The present disclosure relates to an outdoor unit, including a valve, for an air-conditioning apparatus and an air-conditioning apparatus.
Outdoor units, including a valve, for air-conditioning apparatuses have been known as outdoor units for air-conditioning apparatuses. When refrigerant cooled in a cooling operation passes through the inside of a refrigerant pipe connected to a valve or other components, dew may be formed on the refrigerant pipe because of the difference in temperature between the inside and the outside of the refrigerant pipe. Patent Literature 1 discloses an outdoor unit that accommodates a compressor, a four-way solenoid valve, and refrigerant pipes connected to the compressor. In Patent Literature 1, refrigerant pipes in the part of a refrigerant circuit disposed above electronic components such as the four-way solenoid valve are not disposed over the electronic components. This configuration in Patent Literature 1 is intended to prevent, even when dew is formed on a refrigerant pipe and drips down, the dew having dripped from adhering to the electronic components.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 10-132335
However, in the outdoor unit disclosed in Patent Literature 1, when a refrigerant pipe has to be disposed over the electronic components because of the limited space in the outdoor unit, dew formed on the refrigerant pipe may drip down and adhere to the electronic components.
The present disclosure is made to solve such a problem and provides an outdoor unit for an air-conditioning apparatus and an air-conditioning apparatus that inhibit, even when dew is formed on a refrigerant pipe, the dew from dripping onto electronic components.
An outdoor unit for an air-conditioning apparatus according to an embodiment of the present disclosure includes a housing; a compressor provided in the housing, the compressor being configured to compress refrigerant; an outdoor heat exchanger provided in the housing, the outdoor heat exchanger allowing refrigerant and air to exchange heat with each other; a partition plate provided in the housing, the partition plate partitioning an inside of the housing into a fan chamber and a machine chamber in which the compressor is provided; an electronic component provided in the machine chamber; a refrigerant pipe provided in the machine chamber, the refrigerant pipe connecting the compressor and the outdoor heat exchanger and being disposed above the electronic component; a valve connected to the refrigerant pipe in the machine chamber, the valve being disposed above the electronic component; and a drip inhibiting portion that covers the refrigerant pipe and a lower part of the valve, the drip inhibiting portion inhibiting water dripping from the refrigerant pipe from dripping onto the electronic component.
According to an embodiment of the present disclosure, the drip inhibiting portion covers the lower part of the valve and the refrigerant pipe disposed above the electronic component. Thus, the drip inhibiting portion is capable of inhibiting, even when dew is formed on the refrigerant pipe connected to the valve, the dew from dripping onto the electronic component at a lower position.
An outdoor unit for an air-conditioning apparatus and an air-conditioning apparatus in an embodiment of the present disclosure will be described below with reference to the drawings. The present disclosure is not limited by the embodiment described below. The size relationships of the components in the following drawings including
The compressor 6, the flow switching device 7, the outdoor heat exchangers 8, the expansion unit 10, and the indoor heat exchanger 11 are connected by refrigerant pipes 5 and form a refrigerant circuit 4. The compressor 6 suctions low-temperature and low-pressure refrigerant, compresses the suctioned refrigerant into high-temperature and high-pressure refrigerant, and discharges the high-temperature and high-pressure refrigerant. The flow switching device 7 switches between directions in which refrigerant flows in the refrigerant circuit 4. The flow switching device 7 is, for example, a four-way valve. For example, the outdoor heat exchangers 8 allow outdoor air and refrigerant to exchange heat with each other. The outdoor heat exchangers 8 are used as condensers in a cooling operation and are used as evaporators in a heating operation.
The outdoor heat exchangers 8 include a first heat exchanger 8a and a second heat exchanger 8b, whose passages are parallel to each other. The first heat exchanger 8a is, for example, an upper one of the outdoor heat exchangers 8. The second heat exchanger 8b is, for example, a lower one of the outdoor heat exchangers 8. The outdoor fan 9 is a device configured to send outdoor air to the outdoor heat exchangers 8. The expansion unit 10 is a pressure reducing valve or an expansion valve configured to decompress and expand refrigerant. The expansion unit 10 is, for example, an electronic expansion valve whose opening degree is controlled. The valves 15 switch between a direction in which refrigerant flows toward the first heat exchanger 8a and a direction in which refrigerant flows toward the second heat exchanger 8b. For example, the valves 15 include a first three-way valve 15a and a second three-way valve 15b. The first three-way valve 15a connects the flow switching device 7, the first heat exchanger 8a, and a suction port of the compressor 6. The second three-way valve 15b connects the flow switching device 7, the second heat exchanger 8b, and the suction port of the compressor 6.
The bypass pipes 13 connect a part between a discharge port of the compressor 6 and the flow switching device 7 and a part between the first three-way valve 15a and the second three-way valve 15b. High-temperature refrigerant discharged from the compressor 6 flows into the bypass pipes 13. The bypass pipes 13 are provided with the bypass flow control device 14. The bypass flow control device 14 controls the amount of refrigerant flowing in the bypass pipes 13.
For example, the indoor heat exchanger 11 allows indoor air and refrigerant to exchange heat with each other. The indoor heat exchanger 11 is used as an evaporator in the cooling operation and is used as a condenser in the heating operation. The indoor fan 12 is a device configured to send indoor air to the indoor heat exchanger 11.
Next, the operation modes of the air-conditioning apparatus 1 will be described. The air-conditioning apparatus 1 in Embodiment 1 has operation modes including the cooling operation, the heating operation, and a heating and defrosting operation. First, the cooling operation will be described. In the cooling operation, the compressor 6 compresses refrigerant suctioned into the compressor 6 into high-temperature and high-pressure gas refrigerant and discharges the gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 branches after passing through the flow switching device 7, and respective streams of refrigerant flow into the first three-way valve 15a and the second three-way valve 15b, The refrigerant that has flowed into the first three-way valve 15a flows into the first heat exchanger 8a of the outdoor heat exchangers 8 used as condensers. In this case, in the first heat exchanger 8a, the refrigerant is condensed and liquified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9. On the other hand, the refrigerant that has flowed into the second three-way valve 15b flows into the second heat exchanger 8b of the outdoor heat exchangers 8 used as condensers. In this case, in the second heat exchanger 8b, the refrigerant is condensed and liquified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9.
The respective streams of condensed liquid refrigerant join together after flowing out from the first heat exchanger 8a and the second heat exchanger 8b, and the joined refrigerant flows into the expansion unit 10. The refrigerant that has flowed into the expansion unit 10 is expanded and decompressed into low-temperature and low-pressure two-phase gas-liquid refrigerant in the expansion unit 10. The two-phase gas-liquid refrigerant then flows into the indoor heat exchanger 11 used as an evaporator and is evaporated and gasified by being subjected to heat exchange with indoor air sent by the indoor fan 12 in the indoor heat exchanger 11. In this case, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas refrigerant passes through the flow switching device 7 and is suctioned into the compressor 6.
Next, the heating operation will be described. In the heating operation, the compressor 6 compresses refrigerant suctioned into the compressor 6 into high-temperature and high-pressure gas refrigerant and discharges the gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 passes through the flow switching device 7, flows into the indoor heat exchanger 11 used as a condenser, and is condensed and liquified by being subjected to heat exchange with indoor air sent by the indoor fan 12 in the indoor heat exchanger 11. In this case, the indoor air is heated, and heating is performed indoors. The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and decompressed into low-temperature and low-pressure two-phase gas-liquid refrigerant in the expansion unit 10. The two-phase gas-liquid refrigerant then branches, and respective streams of refrigerant flow into the first heat exchanger 8a and the second heat exchanger 8b.
In the first heat exchanger 8a used as an evaporator, the refrigerant that has flowed into the first heat exchanger 8a is evaporated and gasified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9. The evaporated low-temperature and low-pressure gas refrigerant passes through the first three-way valve 15a. On the other hand, in the second heat exchanger 8b used as an evaporator, the refrigerant that has flowed into the second heat exchanger 8b is evaporated and gasified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9. The evaporated low-temperature and low-pressure gas refrigerant passes through the second three-way valve 15b. The streams of refrigerant that have passed through the first three-way valve 15a and the second three-way valve 15b join together, and the joined refrigerant is suctioned into the compressor 6.
Next, the heating and defrosting operation will be described. In the heating operation, frost may adhere to the outdoor heat exchangers 8. In the heating and defrosting operation, the air-conditioning apparatus 1 alternately defrosts the first heat exchanger 8a and the second heat exchanger 8b by switching between the first three-way valve 15a and the second three-way valve 15b while continuing the heating operation. First, a case in which the first heat exchanger 8a is defrosted will be described. In the heating and defrosting operation, the compressor 6 compresses refrigerant suctioned into the compressor 6 into high-temperature and high-pressure gas refrigerant and discharges the gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 branches, and respective streams of refrigerant flow into the flow switching device 7 and the bypass pipes 13.
The refrigerant that flows into the flow switching device 7 flows into the indoor heat exchanger 11 used as a condenser and is condensed and liquified by being subjected to heat exchange with indoor air sent by the indoor fan 12 in the indoor heat exchanger 11. In this case, the indoor air is heated, and heating is performed indoors. The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and decompressed into low-temperature and low-pressure two-phase gas-liquid refrigerant in the expansion unit 10. The two-phase gas-liquid refrigerant then joins refrigerant that has flowed out from the first heat exchanger 8a, and the joined refrigerant flows into the second heat exchanger 8b. In the second heat exchanger 8b used as an evaporator, the refrigerant that has flowed into the second heat exchanger 8b is evaporated and gasified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9. The evaporated low-temperature and low-pressure gas refrigerant passes through the second three-way valve 15b and is suctioned into the compressor 6.
On the other hand, the refrigerant that flows into the bypass pipes 13 is decompressed by the bypass flow control device 14. The decompressed high-temperature refrigerant passes through the first three-way valve 15a and flows into the first heat exchanger 8a. The high-temperature refrigerant removes frost adhering to the first heat exchanger 8a. The refrigerant that has flowed out from the first heat exchanger 8a joins refrigerant that has flowed out from the expansion unit 10, and the joined refrigerant flows into the second heat exchanger 8b.
Next, a case in which the second heat exchanger 8b is defrosted will be described. In the heating and defrosting operation, the compressor 6 compresses refrigerant suctioned into the compressor 6 into high-temperature and high-pressure gas refrigerant and discharges the gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 branches, and respective streams of refrigerant flow into the flow switching device 7 and the bypass pipes 13.
The refrigerant that flows into the flow switching device 7 flows into the indoor heat exchanger 11 used as a condenser and is condensed and liquified by being subjected to heat exchange with indoor air sent by the indoor fan 12 in the indoor heat exchanger 11. In this case, the indoor air is heated, and heating is performed indoors. The condensed liquid refrigerant flows into the expansion unit 10 and is expanded and decompressed into low-temperature and low-pressure two-phase gas-liquid refrigerant in the expansion unit 10. The two-phase gas-liquid refrigerant then joins refrigerant that has flowed out from the second heat exchanger 8b, and the joined refrigerant flows into the first heat exchanger 8a. In the first heat exchanger 8a used as an evaporator, the refrigerant that has flowed into the first heat exchanger 8a is evaporated and gasified by being subjected to heat exchange with outdoor air sent by the outdoor fan 9. The evaporated low-temperature and low-pressure gas refrigerant passes through the first three-way valve 15a and is suctioned into the compressor 6.
On the other hand, the refrigerant that flows into the bypass pipes 13 is decompressed by the bypass flow control device 14. The decompressed high-temperature refrigerant passes through the second three-way valve 15b and flows into the second heat exchanger 8b. The high-temperature refrigerant removes frost adhering to the second heat exchanger 8b. The refrigerant that has flowed out from the second heat exchanger 8b joins refrigerant that has flowed out from the expansion unit 10, and the joined refrigerant flows into the first heat exchanger 8a.
The top panel 23 is a metal plate that covers the top of each of the internal components 30. The fan guard 24 is a grid-like component provided to cover the opening 21a provided in the front panel 21. The fan guard 24 inhibits foreign matter from entering the outdoor unit 2. The service panel 22b is attached to the side panel 22 and is detached when the outdoor unit 2 is inspected. When an operator inspects the outdoor unit 2, the operator detaches the service panel 22b and inspects the inside of the outdoor unit 2 from the service opening 22a provided in the side panel 22 (see
The compressor 6 is provided on the bottom plate 31. A section of the outdoor heat exchangers 8 has, for example, an L shape. The outdoor heat exchangers 8 are provided on the bottom plate 31 and form the other side, close to the other side of each of the internal components 30, and the rear of the outdoor unit 2. The outdoor heat exchangers 8, together with the housing 20, provide a hollow portion 20a in the outdoor heat exchangers 8 and the housing 20. The motor support component 32 is provided in front of the part, forming the rear of the outdoor unit 2, of the outdoor heat exchangers 8. The motor support component 32 supports a fan motor 9a, which is configured to drive the outdoor fan 9 to rotate. The outdoor fan 9 is attached to the motor support component 32 in the hollow portion 20a and forms an air passage along which air is suctioned from the rear of the outdoor unit 2 and is sent to the outdoor heat exchangers 8. The partition plate 33 is a metal plate extending in a front-rear direction of the housing 20 in the hollow portion 20a. The partition plate 33 extends upward from the bottom plate 31. A section of the partition plate 33 has an L shape extending in the front-rear direction of the housing 20 and then extending in a width direction along the outdoor heat exchangers 8. The partition plate 33 partitions the inside of the outdoor unit 2 into a fan chamber 25 and a machine chamber 26.
Here, the outdoor heat exchangers 8 and the outdoor fan 9 are provided in the fan chamber 25. The compressor 6, the refrigerant pipes 5 connected to the compressor 6, the electronic components 40 the valves 15, and the drip inhibiting portion 50 are provided in the machine chamber 26. The electrical component box 34 is disposed above the valves 15. The electrical component box 34 houses electrical components configured to control the operation of the compressor 6 and the outdoor fan 9. The electrical component box 34 is provided at an upper end of the partition plate 33. The electrical component box 34 houses a control board (not illustrated) on which electrical components (not illustrated) having comparatively large heights, such as an electrolytic capacitor, are mounted. The electrical component box 34 includes a display unit (not illustrated) configured to light up in maintenance. The display unit is, for example, an LED lamp and is provided on the control board.
As illustrated in
The band portion 51 is a long component extending in the width direction. The band portion 51 surrounds the valves 15 such that the band portion 51 covers a lower part, side parts, and an upper part of each valve 15. The band portion 51 inhibits a side end portion of each valve 15 from coming into contact with the partition plate 33 (see
The first slit 52a is obtained by cutting out a part of the band portion 51 at a position close to the other end of the band portion 51 in the long-side direction such that the first slit 52a extends in a direction from the rear to the front of the outdoor unit 2. A refrigerant pipe 5A of the refrigerant pipes 5 illustrated in
The band portion 51 has an electrical-component escape space 53. The electrical-component escape space 53 is obtained by cutting out a part of the band portion 51, at a position closer than the third slit 52c to one side in a state in which the drip inhibiting portion 50 is developed, in the direction from the rear to the front of the outdoor unit 2 such that the electrical-component escape space 53 has a trapezoidal shape and has a first inclined surface 53a. The electrical-component escape space 53 is positioned close to the top panel 23 in a state in which the valves 15 are surrounded by the band portion 51. Electrical components included in the electrical component box 34 are inserted into the electrical-component escape space 53. Specifically, for example, an electrolytic capacitor (not illustrated) that is mounted on the control board housed in the electrical component box 34 and that projects from the control board is inserted into the electrical-component escape space 53.
The band portion 51 has a display-unit escape space 54. The display-unit escape space 54 is obtained by cutting out a part of the band portion 51, at a position between the third slit 52c and the electrical-component escape space 53 in the state in which the drip inhibiting portion 50 is developed, in a direction from the front to the rear of the outdoor unit 2 such that the display-unit escape space 54 has a trapezoidal shape and has a second inclined surface 54a In this manner, the display-unit escape space 54 has a shape similar to that of the electrical-component escape space 53. The first inclined surface 53a and the second inclined surface 54a are parallel to each other. The first inclined surface 53a and the second inclined surface 54a do not have to be parallel to each other. This enables the distance between the electrical-component escape space 53 and the display-unit escape space 54 to be left even when the electrical-component escape space 53 and the display-unit escape space 54 are cut out from the band portion 51.
The display-unit escape space 54 is positioned close to the top panel 23 in the state in which the valves 15 are surrounded by the band portion 51. The display-unit escape space 54 allows the display unit included in the electrical component box 34 to be visible from the outside of the housing 20. Specifically, when an operator inspects the outdoor unit 2, the operator detaches the service panel 22b. Then, the display unit included in the electrical component box 34 is visible to the operator from the service opening 22a of the side panel 22. The display-unit escape space 54 is provided on a sight line along which the display unit is visible to the operator. The display-unit escape space 54 does not prevent the display unit from being visible to the operator and enables the display unit to have visibility.
The protecting portion 55 extends upward from the band portion 51 in a state in which the valves 15 are surrounded by the band portion 51. The protecting portion 55 inhibits an end portion of each valve 15 in the front-rear direction from coming into contact with the partition plate 33. The protecting portion 55 is provided between the third slit 52c and the electrical-component escape space 53 in the state in which the drip inhibiting portion 50 is developed. The protecting portion 55 has a cuboid shape. The protecting portion 55 is inserted between the partition plate 33 and the valves 15 by being bent upward from the rear side by 90 degrees after the valves 15 are surrounded by the band portion 51 (see
The folded-back portion 56 is folded back at one end portion of the band portion 51. To form the folded-back portion 56, a part formed by making a cut in a part of the one end portion of the band portion 51 is folded back by 180 degrees. The folded-back portion 56 is sewn at a stitch portion 56a and is thus held in the folded back state. The engagement portion 57 is a cuboid component projecting from the other end portion of the band portion 51. The engagement portion 57 is a stopper engaged with the folded-back portion 56 at the other end portion of the band portion 51 surrounding the valves 15.
Specifically, a step portion 56b, which is formed when the folded-back portion 56 is folded back by 180 degrees, is caught by the engagement portion 57. This keeps a state in which the valves 15 are surrounded by the drip inhibiting portion 50. When the valves 15 are surrounded by the band portion 51, a space insertion portion 58, which is the part, other than the folded-back portion 56, of the one end portion of the band portion 51, enters the space between the partition plate 33 and a space defining portion 59, which is the part, other than the engagement portion 57, of the other end portion of the band portion 51.
Next, the operation in which the drip inhibiting portion 50 surrounds the valves 15 will be described. In a state in which the other end side of the band portion 51 is disposed to face the partition plate 33, the refrigerant pipes 5A, 5B, and 5C are respectively inserted into the first slit 52a, the second slit 52b, and the third slit 52c of the band portion 51. Then, the protecting portion 55 is bent upward from the rear side by 90 degrees and is inserted between the partition plate 33 and the valves 15.
In addition, the one end side of the band portion 51 is bent by 90 degrees in a direction from the side panel 22 toward the top panel 23 and is further bent by 90 degrees in a direction from the top panel 23 toward the partition plate 33 while covering the side parts of each valve 15. Then, the folded-back portion 56 is engaged with the engagement portion 57 while the band portion 51 covers the upper part of each valve 15. As a result, the drip inhibiting portion 50 is formed into a cylindrical shape. The folded-back portion 56 and the space insertion portion 58 are inserted between the partition plate 33 and the valves 15 or between the partition plate 33 and the refrigerant pipes 5. As a result, the drip inhibiting portion 50 is fixed in the machine chamber 26.
According to Embodiment 1, the drip inhibiting portion 50 covers the lower part of each valve 15 and the refrigerant pipes 5 disposed above the electronic components 40. Thus, the drip inhibiting portion 50 is capable of inhibiting, even when dew is formed on the refrigerant pipes 5 connected to the valves 15, the dew from dripping onto the electronic components 40 at lower positions. For example, by absorbing water dripping from the valves 15, the drip inhibiting portion 50 inhibits the water from dripping onto the electronic components 40 at lower positions. In addition, the drip inhibiting portion 50 is formed to repel and hold water droplets on the drip inhibiting portion 50 and is formed to cause water dripping from the refrigerant pipes 5 to drip onto positions in a lower space where the electronic components 40 do not exist. In this manner, the drip inhibiting portion 50 inhibits water from dripping onto the electronic components 40 at lower positions. As described above, the drip inhibiting portion 50 inhibits dew from dripping onto each energized part of the electronic components 40. Thus, it is possible to inhibit occurrence of a short circuit.
In addition, the partition plate 33 extends in the front-rear direction of the housing 20. The drip inhibiting portion 50 includes the band portion 51, which has a band shape and surrounds the valves 15 such that the band portion 51 covers the lower part, the side parts, and the upper part of each valve 15. This inhibits the side end portion of each valve 15 from coming into contact with the partition plate 33. Furthermore, the partition plate 33 extends in the width direction of the housing 20. The drip inhibiting portion 50 further includes the protecting portion 55, which extends upward from the band portion 51 and inhibits the end portion of each valve 15 in the front-rear direction from coming into contact with the partition plate 33. This inhibits the partition plate 33 and the valves 15 from coming into contact with each other even when the outdoor unit 2 is shaken during transportation or even when drop impact occurs in the outdoor unit 2 because of incorrect handling of the outdoor unit 2.
The band portion 51 has the slits 52, into which the refrigerant pipes 5 connected to the valves 15 are inserted. Thus, the band portion 51 is held by the refrigerant pipes 5. Accordingly, there is no need to provide an additional support component. The drip inhibiting portion 50 further includes the folded-back portion 56, which is folded back at the one end portion of the band portion 51, and the engagement portion 57, which is engaged with the folded-back portion 56 at the other end portion of the band portion 51 surrounding the valves 15. This keeps a state in which the drip inhibiting portion 50 is formed into a cylindrical shape.
1: air-conditioning apparatus, 2: outdoor unit, 3: indoor unit, 4: refrigerant circuit, 5, 5A, 5B, 5C: refrigerant pipe, 6: compressor, 7: flow switching device, 8: outdoor heat exchanger, 8a: first heat exchanger, 8b: second heat exchanger, 9: outdoor fan, 9a: fan motor, 10: expansion unit, 11: indoor heat exchanger, 12: indoor fan, 13: bypass pipe, 14: bypass flow control device, 15: valve, 15a: first three-way valve, 15b: second three-way valve, 20: housing, 20a: hollow portion, 21: front panel, 21a: opening, 21b: elongated hole, 22: side panel, 22a: service opening, 22b: service panel, 23: top panel, 24: fan guard, 25: fan chamber, 26: machine chamber, 30: internal component, 31: bottom plate, 32: motor support component, 33: partition plate, 34: electrical component box, 40: electronic component, 41: reactor, 42: four-way valve coil, 43: three-way valve coil, 50: drip inhibiting portion, 51: band portion, 52: slit, 52a: first slit, 52b: second slit, 52c: third slit, 53: electrical-component escape space, 53a: first inclined surface, 54: display-unit escape space, 54a: second inclined surface, 55: protecting portion, 56: folded-back portion, 56a: stitch portion, 56b: step portion, 57: engagement portion, 58: space insertion portion, 59: space defining portion
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2019/030185 | 8/1/2019 | WO | 00 |