The present invention relates to a method, according to the preamble of claim 1, for implementing a weather alarm in an outdoor computer.
The invention also relates to an apparatus for implementing a weather alarm in an outdoor computer.
According to the state of the art, in outdoor computers, for example, wristop computers, equipped with barometers, weather alarms are used by indicating rapid variations in pressure.
A drawback of the state of the art is that variations in pressure are also caused by changes in the altitude of the user of the device. Thus, in order to avoid unnecessary alarms, it has been possible to use the weather alarm only when the user remains at a constant altitude. Thus, during a hike over ground with a varying elevation profile, devices according to the prior art would give many false alarms, because the changes in atmospheric pressure due to vertical movements are typically so much greater than the differences in atmospheric pressure caused by weather changes that a change in weather will be obscured beneath the pressure changes due to altitude. The alarm condition will be thus met due to a change in altitude. In practice, it has not been possible to implement a device giving a good weather alarm by applying existing knowledge.
Various methods for measuring pressure, based on calibrating an altitude definition with the aid of map data or GPS data, are known from U.S. Pat. Nos. 6,529,827, 6,434,485, and 6,381,540.
The GPS system is mainly intended for positioning that takes place at ground level, in a two-dimensional space. However, if the GPS device can contact at least four satellites, altitude data can also be defined, in among other ways, the manners disclosed in the aforementioned U.S. patents. Because altitude data (vertical data) is not actually a basic property of the OPS system, the definition of a vertical position using the GPS system is both slow and inaccurate, compared to the same system's accuracy and speed of definition of horizontal data.
The invention is intended to eliminate the defects of the state of the art disclosed above and for this purpose create an entirely new type of method and apparatus for implementing weather alarms in an outdoor computer.
The invention is based on defining, with the aid of altitude data defined from the GPS system or other satellite positioning system, a reference value for the pressure-measurement side, and comparing the calculated pressure value based on the GPS altitude data and the value obtained from the pressure measurement with each other, and when the change in the difference between these values exceeds a predefined threshold value, giving a weather alarm.
More specifically, the method according to the invention is characterized by what is stated in the characterizing portion of claim 1.
The apparatus according to the invention is, in turn, characterized by what is stated in the characterizing portion of claim 6.
Considerable advantages are gained with the aid of the invention.
With the aid of the invention, the weather-alarm functionality can be kept in operation the whole time, thus improving the safety of hikers and others outdoors.
Thanks to the continuous operation of the weather alarm, hiking, sports, and other recreations taking place over ground with a varying height profile can be made safer, as far as changes in weather conditions are concerned. Those outdoors can receive, in addition to storm forecasts, additional information of an improvement in the weather and thus alter their route plans on the basis of a positive forecast.
In the following, the invention is examined with the aid of examples and with reference to the accompanying drawings.
The altitude data can be calculated, for example, according to the following equations 1 or 2 according to the prior art, or with the aid of a table based on practical data.
The pressure can be corresponding determined form the altitude data, with the aid of equation 2 calculated from equation
The symbols of the equations are as follows:
The OPS altitude data is formed, in a manner known to one versed in the art, by using, for example, the methods disclosed in the aforementioned U.S. Pat. Nos. 6,529,827, 6,522,298, 6,434,485, and 6,381,540.
According to one preferred embodiment of the invention, the GPS altitude data, or other satellite positioning data is converted into pressure data according to
The difference Δ between the signals 1 and 2 is repeatedly defined at the moments t2-t5 and, if the change in the difference ΔN relative to the value Δ1 exceeds, or is less than a preset limit, a weather alarm is given, for example, as a sound, light, or vibration alarm in the outdoor computer. In other words an alarm is given if ΔN fulfills a predetermined condition. The alarm can also appear on the display as text, or as some other symbol. When using a pressure value, 4 hPa, for example, can be regarded as the alarm limit, in other words, if any change (rise or drop) in the measurement value Δ2-Δ5, relative to the reference value Δ1 exceeds the pressure value 4 hPa within a defined period of time, alarm is given. ±30 metres can be regarded as the corresponding limit in altitude measurement. The moments of time t2-t5 referred to are optional, at the moment the measurement is made at intervals of about 15 minutes and the 4 hPa change must take place over a period of at least three hours, otherwise no alarm is given. The comparison is thus made retroactively. In other words, using the limit values referred to above, a change of 4 hPA over ten hours will not require an alarm to be given, as it is only a normal slow change in the weather.
In other words, a reference value Δ1 is defined for the difference between the measurement data 1 and 2, a change limit d is defined, which can be positive or negative, in which case the alarm limit values will be Δ1−d and Δ1+d. These values can be considered as either a pressure or an altitude. The change limit d can differ in magnitude in the positive and negative directions and, if necessary, can be set by the user in different altitude and weather situations. If, in a particular environment or weather condition, any change in weather can lead to real danger, the sensitivity of the alarm can be increased, if necessary.
If conversion of the pressure data 2 is used to form the altitude data 1, the nonlinearity of the equation 1 and 2 can be taken into account when defining the alarm limit, in other words, the alarm limit in metres can depend on the measured altitude measured.
It should be noted, that, in the method according to the invention, the pressure data 2 of moment t1 may be arbitrary, the variable monitored being the change in the difference between the signals 1 and 2, more specifically the exceeding of a predefined limit value.
According to
More generally, the task of the central unit 12 is to take care of the calculation and the storage of data, as well as controlling the peripheral devices 10, 11, 13, and 14.
In principle, the solution according to the invention can also be implemented in such a way that, in addition to the pressure measurement, the altitude data is measured using some other independent method, which is not dependent on the prevailing atmospheric pressure, and is continuously compared with the difference between the air pressure and the calculated pressure data obtained from the altitude. When the specific value of the difference exceeds a predefined limit value, a weather alarm is given.
The pressure data 2 and the GPS altitude data are measured essentially simultaneously and continuously. In practice, this means at least several pressure and altitude measurements each minute as a repeated process.
In this connection, the term outdoor computer refers to all computers suitable for user outdoors. According to the state of the art at the present moment an outdoor computer is typically a wristop computer, or a so-called palm computer, or a normal portable computer, or a computer based on a GPS device.
Number | Date | Country | Kind |
---|---|---|---|
20031874 | Dec 2003 | FI | national |