This invention relates generally to a method and system for establishing network connectivity between a system or device and a remote computer server, and more specifically for establishing network connectivity so that the remote server can communicate with and/or control the system or device.
Virtually all businesses maintain a continuous connection to the Internet, often referred to as a broadband connection. It is also increasingly common to find broadband connections in homes. Generally a broadband connection can be shared by several computers or devices. Such sharing is typically accomplished by use of a router. The router can have one broadband connection and a plurality of distribution connections. The distributed connections can be either wired connections, as by cat. 5 cabling, or by wireless connections, as by WiFi. Most routers include one or more security features, such as a firewall, to block uninvited externally generated potentially malicious or mal-intended information packets from entering computers or devices serviced by the router.
While router firewalls are important to help create secure computer networks, both in commercial and in home settings, any such security measures can also cause the installation of a new device to be problematic. For example, a customer installing a new device with Internet connectivity via a home router might find that they cannot establish full connectivity with the new device. On calling technical support at the manufacturer of the device, the consumer might be directed to call the manufacturer of the router. Then on calling technical support at the manufacturer of the router, the consumer might be directed to contact the device manufacturer for more information. Or, where the device or equipment needing internet connectivity is being installed by a commercial installer, the installing technician might not be familiar with computer related issues. In such cases, it can be cost prohibitive to the installing company to have installers dealing with a great variety of router types and router network configurations.
What is needed is a method and apparatus that can allow a device to be simply “plugged in” to a business or home wired or wireless network to achieve broadband connectivity with a remote server on its own, without further intervention.
In one aspect, the invention relates to a method for automatically achieving outbound broadband connectivity to a remote server comprising the steps of: providing a device or system having a broadband connection; providing a broadband access; connecting the device or system to the broadband access; sending a message to the remote server to establish a connection with the remote server; closing the connection to the remote server; waiting for an inbound connection request; setting an inbound method of connectivity if an inbound connection request is received within a first allotted time; sending an outbound poll if the inbound connection request is not received within the first allotted time; setting an outbound method of connectivity if a response to the outbound poll is received from the remote server within a second allotted time; and retrying to connect via the inbound or the outbound method until either of the inbound or outbound methods successfully connects to the remote server.
In another aspect, the invention relates to an HVAC system including a HVAC plant for controlling the comfort levels in a space. The HVAC system also includes a system access module (“SAM”) to provide remote control of the HVAC plant. The SAM is electrically wired to the HVAC plant and has a broadband connection, wherein the SAM establishes connectivity to a remote computer server by first trying an inbound connection method, then trying an outbound connection and the SAM automatically chooses either the inbound connection or the outbound connection to cause the remote computer server to be communicately coupled to the SAM via the broadband connection.
In yet another aspect, the invention relates to a system for automatically connecting a device to a remote server including a broadband access point. The system also includes a microcomputer board. The microcomputer board has a broadband connection to the broadband access point, and the microcomputer board has a microcomputer programmed to automatically select an inbound or an outbound connection method to a remote computer server. The system also includes a device to be controlled by the microcomputer board. The device is electrically coupled to the microcomputer board, wherein following the automatic selection of the inbound or the outbound connection mode to the remote computer server, the remote computer server performs an action via the broadband access point.
For a further understanding of these and objects of the invention, reference will be made to the following detailed description of the invention which is to be read in connection with the accompanying drawing, where:
The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
Internet connectivity can generally be made by connection to a distribution point on either a wired or wireless router. Some computers and devices, even after achieving a technically correct connection, such as via a wired cat. 5 Ethernet cable, or a wireless WiFi connection, still cannot work properly without further technical intervention. Such further technical intervention often involves opening a port or setting an exception to overcome router firewall issues or internet service provider (“ISP”) restrictions. Such interventions, while simple and routine to an Internet Technology (“IT”) professional can be daunting to a consumer or an installer in a non-computer related trade.
One exemplary embodiment of a system according to the invention is shown in
A communications module, referred to in the exemplary embodiment of
Also, while an installer of a device or system 102 controlled by SAM 101 need not be concerned with detailed setup and/or connectivity issues related to establishing communications to server 108, the mere presence of a SAM 101 on the local router 106 network can provide another convenient access point for connecting an installer or user computer 112 to SAM 101 via a local wired or wireless network, through a local wired or wireless connection to router 106. Such a connection can be conveniently made, for example, using a web browser such as Internet Explorer, Firefox, Opera, etc. SAM 101 can also present a user web interface for controlling or reading diagnostic information from device or system 102.
Using hardware having similar functionality to the exemplary system described in
Turning now to
In the unlikely event that the outbound method also fails, upon recognizing “connect failed”, the automatic connection routine can attempt to reconnect following a timed interval or reset sequence (not shown in
It should be emphasized that a SAM 101 as shown in
Referring to
The SAM 101 of example 1 can have additional input/output ports for connecting to other systems or devices. For example, a basement water detector can present a digital output signal to a SAM 101 input indicating undesired water in the basement. On detecting such a digital signal, SAM 101 can then notify server 108 of the water condition and any number of optional notification events can follow, including email, phone, and similar such notifications to interested parties such as a local caretaker, a local service company, and the home owner.
A home owner installs a fossil fuel powered electric back up generator next to their home. The generator has an internal microcomputer based control board including an Ethernet connection that can be connected to the consumer's local wired broadband router. Once a week, the generator performs automatic maintenance checks and logs the results in local memory. On detecting a failed condition of some part of the generator back up system, the generator reports the failure to a computer server using the internet connectivity between the generator and the computer server as achieved using the inventive method. No SAM is present or needed. All of the relevant functions, such as the embedded driver and internet driver are provided on the local back up generator microcomputer control board.
The inventive method solves most security related Internet conductivity problems in spite of most existing router and ISP security restrictions. A device incorporating the inventive method of Internet device connectivity as described with respect to
It should be noted that while exemplary references were made herein to wired connections using cat. 5 cables, the types of wired cable are unimportant to practicing the inventive method and system. Any suitable wireless or wired network connection can be used, including for example, wired cat. 3 connections.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the invention as defined by the claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/49615 | 12/29/2006 | WO | 00 | 2/8/2010 |