The present disclosure relates to outboard motors for marine vessels and more particularly to apparatuses for intake of air to outboard motors.
U.S. Pat. No. 7,247,065 discloses an outboard motor including an engine for driving a propulsion device, a cowling for covering the engine, a fresh air intake opening formed in the cowling for drawing fresh air, and an engine compartment defined in the cowling. The outboard motor has a bottom part defined below the engine compartment, a water collecting part disposed below the bottom part for receiving water that entered the cowling, a water passage for communicating the bottom part and the water collecting part, and a drain hole formed in a bottom portion of the water collecting part.
U.S. Pat. No. 7,524,223 discloses an outboard motor having an apparatus for separating water and air sucked in from an intake port. The outboard motor includes a cowling, a right-side intake port, a left-side intake port, first and second water separating portions, a communication port, and an engine compartment. The right-side intake port is formed in a right side surface portion of an upper portion of the cowling. The left-side intake port is formed in a left side surface portion of the upper portion of the cowling. The first water separating portion has an intake passage communicating between the right-side intake port and the left-side intake port. The second water separating portion communicates with the first water separating portion through the communication port, and the second water separating portion communicates with the engine compartment.
U.S. Patent Application Publication No. 2006/0258235 discloses an outboard motor including an engine having an air intake device. A cowling has an internal space in which the engine is disposed and an air intake opening through which ambient air is introduced into the internal space. The internal space defines an air intake passage connecting the air intake opening of the cowling to the air intake device of the engine. An air/water separator is disposed within the air intake passage for separating water from the air. The air/water separator has a relative large volume so as to temporarily hold water from a sudden flow of water that may flow into the cowling air intake. Water accumulated in the separator is drained from the cowling.
The present disclosure results from research and development of improved air intake apparatuses for marine propulsion systems, including outboard motors.
In one example, an apparatus for intake of air to an outboard motor includes an inlet receiving a mixture of air and water from atmosphere surrounding the outboard motor and an outlet discharging the air to a space between the cowl and the internal combustion engine. A conduit extends between the inlet and the outlet. The conduit has a vertically downwardly oriented first flow path, a vertically upwardly oriented second flow path, and a junction joining the first and second flow paths. The junction is oriented with respect to the first and second flow paths such that both centrifugal and gravitational forces separate the water from the air as the mixture flows therethrough.
A baffle can separate the first flow path from the second flow path and have a lower end portion located at the junction. A separator can be located at the junction for separating the water from the air and can include a drain and a wall having a free end laterally extending into the junction. A sponge can also be disposed in the conduit for coalescing water from the mixture.
In another example, an outboard motor comprises an internal combustion engine; a cowl covering the internal combustion engine; and port and starboard apparatuses for intake of air to an outboard motor. Each apparatus has an inlet receiving a mixture of air and water from atmosphere surrounding the outboard motor and an outlet discharging the air to a space between the cowl and the internal combustion engine. A conduit extends between the inlet and the outlet. The conduit has a vertically downwardly oriented first flow path, a vertically upwardly oriented second flow path, and a junction joining the first and second flow paths. The junction is oriented with respect to the first and second flow paths such that both centrifugal and gravitational forces separate the water from the air as the mixture flows therethrough.
In the present disclosure, certain terms have been used for brevity, clearness and understanding. No unnecessary limitations are to be inferred therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes only and are intended to be broadly construed. The different devices described herein may be used alone or in combination with other devices. Various equivalents, alternatives and modifications are possible within the scope of the appended claims. Each limitation in the appended claims is intended to invoke interpretation under 35 U.S.C. §112, sixth paragraph only if the terms “means for” or “step for” are explicitly recited in the respective limitation.
To overcome these problems, the outboard motor 10 shown in
A baffle 34 separates the first flow path 28 from the second flow path 30. The baffle 34 has a lower end portion 36 that has a curved outer surface for guiding air flow around and through the junction 32 from the first flow path 28 to the second flow path 30. A separator 40 is located at the junction 32 and further facilitates separation of the water from the mixture. In the example shown, the separator 40 includes a drain 42 and a wall 44 having a free end 46 laterally extending into the junction 32. The drain 42 is disposed lower than the wall 44 in the apparatuses 18a, 18b and receives and drains water from the separator 40. This effect will be further explained herein below.
A water trap 48 is located in the apparatuses 18a, 18b at a location that is at least partially vertically higher than the free end 46 of the wall 44, for collecting overflow of water separated at the junction 32. The drain 42 is configured to drain water from the water trap 48.
Optionally, as shown in
Operation of the internal combustion engine 12 creates a vacuum that draws the mixture of air and water from the atmosphere surrounding the outboard motor 10 into the apparatuses 18a, 18b via the inlets 16a, 16b in the cowl 14, as shown at arrows A and then via the inlets 20 in the apparatuses 18a, 18b, as shown at arrows B. The mixture flows vertically downwardly through the first flow path 28, as shown at arrows C. Optionally, the mixture flows through sponge 50 wherein water from the mixture is coalesced from the air. Air mixed with water continues to flow downwardly as shown at arrows D into the junction 32 and around the noted 180-degree bend at lower end portion 36 of baffle 34. The 180-degree bend can be greater or less than 180 degrees. The 180-degree turn of the mixture of air and water allows both centrifugal and gravitational forces to further separate water from the mixture. Wall 44 further facilitates the noted separation such that water coalesced from the sponge 50 and separated at the junction 32 drains by gravity into drain 42 for discharge from the apparatuses 18a, 18b and ultimately from the outboard motor 10 via the drain 42 as shown at arrow E. During surges of high water content, such as when the outboard motor 10 is hit by a wave or a large amount of water spray, the water trap 48 is provided to collect water and prevent it from again mixing with air flow that has been separated from the water. Air continues to flow downstream of the junction 32 through the second flow path 30 as shown at arrows F and exits the outlet 22 to the noted space 24 between the cowl 14 and internal combustion engine 12 wherein it is drawn into the engine 12 for combustion.
The present disclosure thus provides an outboard motor 10 having port and starboard apparatuses 18a, 18b for intake of air to an internal combustion engine 12, with each apparatus 18a, 18b having an inlet 20 receiving a mixture of air and water from atmosphere surrounding the outboard motor 10 and an outlet 22 discharging air to a space 24 between the cowl 14 and the internal combustion engine 12. Means are provided for conveying the mixture between the inlet 20 and the outlet 22 such that both centrifugal and gravitational forces separate the water from the air as the mixture flows therethrough.
Number | Name | Date | Kind |
---|---|---|---|
3615017 | Valdespino | Oct 1971 | A |
6752240 | Schlagenhaft | Jun 2004 | B1 |
6899579 | Bruestle | May 2005 | B1 |
6964255 | Shomura et al. | Nov 2005 | B2 |
7021262 | Belter et al. | Apr 2006 | B1 |
7238069 | Ito et al. | Jul 2007 | B2 |
7247065 | Ito | Jul 2007 | B2 |
7252568 | Ito et al. | Aug 2007 | B2 |
7267591 | Kimura et al. | Sep 2007 | B2 |
7452256 | Kasai et al. | Nov 2008 | B2 |
7524223 | Ochiai et al. | Apr 2009 | B2 |
7524224 | Ide et al. | Apr 2009 | B2 |
7572159 | Ide et al. | Aug 2009 | B2 |
7806741 | Baier et al. | Oct 2010 | B1 |
20030127376 | Maddock et al. | Jul 2003 | A1 |
20060258235 | Kimura et al. | Nov 2006 | A1 |