This invention relates to outdoor flooring, surfaces for decks, patios and the like, and more particularly, to a decking system and method for enabling use of surface materials that would ordinarily lack suitable structural features to accommodate deck or patio applications.
Stone walkway and step surfaces are frequently used at homes and businesses, as the appearance is attractive and enjoyed by many. Walkway and step stones are typically rather thick, to provide sufficient structural properties to support weight necessary in walkway and step use. As such, given the weight of stone, elevated deck surfaces such as for home decks, do not employ stone surfaces, as the weight of the stone requires substantially structural support beyond what is typically employed for deck construction.
In accordance with the invention, a deck and patio surface system comprises a fiber reinforced structural panel employed as a substrate, a mounting fastener for enabling the panel to be secured to a deck, patio, or the like, and a surfacing material bonded or otherwise attached to the structural panel.
Accordingly, it is an object of the present invention to provide an improved deck system to enable use of stone surface in above-ground deck applications.
It is a further object of the present invention to provide an improved system for deck or patio applications to allow use of surface material not normally by itself having sufficient structural properties for such use.
It is yet another object of the present invention to provide an improved method for providing a deck surface.
Another object of the present invention is to provide a deck or patio system adapted for use over waterproofed living space without requiring penetration of the waterproof membrane.
It is still another object of the present invention to provide a system and method for providing a new surface over an existing damaged patio surface.
The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following description taken in connection with accompanying drawings wherein like reference characters refer to like elements.
The system according to a preferred embodiment of the present invention comprises a composite deck surface having a structural panel, fastener elements to secure the structural panel to a deck base, and a surfacing material bonded to the structural panel.
Referring to
A surfacing material 22, which may comprise a cut stone having an aesthetically pleasing appearance, color and/or pattern, is suitably bonded to the structural panel, using a bonding material 24, for example. The surfacing material may also comprise tile, dry laid brick, concrete or stone pavers, for example.
The structural panel is suitably provided in sheets having dimensions of 4 foot by 8 foot, with a 1.5 inch square grid size, in the illustrated embodiment. The panel is suitably approximately 1 inch thick. The individual grid openings narrow somewhat from the top of the panel to the bottom, such that they are wider at the top face than at the bottom. In the particular embodiment, the opening is 1- 5/16th inch at the top measured from interior edge to the opposite edge of an individual grid opening, but is 11-¼th inch at the bottom face of the panel.
A suitable panel that is employed with the system and method may be a fiber reinforced general purpose polyester molded resin panel, although other materials may be used. The panel size is preferably 4 foot by 8 foot in the preferred embodiment, based on construction standards and practices, but may be otherwise re-sized to the desired dimensions, within a 1/16th inch tolerance, so as to provide a system that functions with 16 inch framing dimensions typically used in deck applications. The panel can be provided in other sizes than the illustrated example, chosen to have sufficient support while spanning the supporting elements supporting the panel. Preferably the panel is a pre-configured dimensional size suitable for compliance with customary building practices.
Referring now to
After the fastener is formed as in
In employing the system to provide a deck or patio surface, the installation steps illustrated in
Referring to
Referring now to
An edge trim 40 may now be applied to the peripheral edges of the assembled structural panel group, by cutting the trim to length and applying adhesive thereto (to the inside corners of the edge trim) and then mounting the edge trim to the edges of the panels (
The surface material 22 is now prepared and applied to the structural panel, illustrated in
In an alternative embodiment, the bonding material 24 is provided in the form of a sheet membrane 24′, such as an EPDM rubber or similar material, which is flexible and soft. The sheet is suitably 1/16th inch thick, of dimensions corresponding to those of the surfacing material 22, and is coated on both sides with a pressure sensitive contact adhesive. The sheet membrane 24′ is placed onto the surfacing material 22 and then the surfacing material is placed onto the structural panel 12. This alternative manner of adhering the material to the panel results in a flexible bond.
Accordingly, as system and method are provided whereby a deck surface of quarried stone is feasible. The use of the fiber reinforced polymer structural panels, the fasteners and the adhering of the stone tiles results in a lightweight high strength system weighing only 8 to 10 pounds per square foot in the preferred embodiment. The bonding of the surface material to the structural panel provides further strength to the overall system. As noted above, other surface materials may be employed, including but not limited to tile, brick, concrete and stone pavers.
Under an ASTM #E72-98 test, an exemplary system withstood 6282 lbs. of force with no failure, a maximum 1.47″ deflection and a maximum 0.35″ set deflection.
The preferred material for the surfacing material 22 is natural quarried stone, which includes slates, quartz and sandstone. All stones are suitably from deep cuts producing the highest quality and highest density stone for exterior applications.
In preferred embodiments, all stones have an ASTM #C121 Water Absorption of 0.10%-0.37%. and an ASTM #C1026 Freeze Thaw unaffected rating or a natural resistance to damage under these conditions. Generally all stones have an ASTM #1028 Coefficient of Friction equal to or greater than most wood or composite products, so as to not be overly slippery as a walking surface. In most cases sealing of the surface is not required due to the high density of this material. However, sealing can enhance the natural beauty if applied, but it is not required for long term durability.
Although the illustrated embodiment shows an outdoor flooring system use for a deck surface mounted to a wood frame, other uses are also possible. For example, the system and method can be employed as ground level patios, either as new construction or to cover a cracked or otherwise undesirable patio, providing positive drainage. Application to steps is also another use. Further, the system and method can be employed over waterproofed living spaces, for example, by placing the structural panels over the top of the waterproof deck on sleepers (horizontal structural member on or near the ground that support weight) as a level, floating deck, without penetrating the waterproof membrane.
While a preferred embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that many changes and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.
Number | Date | Country | |
---|---|---|---|
60764190 | Jan 2006 | US |