This application claims the benefit of priority of Japanese Patent Application No. 2018-216222, filed Nov. 19, 2018, the entire contents of which are incorporated herein by reference.
The present invention relates to an outboard motor that guides combustion air from a combustion air intake port of an engine cover to the engine via an intake passage.
In the case of an intake structure that directly supplies combustion air, which is taken in from a combustion air intake port of an engine cover, to a throttle body without causing the combustion air to flow through a space in the vicinity of the engine (hereinafter, the structure will be referred to as a direct intake type for convenience), intake noise is easily transmitted to outside from the engine cover.
Meanwhile, when air is taken into the throttle body from the intake port provided inside of the engine cover, it is easy to take measures against intake noise because a silencing structure can be designed with a degree of freedom in terms of space by utilizing a space between the engine cover and the engine and because a thick sound absorbing member can be pasted on the engine cover.
However, in the case of the direct intake type, a silencing device (silencing chamber) in the intake passage which connects to the throttle body is disposed at an upper portion of the engine, that is, an upper position of the engine cover because a combustion air intake port is generally located in an upper portion of the engine cover. For this reason, intake noise easily leaks to outside. It is possible to take measures such as providing a resonator with a certain capacity in the intake passage, or pasting a sound absorbing member on the engine cover. However, the upper portion of the engine cover generally has a narrower internal space as compared with a side portion and a lower portion of the engine cover, and hence, it is difficult to cope with intake noise effectively for the reasons that securing the capacity of the resonator is difficult, securing the space for pasting a sound absorbing member is difficult, and the like.
In outboard motors, a so-called large outboard motor having a high output generates large intake noise, and a single hull is often equipped with a plurality of outboard motors with large engine outputs (equipped with multiple outboard motors). Consequently, in order to improve product value, it is more important to take measures against intake noise without increasing a lateral width of the outboard motor in the case of a large outboard motor than in the case of a small outboard motor. In the meantime, a prior art aiming at a silencing effect by including a plurality of intake ducts in an air cleaner is disclosed in JP 2005-076619 A.
However, JP 2005-076619 A is an example that is applied to an automatic four-wheeled vehicle, and is described schematically. Accordingly, it is difficult to adopt the schematically described idea directly in an outboard motor which is far smaller as compared with an automatic four-wheeled vehicle, and technical efforts are required.
Further, some intake structures of outboard motors have water intrusion prevention devices that prevent intrusion of water into the intake ports connecting to the throttle bodies. As this type of water intrusion prevention device, a louver structure is simple in structure and space-saving, and thus, the adoption of the structure can be an effective method, but there is a problem that the intake noise is reflected on the louver and diffused in many directions.
The present invention has been made in consideration of the aforementioned circumstances, and it is an object of the present invention to provide an outboard motor that can effectively reduce intake noise that occurs in an intake stroke of an engine of the outboard motor.
An outboard motor according to an aspect of the present invention includes an engine cover, a throttle body, and a silencing chamber. The engine cover covers an engine and is provided with a combustion air intake port. The throttle body is connected to the engine and is configured to take in combustion air from the combustion air intake port. The silencing chamber is provided above the engine and is placed in an intake passage that guides the combustion air to the throttle body. At least one of a hole member including a plurality of holes with respective predetermined depths, and a plurality of suction pipes elongated in a front-rear direction of the outboard motor, is disposed in a position communicating with the silencing chamber.
According to an aspect of the present invention, a silencing chamber is placed in an intake passage that guides combustion air from a combustion air intake port of an engine cover to a throttle body connected to an engine, and a hole member including a plurality of holes or a plurality of suction pipes are disposed in a position communicating with the silencing chamber. Consequently, the intake noise that occurs in the intake stroke of the engine of the outboard motor can be effectively reduced by a silencing function by the silencing chamber, and a silencing function using air column resonance by at least one of the holes of the hole member and the suction pipes.
The nature and further characteristic features of the present invention will be described hereinafter in the following descriptions made with reference to the accompanying drawings, and the other advantages effects and functions of the present invention will be also made clear hereinafter.
Hereinafter, an embodiment for carrying out the present invention will be described based on the drawings.
A casing of an outboard motor 10 has an engine housing 11, a drive shaft housing 12 that is provided on a lower side of the engine housing 11, and a gear housing 13 that is provided on a lower side of the drive shaft housing 12. The outboard motor 10 is mounted to a stern of a hull not illustrated by using a bracket device 14 provided at a front portion of the outboard motor 10.
A drive system of the outboard motor 10 has an engine 15 that is an internal combustion engine, a drive shaft 16, a shift mechanism 17, a propeller shaft 18, and propulsive propellers 19A and 19B. The engine 15 is a drive power source of the outboard motor 10, and is housed in an engine chamber 20 in the engine housing 11. The engine 15 is a water-cooling V type engine, and is disposed in an orientation in which an axial direction of a crankshaft 21 is in a vertical direction. As shown in
The drive shaft 16 is disposed to extend vertically in the drive shaft housing 12, and rotational driving force of the engine 15 is transmitted to the drive shaft 16. The drive shaft 16 includes a first drive shaft 16A, and a second drive shaft 16B. The shift mechanism 17 is configured to connect and disconnect transmission of the rotational driving force between the first drive shaft 16A and the second drive shaft 16B, and switch a rotational direction.
The propeller shaft 18 is disposed to elongate in the front-rear direction in the gear housing 13, and is configured to transmit the rotational driving force of the engine 15, which is transmitted to the drive shaft 16, to the propulsive propellers 19A and 19B. The propulsive propeller 19A is a front propulsive propeller, the propulsive propeller 19B is a rear propulsive propeller, and the propulsive propellers 19A and 19B form contra-rotating propellers.
As illustrated in
The engine housing 11 illustrated in
On left and right side surfaces in an upper portion of the engine cover 11B, a combustion air intake port 30 are formed to open to an outer surface of the engine cover 11B. The combustion air intake port 30 presents a streamline shape which is long in a front-rear direction, with the engine cover main body 25, the top cover 26 and the tail cover 27 formed in combination in a boundary of the combustion air intake port 30. Further, in the top cover 26, sub combustion air intake port 30A is formed behind the combustion air intake port 30.
Note that in a boundary of the top cover 26 and the cover cap 28, a ventilation air exhaust port 29B is formed at a left side, and a ventilation air intake port 29A (
As illustrated in
An introduction hole 35 for introducing combustion air is formed in the central portion 32 of the engine cover main body 25, and a waterproof guard 36 is provided around the introduction hole 35. The introduction hole 35 communicates with a silencing chamber 37 that is installed in the ring gear cover 23 above the engine 15 illustrated in
As illustrated in
Note that the intake passage may be of other intake types which guide the combustion air from the combustion air intake port 30 of the engine cover 11B to the throttle body 40 after causing the combustion air to flow in the engine chamber 20.
As illustrated in
Here, inside of the top cover 26 and the tail cover 27, an outer louver 41 and an inner louver 42 as water separation sections are disposed. The outer louver 41 is disposed to face the combustion air intake port 30 of the engine cover 11B. The inner louver 42 is disposed to face an inner side of the outer louver 41 with a predetermined space from the inside of the outer louver 41. The combustion air that is taken in from the combustion air intake port 30 passes through the outer louver 41 and the inner louver 42, further passes through a lid member 45 that will be described later, and is supplied to the engine 15 via the silencing chamber 37, the ring gear cover 23 and the throttle body 40 from the introduction hole 35 of the engine cover main body 25.
As illustrated in
The outer louver 41 is formed by arranging a plurality of blades 41A, and has a vertical louver structure with a longitudinal direction of the blades 41A in the vertical direction. A pair of left and right outer louvers 41 is prepared, and is respectively configured to be in curved plate shapes. As illustrated in
The louver supporting frame 43 is fixed to the ceiling surface 31 of the engine cover main body 25 in such a manner as to cover the inner louver 42. Thereby, the left and right outer louvers 41 are disposed to face each other with a predetermined space from the left and right side surfaces of the inner louver 42. In this state, the outer louver 41 is disposed above the recessed portion 33 of the engine cover main body 25, and a gap is secured between a lower end of the outer louver 41 and the recessed portion 33 of the ceiling surface 31 of the engine cover main body 25. Further, as illustrated in
Rain and spray are mainly included in the combustion air which is taken in from the combustion air intake port 30 of the engine cover 11B when ship moves forward. As illustrated in
The combustion air including the water of the fixed diameter or less inertially collides with the inner louver 42 and is separated into gas and liquid. Water droplets adhering to the blades 42A of the inner louver 42 grow on the blades 42A, flow down along the blades 42A by own weights, and are discharged to outside as shown by an arrow W in
As shown by a broken line arrow in
The silencing chamber 37 has a silencer cover 37A, an inner 37B, and a resonator 37C, and is configured such that the inner 37B is disposed in the silencer cover 37A, and the resonator 37C is disposed in the silencer cover 37A. The intake opening 38 is formed in a ceiling of the silencer cover 37A, and communicates with the introduction hole 35 of the engine cover main body 25 illustrated in
As illustrated in
Accordingly, intake noise that occurs in the intake stroke of the engine 15 can be reduced effectively by a silencing function of the silencing chamber 37, and a silencing function using air column resonance of both the suction pipes 47 and the holes 48 of the hole member 49 in the lid member 45. Thereby, when the hull is equipped with multiple outboard motors 10, intake noise of the respective outboard motors 10 is reduced, and ship crew is comfortable. Further, the lid member 45 is formed by only providing the hole member 49 including the holes 48 and the suction pipes 47 integrally, so that the structure is simple, and reduction in cost can be realized.
Note that in the present embodiment, the example of forming the lid member 45 by integrating the plurality of suction pipes 47 and the hole member 49 with the plurality of holes 48 is shown. However, the lid member 45 may be of a configuration in which either the plurality of suction pipes 47 or the hole member 49 with the plurality of holes 48 are provided. In the case of the configuration like this, silencing performance tends to be lower as compared with the lid member which is configured by both the plurality of suction pipes 47 and the hole member 49 with the plurality of holes 48. However, depending on the target silencing reduction performance, it is also possible to select the configuration in which at least one of the plurality of suction pipes 47, and the hole member 49 with the plurality of holes 48 is provided.
As illustrated in
Specifications of the suction pipe 47 and the hole 48 of the hole member 49 in the lid member 45 are determined to be able to mainly reduce intake noise in a high frequency range which ship crew feels uncomfortable, in particular, in a frequency range of 800 to 1000 Hz illustrated in
In this way, by determining the specifications of the suction pipe 47 and the hole 48 of the hole member 49, a silencing effect of intake noise is exhibited in a high rotation range (high rotation range of 4000 rpm or more, for example) of the engine 15 illustrated in
Further, at least one of the pipe lengths L of the plurality of suction pipes 47 and the depths T of the plurality of holes 48 of the hole member 49 may be set to differ from one another. Alternatively, at least one of the opening areas (the inside diameters D1, for example) of the plurality of suction pipes 47 and the opening areas (the inside diameters D2, for example) of the plurality of holes 48 may be set to differ from one another. For example, by setting the pipe lengths L of the plurality of suction pipes 47 to differ from one another, it is also possible to change an attenuation frequency of sound of each of the suction pipes 47. As a result, it is possible to enhance the silencing performance in a broader rotation range of the engine 15, instead of enhancing the silencing performance in the specific rotation range of the engine 15.
As illustrated in
The above described sound absorbing member 51 is positioned to face to upper openings 47A of the suction pipes 47, and upper openings 48A of the holes 48 of the hole member 49 in the lid member 45 disposed under the louver supporting frame 43 at a short distance. Thereby, sound waves from the upper openings 47A of the suction pipes 47 and the upper openings 48A of the holes 48 can enter the sound absorbing member 51 substantially perpendicularly, so that the silencing effect is enhanced. Consequently, as compared with a case where the sound absorbing member 51 is simply disposed to the lid member 45 at a short distance, an intake noise reduction effect can be enhanced more.
While the embodiment of the present invention is described thus far, the embodiment is presented as an example, and does not intend to limit the scope of the invention. It is possible to carry out the embodiment in various other modes, various omissions, replacements and changes can be made within the range without departing from the gist of the invention, and the replacements and changes are included in the scope and gist of the invention, and are included in the invention according to the accompanying claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2018-216222 | Nov 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5083538 | Hubbell | Jan 1992 | A |
5683277 | Tsunoda | Nov 1997 | A |
Number | Date | Country |
---|---|---|
2005076619 | Mar 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20200156752 A1 | May 2020 | US |