The present disclosure relates to outdoor power distribution and, more particularly, to a cord for use in an electrical box that can be located outdoors in the ground.
Known outdoor electrical boxes for providing electrical connection points for outdoor power access include wall-mounted receptacles and post-mounted receptacles that may be mounted on vertical surfaces, and electrical boxes mounted in the ground or other horizontal outdoor surface for providing electrical connection points distant from existing walls. For example, in an athletic field, a large public flower garden, or a public park, it may be desirable to provide electrical receptacles for intermittent electrical connections, such as short-term lighting, power washers, and electric maintenance equipment, e.g., hedge trimmers and chain saws. The electrical connection points must be accessible so that a user can plug and unplug devices as required.
Moisture is a significant problem for outdoor electrical boxes because it may lead to electrical box failure and/or may result in a serious electrocution risk. Moisture is particularly problematic for electrical boxes installed in the ground because water may collect and pool therein. Therefore, when electrical power fed into an outdoor electrical box from a power source, for example through a power line buried underground, the power line is led into a NEMA Type 6 enclosure, which is designed to be impenetrable to water during occasional submersions in water. NEMA stands for National Electrical Manufacturer's Association. From the NEMA Type 6 enclosure, power may then be routed to electrical connection points, such as receptacles, within the electrical box, where the electrical box is typically designed in such a way to keep water from reaching the faces of the electrical receptacles and/or the electrical connection points.
However, even though the NEMA Type 6 enclosure is designed to be impenetrable to water, if the enclosure is left submerged for an extended period of time, air may be able to slowly escape the enclosure through the cord or cords that exit the enclosure and connect to the electrical connection points, thereby allowing the NEMA Type 6 enclosure to fill with water.
According to the present disclosure, a power cord may comprise at least one electrically insulated wire, including a wire conductor disposed within an insulated sleeve, and a connection terminal. The connection terminal includes a crimp portion crimped and soldered to the wire conductor at at least one end of the at least one insulated wire. The power cord further comprises a heat shrink sleeve covering the crimp portion of the connection terminal and a portion of the insulated sleeve of the at least one electrically insulated wire, and an overmold molded around at least a portion of the heat shrink sleeve.
According to the present disclosure, a method for forming a power cord including at least one electrically insulated wire comprising a wire conductor disposed within an insulated sleeve is disclosed. The method includes crimping a connection terminal on the wire conductor at one end of the at least one electrically insulated wire and soldering the crimped portion of the connection terminal. The method further comprises heat shrinking a heat shrink sleeve onto the crimped portion and at least a portion of the insulated sleeve of the at least one electrically insulated wire, and molding an overmold tube around at least a portion of the heat shrink sleeve.
According to the present disclosure, a power cord for an outdoor electrical box may comprise three electrically insulated wires. Each electrically insulated wire may comprise a wire conductor disposed within an insulated sleeve and a connection terminal including a crimp portion crimped and soldered to the wire conductor at a first end of the power cord. Each electrically insulated wire may further comprise a heat shrink sleeve covering the crimp portion and a portion of the insulated sleeve, and an overmold tube molded around at least a portion of the heat shrink sleeve.
These and other objects, features and advantages of the present disclosure will become apparent in light of the detailed description of embodiments thereof, as illustrated in the accompanying drawings.
Before the various embodiments are described in further detail, it is to be understood that the invention is not limited to the particular embodiments described. It is also to be understood that the terminology used is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the claims of the present application.
In the drawings, although certain descriptions may refer only to certain figures and reference numerals, it should be understood that such descriptions might be equally applicable to like reference numerals in other figures. Additionally, although various features have been shown in different figures for simplicity, it should be readily apparent to one of skill in the art that the various features may be combined without departing from the scope of the present disclosure.
Referring back to
Referring to
Referring to
Referring to
The overmold 44 provides increased rigidity to the connection between the electrically insulated wire 18 and the fork terminal 26, thereby making a stronger connection. Additionally, without the overmold 44, the heat shrink sleeve 40 at the connection between the electrically insulated wire 18 and the fork terminal 26 could crack or break when flexing. This finished wire terminal 46, which includes a crimped, soldered, heat shrink, and overmolded connection, prevents water from seeping through the electrically insulated wire 18 into the enclosure 14, shown in
As shown in
As seen in
Although the electrical cord 10 according to the present disclosure has been described in connection with an outdoor electrical box for installation in the ground for exemplary purposes, the electrical cord 10 may be suitable for any other similar application where preventing leakage is desirable.
As will be recognized by those of ordinary skill in the pertinent art, numerous changes and modifications may be made to the above-described embodiments of the present disclosure without departing from the spirit of the invention as defined in the appended claims. Accordingly, the particular embodiments described in this specification are to be taken as merely illustrative and not limiting.
This application is a continuation-in-part of U.S. application Ser. No. 15/592,337, filed May 11, 2017, now U.S. Pat. No. 10,020,645, which is a continuation of U.S. application Ser. No. 15/240,299, filed on Aug. 18, 2016, now U.S. Pat. No. 9,653,897, which is a continuation-in-part of U.S. application Ser. No. 14/593,441, filed on Jan. 9, 2015, now U.S. Pat. No. 9,653,900, which claims the benefit of U.S. Provisional Patent Application No. 62/084,102, filed Nov. 25, 2014, each of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4437084 | Clayton, Jr. | Mar 1984 | A |
4991288 | Scholz | Feb 1991 | A |
4993149 | Zilligen | Feb 1991 | A |
5137478 | Graf | Aug 1992 | A |
5875547 | Larsson | Mar 1999 | A |
6666732 | Endacott | Dec 2003 | B1 |
9601889 | Ito | Mar 2017 | B2 |
20140251681 | Adachi | Sep 2014 | A1 |
20140318862 | Tachi | Oct 2014 | A1 |
20150047900 | Suetani | Feb 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20180316168 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
62084102 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15240299 | Aug 2016 | US |
Child | 15592337 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15592337 | May 2017 | US |
Child | 16030092 | US | |
Parent | 14593441 | Jan 2015 | US |
Child | 15240299 | US |