a


,


33




a


of the cylinder block portions


6


R,


6


L each include an inside wall (an inside bottom portion)


33




e


contiguous with the discharge portion


34


. The inside wall


33




e


is inclined forwardly of the outboard motor


1


. The inside wall


33




e


has distal and proximal ends


33


′,


33




e


″. The distal end


33




e


′ is positioned lower than the proximal end


33




e″.






When the outboard motor


1


is tilted up, as shown by the double-dot-and-dash line A in

FIG. 1

, to thereby turn the inside walls


33




e


,


33




e


clockwise, the cooling water within the cooling water jackets


33




a


,


33




a


is positively or forcibly directed along the inside walls


33




e


,


33




e


into the discharge portions


34


,


34


.




Reference numeral


50


is a cooling jacket for a vapor separator. The cooling water supplying pipe


38


is connected to a cooling pipe


51




a


. A drainage pipe


51




b


is provided for discharging cooling water into the exhaust gas expansion chamber


45


. Provided at the right and left cooling water passages


36


,


36


are water pressure relief valves


61


,


61


for adjusting pressure in any water passage through which cooling water pumped by the pump


42


flows prior to reaching the thermostats


49


,


49


. Each cooling water passage


36


communicates with the chamber


45


through the valve


61


. When pressure of cooling water supplied by the pump


42


becomes high, the valves


61


,


61


are each opened to thereby allow cooling water within the passages


36


,


36


to be drained into the chamber


45


. The use of the valves


61


,


61


makes it possible to adjust the pressure of the cooling water pumped by the pump


42


.




In the illustrated embodiment, sea water is pumped up by the pump


42


to cool the engine


5


, therefore, the outboard motor


1


includes a one way valve


62


for cleaning/washing the cooling water jackets. The valve


62


is opened only in cleaning the cooling water jackets. More specifically, when in use, the valve


62


is connected via a hose to an external faucet disposed outside the outboard motor


1


. Fresh water is then supplied from the faucet through the hose and the opened valve


62


into the outboard motor


1


. The valve


62


is normally closed.




The outboard motor


1


can be tilted or pivoted upwardly on the shaft


3


as shown by the double-dot-and-dash line A of

FIG. 1

for the purpose of maintenance. The outboard motor


1


can also be pivoted rightward or otherwise leftward on the shaft


4


for the purpose of maintenance.




With the outboard motor


1


tilted up and pivoted either rightward or leftward, cooling water within the cooling water jackets


33




a


,


33




a


needs to be discharged out so as to prevent corrosion or rusting of the engine


5


.




In the illustrated embodiment, as stated above, the discharge portions


34


,


34


are provided adjacent to the lower ends of the lowermost cylinders


6




a


,


6




a


remote from the cylinder heads


11


,


11


at the same level as the centers C, C of the cylinders bores


7




a


,


7




a


of the lowermost cylinders


6




a


,


6




a


. When the outboard motor


1


is tilted up and pivoted sideways, either of the discharge portions


34


,


34


is lowered. Therefore, cooling water within the cooling water jacket


33




a


can be discharged out of the outboard motor


1


through the thus lowered discharge portion


34


, the cooling water jacket


33




c


, the cooling water passage


36


, and the cooling water supplying pipe


38


.




It will be appreciated that even when the outboard motor is tilted up and pivoted sideways for the purpose of maintenance, the cooling water remaining within the cooling water jackets can be smoothly, rapidly discharged out of the outboard motor.




The present disclosure relates to the subject matter of Japanese Patent Application No. 2001-144546, filed May 15, 2001, the disclosure of which is expressly incorporated herein by reference in its entirety.



Claims
  • 1. An outboard motor mountable in use on a boat in such a manner as to undergo tilting movement about a horizontal axis and pivotal movement about a vertical axis, the outboard motor comprising: a water-cooled V-engine having two cylinder heads disposed at a rearward portion of the outboard motor and a crankcase disposed at a forward portion of the outboard motor, the V-engine having right and left lateral sides having corresponding right and left cylinder block portions each having plural cylinders disposed in vertical juxtaposition with axes of the cylinders disposed horizontally, the cylinder block portions each having a cooling jacket formed therein and extending around each of the cylinders thereof for the passage therethrough of cooling water to cool the cylinders, each of the cylinder block portions having a discharge portion disposed in a position corresponding to the position of a lowermost cylinder of the plural cylinders in each cylinder block portion, and each cooling jacket having an outlet opening to a respective one of the discharge portions.
  • 2. An outboard motor according to claim 1; wherein the cooling jackets of the right and left cylinder block portions each have an inclined bottom portion contiguous to the outlet thereof and sloping upward in a forward direction of the outboard motor so that when the outboard motor is tilted up in a rearward direction thereof, cooling water remaining in the cooling jacket is allowed to escape the cooling jacket successively through the inclined bottom portion and the outlet.
  • 3. An outboard motor according to claim 1; wherein the outlet of each cooling jacket is located at the same level as the axis of the lowermost cylinder.
  • 4. An outboard motor according to claim 1; wherein the outlet of each cooling jacket is disposed adjacent to an end of the lowermost cylinder located remote from the cylinder head.
  • 5. An outboard motor mountable in use in an upright position on a boat to undergo tilting movement about a horizontal axis and sidewise pivotal movement about a vertical axis, the outboard motor comprising: a water-cooled V-engine having two cylinder heads disposed at a rearward portion of the outboard motor and a crankcase disposed at a forward portion of the outboard motor, the V-engine having right and left cylinder block portions each having plural cylinders disposed one above the other with axes of the cylinders disposed horizontally when the outboard motor is in the upright position, the cylinder block portions each having a cooling jacket formed therein and extending around each of the cylinders thereof for the passage therethrough of cooling water to cool the cylinders, each of the cooling jackets having an outlet disposed in a position corresponding to the position of a lowermost cylinder of the plural cylinders in a respective cylinder block portion for draining cooling water from the cooling jackets when, during non-use of the outboard motor, the outboard motor is tilted upwardly and pivoted sidewise.
  • 6. An outboard motor according to claim 5; wherein the cooling jackets of the right and left cylinder block portions each have an inclined bottom portion contiguous to the outlet thereof and sloping upward in a forward direction of the outboard motor so that cooling water can drain from the cooling jacket successively through the inclined bottom portion and the outlet when the outboard motor is tilted upwardly.
  • 7. An outboard motor according to claim 5; wherein the outlet of each cooling jacket is located at the same level as the axis of the lowermost cylinder.
  • 8. An outboard motor according to claim 5; wherein the outlet of each cooling jacket is disposed adjacent to an end of the lowermost cylinder located remote from the cylinder head.
  • 9. An outboard motor according to claim 8; wherein the cooling jackets of the right and left cylinder block portions each have an inclined bottom portion contiguous to the outlet thereof and sloping upward in a forward direction of the outboard motor so that cooling water can drain from the cooling jacket successively through the inclined bottom portion and the outlet when the outboard motor is tilted upwardly.
Priority Claims (1)
Number Date Country Kind
2001-144546 May 2001 JP
US Referenced Citations (3)
Number Name Date Kind
4066057 Hale Jan 1978 A
4129103 Pichl Dec 1978 A
5950425 Takahashi et al. Sep 1999 A
Foreign Referenced Citations (1)
Number Date Country
63158530 Oct 1988 JP