The present invention is directed toward a louver system for an outdoor electronics enclosure and more specifically, toward a louver door for an outdoor electronics enclosure having slots for receiving the individual louvers.
Outdoor enclosures for telecommunications equipment and other electronics are well known. These cabinets must control the temperature of the equipment they contain within specified temperature levels. For enclosures housing equipment with extremely high heat dissipation, the only method that provides sufficient heat transfer is direct air cooling. To ensure the necessary airflow, openings or louvers must be placed in the enclosure to allow air to enter and exit.
While many such enclosures are available, it is desirable to provide devices which are aesthetically pleasing, provide large cross-sectional areas for air intake, are compact, mitigate the impact of solar heating, reduce acoustic emission, prevent moisture ingress and are scalable to different sizes. Further, simplicity of manufacture is desirable to decrease costs.
The present invention addresses one or more of these needs by providing a louvered door system having an outer panel, an inner panel, and central louver retaining channels. The channels have slots for holding the louvers. The slots are open at one end so that the louvers can be easily inserted. The inner panel holds the louvers in place so that mechanical fasteners such as rivets, screws, etc. are unnecessary.
The outer panel provides a flush face with the enclosure to make the device more attractive. The louvered open area is large to increase the air intake. The overall size is reduced and yet remains scalable for different sized enclosures.
Another aspect of the invention is that the overlapping louvers provide protection from moisture ingress and further safety protection for personnel and equipment.
These other aspects and features of embodiments of the present invention will be better understood after reading the following detailed description, together with the attached drawings, wherein:
The present invention now is described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Like numbers refer to like elements throughout. In the figures, the thickness of certain lines, layers, components, elements or features may be exaggerated for clarity.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the specification and relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein. Well-known functions or constructions may not be described in detail for brevity and/or clarity.
As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. As used herein, phrases such as “between X and Y” and “between about X and Y” should be interpreted to include X and Y. As used herein, phrases such as “between about X and Y” mean “between about X and about Y.” As used herein, phrases such as “from about X to Y” mean “from about X to about Y.”
It will be understood that when an element is referred to as being “on”, “attached” to, “connected” to, “coupled” with, “contacting”, etc., another element, it can be directly on, attached to, connected to, coupled with or contacting the other element or intervening elements may also be present. In contrast, when an element is referred to as being, for example, “directly on”, “directly attached” to, “directly connected” to, “directly coupled” with or “directly contacting” another element, there are no intervening elements present. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper”, “lateral”, “left”, “right” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the descriptors of relative spatial relationships used herein interpreted accordingly.
Referring now to the drawings,
In assembling the louvered door assembly 10, the channels 24 are connected to the outer panel 11 using rivets or other means. The individual louvers 22 are then placed into the slots 25 from the upper open end. The inner panel 21 is then connected to the channels 24 so as to close the slots 25. Thus, the louvers 22 are prevented from leaving the slots 25 by the presence of the inner panel 21. This arrangement avoids the need for individually connecting the louvers 22 using rivets or other means. Accordingly, assembly of the louvers 22 is made simpler and cheaper.
The present arrangement of the louvers 22 provides a wide area of air inlet. The louvers 22 extend across the entire width of the central opening 14. This differs from prior art devices which typically use stamped louvers which are relatively narrow in depth. When louvers are stamped out, as in the prior art, the louvers do not overlap as viewed from a direction perpendicular to the front face of the outer door. Rather, a direct line of sight exists through the gaps between the louvers, as viewed at the perpendicular to the front face of the outer door. Such an arrangement does not resist the ingress of water into an enclosure as well as the present invention, especially wind driven rain. In addition, the vertical distance between louvers may be larger, such as 0.5 inch. This also allows additional air to flow through the louvers.
This arrangement of louvers 22 also allows for scalability of this arrangement. Thus, louvered door assemblies 10 having the same width of the central opening 14 but a different length may be made with the same channels 24, but merely shortened or lengthened. If desired, the assembly may be made wider and similar parts can still be used, with the channels 24 being used without change and the louvers 22 being made longer. It is also possible to use two louvered areas side-by-side depending on the size of the enclosure 20. Thus, this arrangement is completely scalable which allows for easy manufacture of varying sized enclosures 20.
It should also be noted that the louvers 22 do not extend forward from the outer panel 11, but are recessed within the opening 14. This makes the details of the enclosure 20 less obtrusive and more aesthetically pleasing. Only the latches 18 extend outside the outer panel 11, which simplifies the appearance of the enclosure 20.
The overall thickness of the louvered door assembly 10 is minimized by having an overlapping louver 22 arrangement as compared to punched louvers in the prior art. The integration of the channels 24, the outside panel 11 and inner panel 21 also decreases the overall size of the louvered door assembly 10. The overlapping louvers 22 provide a maximum air opening while reducing the possibility of moisture ingress or accidental entry of a person or tool into the enclosure 20.
Since the enclosures 20 are often located in an area receiving sunlight, the enclosure 20 can be subject to solar heating where the light shines on the enclosure's wall(s). The louvered door assembly 10 helps avoid this problem by providing an air gap between the outer panel 11 and inner panel 21. This air gap acts as insulation against the heat generated on the outer panel 11 by the sunlight. Similarly, acoustic noise from any fans or electronics inside the enclosure 20 may be reduced due to this dual wall construction.
The present invention has been described herein in terms of several preferred embodiments. However, modifications and additions to these embodiments will become apparent to those of ordinary skill in the art upon a reading of the foregoing description. It is intended that all such modifications and additions comprise a part of the present invention to the extent that they fall within the scope of the several claims appended hereto.
The present invention claims the benefit of U.S. provisional patent application No. 61/041,560, filed Apr. 1, 2008, the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3968738 | Matzke | Jul 1976 | A |
5217513 | Armbruster | Jun 1993 | A |
5255486 | Wang | Oct 1993 | A |
5755069 | Sullivan | May 1998 | A |
5778598 | Ohanesian | Jul 1998 | A |
5987836 | Sullivan | Nov 1999 | A |
6126708 | Mack et al. | Oct 2000 | A |
6205713 | Thompson et al. | Mar 2001 | B1 |
6219985 | Hsu | Apr 2001 | B1 |
6266923 | Lee | Jul 2001 | B1 |
6560941 | French | May 2003 | B1 |
6810620 | Anderson et al. | Nov 2004 | B1 |
7036279 | Crozzoli | May 2006 | B2 |
7131241 | Blackwell et al. | Nov 2006 | B2 |
7258607 | Machiorlette et al. | Aug 2007 | B1 |
7353636 | Anderson et al. | Apr 2008 | B1 |
7677003 | Baughn et al. | Mar 2010 | B2 |
20040134444 | Shiever et al. | Jul 2004 | A1 |
Number | Date | Country |
---|---|---|
10-00767069 | Oct 2007 | KR |
Number | Date | Country | |
---|---|---|---|
20090241454 A1 | Oct 2009 | US |
Number | Date | Country | |
---|---|---|---|
61041560 | Apr 2008 | US |