This application is a U.S. national stage application of PCT/TH2020/000001 filed on Jan. 14, 2020, the contents of which are incorporated herein by reference.
The present invention relates to an outdoor unit for an air-conditioning apparatus.
It is known that the outdoor unit for an air-conditioning apparatus has a heat exchanger, which includes a front surface portion, a corner portion bent from one end of the front surface portion toward the front side and a side surface portion extending further toward the front side from the corner portion, and which is formed in an L-shape when viewed from above, and an upper support which covers the front surface portion when viewed from above, as disclosed in Japanese laid-open publication No. JP2014-137155A (PTL1).
In the prior art, as the heat exchanger, corrugated fins type heat exchanger which has rigidity lower than that of a fin-and-tube type heat exchanger is disclosed. If the heat exchangers disclosed in the prior art are stacked up, a perpendicular downward load generated by the stacked heat exchangers on the upper support, is applied on the upper support. As such, there is a possibility that the heat exchanger is locally deformed by the perpendicular downward load.
Moreover, in an outdoor unit of an air-conditioning apparatus, a metal material such as iron powder or copper powder may cling to the heat exchanger. If the iron powder and the copper powder clings to the heat exchanger, there are cases when the electrolytic corrosion of the heat exchanger occurs due to the rainwater and the drain water which flow into the heat exchanger.
Therefore, the development of the outdoor unit for an air-conditioning apparatus capable to prevent the heat exchanger from being locally deformed by the perpendicular downward load which is applied on the upper support in case that the heat exchangers are stacked up, as well as to prevent the electrolytic corrosion in the heat exchanger, is required.
PTL 1: Japanese laid-open publication No.: JP2014-137155A
The objective of the present invention is to provide an outdoor unit for an air-conditioning apparatus which is capable to prevent the heat exchanger from being locally deformed by the perpendicular downward load which is applied on the upper support in case that the heat exchangers are stacked up, as well as to prevent the electrolytic corrosion in the heat exchanger.
In order to achieve the above objective, an embodiment of the present invention provides an outdoor unit for an air-conditioning apparatus, comprising: a bottom plate made of metal; a heat exchanger made of metal that is different from metal of the bottom plate, which includes a front surface portion, a corner portion bent from one end of the front surface portion toward the front side and a side surface portion extending further toward the front side from the corner portion, and which is formed in an L-shape when viewed from above so that a length in the longitudinal direction of the front surface portion is made longer than that of the side surface portion when viewed from above, and which is installed on the bottom plate so that surfaces of the front surface portion, the corner portion and the side surface portion, into which air flows, face outward; and an upper support which continuously covers the front surface portion, the corner portion and the side surface portion when viewed from above, which includes a groove opening downward so that a top portion of the heat exchanger fits to the groove of the upper support.
According to the embodiment of the present invention, firstly, since the upper support which continuously covers the front surface portion, the corner portion and the side surface portion when viewed from above, the upper support functions as the cover which is formed to cover the top of the heat exchanger. As such, even if the rainwater and/or the drain water flows into the heat exchanger, it is possible to reduce the opportunities to bring the rainwater and/or the drain water into contact with the heat exchanger. Therefore, it is possible to prevent the electrolytic corrosion in the heat exchanger.
Secondly, an upper support which continuously covers the front surface portion, the corner portion and the side surface portion when viewed from above, even if the heat exchangers are stacked up and thereby the perpendicular downward load generated by the stacked heat exchangers on the upper support, is applied on the upper support, the load can be distributed on the whole upper support which is positioned on the top of the front surface portion, the corner portion and the side surface portion. As such, the upper support can bear a heavy load.
As a result, it is possible to prevent the heat exchanger from being locally deformed by the perpendicular downward load which is applied on the upper support in case that the heat exchangers are stacked up.
Finally, since the upper support includes a groove opening downward so that a top portion of the heat exchanger fits to the groove of the upper support, the upper support can be easily attached on the heat exchanger.
Therefore, according to the embodiment of the present invention, it is possible to prevent the heat exchanger from being locally deformed by the perpendicular downward load which is applied on the upper support in case that the heat exchangers are stacked up, as well as to prevent the electrolytic corrosion in the heat exchanger.
The principle of the present invention and its advantages will become apparent in the following description taking in consideration with the accompanying drawings in which:
Hereinafter, the outdoor unit for an air-conditioning apparatus according to embodiments of the invention will be described with reference to the drawings and the like.
The outdoor unit 100 includes a bottom plate 10 having legs 16, 16, a heat exchanger 40 such as a parallel flow type heat exchanger, which is installed on the bottom plate 10 with its rear surface facing outward, a front panel 12 disposed opposite the back surface of the heat exchanger 40, side panel 14, and a top plate 18, and is formed in a box shape. In the parallel flow type heat exchanger, an inflow side of air is the rear surface of the outdoor unit 100, and an outflow side of air is the front surface.
The inside of the outdoor unit 100 is divided into a blower chamber 20 and a machine chamber 22 by a separator 24 which is provided between the surface of the heat exchanger 40 and the front panel 12. A fan motor 26 installed in front of the heat exchanger 40 is provided in the blower chamber 20. A propeller fan 30 is mounted on the fan motor 26. In the machine chamber 22, a compressor 32 which is disposed on a bottom plate 10, refrigerant pipes 34, an electric device (not shown) and the like are disposed. The bottom plate 10 is made by, for example, a thin steel plate having conductivity.
The heat exchanger 40 includes a front surface portion 42, a corner portion 44 bent from a left end of the front surface portion 42 toward the front side, and a side surface portion 46 extending further toward the front side from the corner portion 44. Namely, the heat exchanger 40 is formed in an L-shape when viewed from above so that a length in the longitudinal direction of the front surface portion 42 is made longer than that of the side surface portion 46 when viewed from above. The heat exchanger 40 is installed on the bottom plate 10 so that surfaces of the front surface portion 42, the corner portion 44 and the side surface portion 46, into which air flows, face outward.
Header pipes are provided at both ends of the heat exchanger 40, and a plurality of flat tubes are arranged in parallel between the header pipes, and corrugated fins are arranged between the flat tubes. The header pipe, the flat tube and the corrugated fin are made of aluminum (or aluminum alloy). The header pipe and the flat tube, as well as the flat tube and the corrugated fin are fixed to each other by brazing or welding. The header pipe on the machine chamber side is connected to the compressor 32 via the refrigerant pipe 34. The heat exchanger 40 of the outdoor unit 100 acts as a condenser during a cooling operation.
As shown in
As shown in
As shown in
The fan motor 26 is fixed to a fan motor support member 90 locked to the upper support 50 of the heat exchanger 40. The fan motor support member 90 has a bottom portion fixed to the bottom plate 10, and is positioned between the propeller fan (air-sending fan) 30 and the heat exchanger 40 in the frontward-and-backward direction. The fan motor support member 90 is configured to support not only the fan motor 26 but also the air-sending fan 30 connected to the rotary shaft 28 of the fan motor 26. The fan motor support member 90 is made of sheet metal, and is integrally molded.
When the fan motor 26 is driven by power supply, the propeller fan rotates. At this time, air is sucked from the rear surfaces of the front surface portion 42, the corner portion 44, and the side surface portion 46 of the heat exchanger 40, and sucked air is sent from the surface of the heat exchanger 40 into the blower chamber 20. The fed air is discharged forward from the front panel 12. During cooling operation, the refrigerant in the heat exchanger 40 is cooled by air, and the air that has passed through the heat exchanger 40 is heated by heat exchange with the refrigerant.
Moreover, in order to assemble the components, firstly, the first end lower support 86, the second end lower support 88 and the lower support 80 are attached to the lower end of the heat exchanger 40, as well as the first end upper support 74, the second end upper support 76 and the upper support 50 are attached to the upper end of the heat exchanger 40.
Secondly, the second end upper support 76 and the second end lower support 88 are fitted into the connection member 36 and fastened by a screw (not shown). Next, the first end lower support 86 is attached to the lower end of the side surface portion 46 of the heat exchanger 40, and the first end upper support 74 is attached to the upper end of the side surface portion 46.
Thereafter, the heat exchanger 40 is installed and fixed on the bottom plate 10, and the compressor 32 is fixed on the bottom plate 10, and the refrigerant pipes 34 connected to the compressor 32 are connected to the heat exchanger 40. The fan motor support member 90 is locked and fixed to the upper support 50. Namely, the lower end of the fan motor support member 90 is not fixed to the heat exchanger 40.
Then, the fan motor 26 is fixed to the fan motor support member 90, and the propeller fan 30 is mounted on the fan motor 26, and the separator 24 is attached to the connection member 36.
Finally, the front panel 12 and the side panel 14 are attached to the bottom plate 10, and the top plate 18 is attached to the front panel 12 and the side panel 14 to cover the top of the outdoor unit 100.
Next, the configurations of the upper support 50 and the lower support 80 will be described with reference to
As shown in
The upper support 50 includes an upper support front portion 52 which covers the front surface portion 42, an upper support corner portion 54 which covers the corner portion 44, and an upper support side portion 56 which covers the side surface portion 46, when viewed from above.
The upper support 50 is formed in an L-shape when viewed from above so that a length in the longitudinal direction of the upper support front portion 52 is made longer than that of the upper support side portion 56 when viewed from above. A width of the upper support corner portion 54 is made wider than that of the upper support front portion 52 when viewed from above.
As shown in
In this embodiment, a groove width of the upper support corner portion 54 is made wider than that of the upper support front portion 52. As such, it is possible to surely and easily attach the upper support 50 to the heat exchanger 40.
Moreover, the side plate 60 has a plural of notches 62 and a plural of plate walls in the side plate 60 is formed between notches 62, mainly to increase the volume of air which flows into the heat exchanger 40.
As shown in
Although not shown in a figure, it is preferable that the upper support corner portion 54 further includes a second corner wall 66 which is included in the side plate 60 and faces the outside of the outdoor unit 100, and the first corner wall 64 and the second corner wall 66 are oppositely disposed by interposing the groove 58. Since the first corner wall 64 and the second corner wall 66 function as guide walls for the upper support corner portion 54 when the upper support 50 is attached to the heat exchanger 40, it is possible to furthermore surely and easily attach the upper support 50 to the heat exchanger 40.
As shown in
In this embodiment, since the side plate 60 has a plural of notches 62 and the plate walls including the first corner wall 64 and the second corner wall 66, in the side plate 60, is formed between notches 62. As such, it is not only to increase the volume of air which flows into the heat exchanger 40, but also to firmly fix the upper support 50 to the heat exchanger 40. As a result, it is possible to effectively improve heat exchanger 40 effectiveness by a simple and compact composition.
As shown in
As shown in
Moreover, the side plate 84 of the lower support 80 includes hook members 70 with a convex structure inside the groove 82, and the hook member 70 is hooked to the heat exchanger 40. In this embodiment, the hook members 70 are hooked to the front surface portion 42 and side surface portion 46 of the heat exchanger 40. Since the lower support 80 hook at least two points of the heat exchanger 40 by the hook members 70, the lower support 80 can be firmly fixed to the heat exchanger 40.
The lower support 80 which continuously covers the front surface portion 42, the corner portion 44 and the side surface portion 46 when viewed from below, even if the heat exchangers 40 are stacked up and thereby the perpendicular downward load generated by the stacked heat exchangers 40 on the lower support 80, is applied on the lower support 80, the load can be distributed on the whole lower support 80 which is positioned on the bottom of the front surface portion 42, the corner portion 44 and the side surface portion 46. As such, the lower support 80 can bear a heavy load.
As a result, it is possible to prevent the heat exchanger 40 from being locally deformed by the perpendicular downward load which is applied on the lower support 80 in case that the heat exchangers 40 are stacked up.
As shown in
For the purpose of preventing damages to the heat exchanger 40, the fan motor support member 90 is formed so as not to contact the heat exchanger 40 (See
According to this embodiment, firstly, since the upper support 50 which continuously covers the front surface portion 42, the corner portion 44 and the side surface portion 46 when viewed from above, the upper support 50 functions as the cover which is formed to cover the top of the heat exchanger 40. As such, even if the rainwater and/or the drain water flows into the heat exchanger 40, it is possible to reduce the opportunities to bring the rainwater and/or the drain water into contact with the heat exchanger 40. Therefore, it is possible to prevent the electrolytic corrosion in the heat exchanger 40.
Secondly, an upper support 50 which continuously covers the front surface portion 42, the corner portion 44 and the side surface portion 46 when viewed from above, even if the heat exchangers 40 are stacked up and thereby the perpendicular downward load generated by the stacked heat exchangers 40 on the upper support 50, is applied on the upper support 50, the load can be distributed on the whole upper support 50 which is positioned on the top of the front surface portion 42, the corner portion 44 and the side surface portion 46. As such, the upper support 50 can bear a heavy load.
As a result, it is possible to prevent the heat exchanger 40 from being locally deformed by the perpendicular downward load which is applied on the upper support 50 in case that the heat exchangers 40 are stacked up.
Therefore, according to the embodiment, it is possible to prevent the heat exchanger 40 from being locally deformed by the perpendicular downward load which is applied on the upper support 50 in case that the heat exchangers 40 are stacked up, as well as to prevent the electrolytic corrosion in the heat exchanger 40.
In another embodiment, in case that the notches are not formed in the side plates 60, 60 of the upper support 50, it is possible to form a pair of hook members inside the groove 58, which are continuously formed to extend along a longitudinal direction of the upper support 50. According to the embodiment, it is possible to improve rigidity of the upper support 50 and the upper support 50 is more firmly fixed to the heat exchanger 40.
Although specific embodiments of the invention have been disclosed and described as well as illustrated in the companying drawings, it is simply for the purpose of better understanding of the principle of the present invention and it is not as a limitation of the scope and spirit of the teaching of the present invention. Adaption and modification to various structures such as design or material of the invention are possible and apparent to a skilled person without departing from the scope of the present invention which is to be determined by the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TH2020/000001 | 1/14/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/145829 | 7/22/2021 | WO | A |
Number | Date | Country |
---|---|---|
H1096541 | Apr 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20230052303 A1 | Feb 2023 | US |