This application is a U.S. National Stage Application of International Application No. PCT/JP2018/042416, filed on Nov. 16, 2018 the contents of which are incorporated herein by reference.
The present invention relates to an outdoor unit of an air-conditioning apparatus, including a harmonic suppressing unit.
Conventionally, an outdoor unit of an air-conditioning apparatus has been known to have a configuration in which, as disclosed for example in Patent Literature 1, a chassis forming a framework contains therein a compressor, an air-sending device, and a controller that controls the compressor and the air-sending device. The controller has a configuration in which a control board with electric and electronic components mounted thereon is housed inside a housing.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2006-317099
In the outdoor unit of the air-conditioning apparatus, the controller is known to include a harmonic suppressing unit, such as a reactor, to reduce power supply noise. The harmonic suppressing unit and other electric and electronic components are arranged together in the same section of the chassis. In the outdoor unit of the air-conditioning apparatus, therefore, overheating of the harmonic suppressing unit degrades the performance of the electric and electronic components and shortens their product life.
The present invention has been made to solve the problems described above. An object of the present invention is to provide an outdoor unit of an air-conditioning apparatus in which, even if the harmonic suppressing unit is overheated, the performance and product life of the electric and electronic components are less likely to be affected.
An outdoor unit of an air-conditioning apparatus according to an embodiment of the present invention includes a compressor, a heat exchanger, and a controller. The controller includes a compressor driving circuit configured to drive the compressor, a harmonic suppressing unit configured to suppress harmonics in the compressor driving circuit, and a housing containing the compressor driving circuit and the harmonic suppressing unit. The housing has a first section having ventilation holes that allow communication between the outside and the inside, and a second section constituting a frame outside the first section. The first section contains the harmonic suppressing unit and a fan that blows air from inside the first section to the outside through the ventilation holes. The second section contains the compressor driving circuit.
According to the embodiment of the present invention, the housing containing electric and electronic components has the first section and the second section. The electric and electronic components, such as the compressor driving circuit, whose performance and product life are significantly affected by temperature rise, are disposed in the second section. Since this enables isolation from the harmonic suppressing unit disposed in the first section, it is less likely that the performance and product life of the electric and electronic components of the controller will be affected.
Embodiments 1 and 2 of the present invention will now be described with reference to the drawings, Throughout the drawings, the same or corresponding parts are assigned the same reference numerals and their description will be omitted or simplified as appropriate. The shapes, sizes, and arrangements of components illustrated in the drawings may be appropriately changed within the scope of the present invention.
The compressor 10 compresses suctioned refrigerant and discharges the resulting high temperature and pressure refrigerant. For example, the compressor 10 is a positive displacement compressor driven by an inverter-controlled motor and configured to be capable of varying the operating capacity (frequency).
The flow switching unit 11 is, for example, a four-way valve having the function of switching the flow of refrigerant. During cooling operation, the flow switching unit 11 switches the refrigerant flow to allow connection of a refrigerant discharge side of the compressor 10 to a gas side of the outdoor heat exchanger 12, and also to allow connection of a refrigerant suction side of the compressor 10 to a gas side of the indoor heat exchanger 14. During heating operation, on the other hand, the flow switching unit 11 switches the refrigerant flow to allow connection of the refrigerant discharge side of the compressor 10 to the gas side of the indoor heat exchanger 14, and also to allow connection of the refrigerant suction side of the compressor 10 to the gas side of the outdoor heat exchanger 12. The flow switching unit 11 may be a combination of two- or three-way valves.
The outdoor heat exchanger 12 is, for example, a fin-and-tube heat exchanger that includes a heat exchanger tube and many fins. The outdoor heat exchanger 12 allows refrigerant discharged from the compressor 10 and supplied to the outdoor heat exchanger 12 to exchange heat with air blown by an outdoor air-sending device 17 and passed through the outdoor heat exchanger 12, so that the refrigerant is cooled. The outdoor heat exchanger 12 is configured to function as a condenser during cooling operation to liquefy the refrigerant, and to also function as an evaporator during heating operation to vaporize the refrigerant.
The expansion mechanism 13 reduces pressure of the refrigerant flowing in the refrigerant circuit to expand the refrigerant. For example, the expansion mechanism 13 is constituted by an electronic expansion valve whose opening degree is variably controlled.
The indoor heat exchanger 14 functions as an evaporator during cooling operation to allow the refrigerant flowing out of the expansion mechanism 13 to exchange heat with air. The indoor heat exchanger 14 also functions as a condenser during heating operation to allow the refrigerant discharged from the compressor 10 to exchange heat with air. The indoor heat exchanger 14 draws in indoor air through an indoor air-sending device. After allowing the air to exchange heat with the refrigerant, the indoor heat exchanger 14 supplies the resulting air into the room. The accumulator 15 is disposed on the suction side of the compressor 10 and configured to store excess refrigerant circulating in the refrigerant circuit.
With reference to
The outdoor unit 100 of the air-conditioning apparatus 300 has a configuration in which, as illustrated in
As illustrated in
As illustrated in
As illustrated in
The controller 2 receives input from an AC power supply 3 to drive and control the compressor 10 and the outdoor air-sending device 17. As illustrated in
The compressor driving circuit 25 includes a compressor inverter 25a that outputs, to the compressor 10, power with an output frequency and an output voltage corresponding to a command value from the outdoor-unit control device 24, and also includes an IPM driving circuit 25b that drives the compressor inverter 25a. The compressor inverter 25a is constituted, for example, by an intelligent power module (IPM) that is a semiconductor element. The compressor inverter 25a and the IPM driving circuit 25b are provided with the harmonic suppressing unit 27 therebetween. The harmonic suppressing unit 27 has the function of suppressing harmonics produced when the compressor 10 is driven during operation of the outdoor unit 100. The harmonic suppressing unit 27 is, for example, a direct-current reactor (DCL).
The air-sending-device driving circuit 26 includes an air-sending-device inverter 26a that outputs, to the air-sending device, power with an output frequency and an output voltage corresponding to a command value from the outdoor-unit control device 24, and also includes an IPM driving circuit 26b that drives the air-sending-device inverter 26a. The air-sending-device inverter 26a is constituted, for example, by an intelligent power module (IPM) that is a semiconductor element.
The housing 20 of the controller 2 is formed, for example, by metal plates. As illustrated in
Specifically, the housing 20 includes a first sub-housing 20A forming the first section A and a second sub-housing 20B forming the second section B. The second sub-housing 20B is formed by a front plate 20a, right and left side plates 20b and 20c and a back plate 20d longer in the height direction than the front plate 20a, a top plate 20e, and the partitioning member 20f disposed at the lower end of the front plate 20a and configured to separate the first section A and the second section B. The second sub-housing 20B has the second section B that is a space surrounded by the front plate 20a, the right and left side plates 20b and 20c, the back plate 20d, the top plate 20e, and the partitioning member 20f, and a storage space C that is a space located under the second section B, surrounded by the right and left side plates 20b and 20c, the back plate 20d, and the partitioning member 20f and open at the front thereof. The first sub-housing 20A is disposed in the storage space C.
The second section B has no ventilation holes that allow communication between the outside and the inside, and is surrounded by metal plates. The second section B may have ventilation holes that allow communication between the outside and the inside. The housing 20 has a structure in which the internal space of the first section A and the internal space of the second section B are separated by using, for example, a bushing to prevent entry of rain and snow and are, at the same, thermally separated.
As illustrated in
The outdoor unit 100 of the air-conditioning apparatus according to Embodiment 1 is configured such that air flowing in through the opening at the front of the storage space C is turned toward, and fed into, the first section A through the ventilation holes 20g in the side wall 20h, so that dust and other foreign particles are less likely to be drawn into the first section A. This is because if air is linearly drawn into the first section A, dust and other foreign particles inside the chassis 1 are more likely to be carried by the air, and this may cause damage to the fan 4 and the harmonic suppressing unit 27. Since there are obstacles, such as electric wires, on the side of the large gap S2, it is less likely that water or dust and other foreign particles will be directly drawn into the first section A. Since air is drawn in from the large gap S2 between the side wall 20h of the first section A and the side plate 20b of the housing 20, air is easily drawn in and this improves cooling efficiency. Note that the second section B is almost entirely surrounded by metal plates. Therefore, even when the fan 4 is internally driven, it is less likely that dust and other foreign particles will be drawn in.
Note that the housing 20 does not necessarily need to be configured as illustrated in the drawings and may have other shapes. While not shown in the drawings, the first section A may be disposed above the second section B, or may be disposed to the right or left of the second section B. The first section A and the second section B may be formed by two housings that are detached and individually disposed at a distance.
The second section B contains the noise filter 21, the AC-DC converter 22, the power supply circuit 23, the outdoor-unit control device 24, the compressor driving circuit 25, the air-sending-device driving circuit 26, and other components. Note that the noise filter 21, AC-DC converter 22, the power supply circuit 23, the outdoor-unit control device 24, and the air-sending-device driving circuit 26 are not shown in
The harmonic suppressing unit 27 produces up to about 100 W of heat during operation of the outdoor unit 100. To prevent overheating of the harmonic suppressing unit 27 from degrading the functions of other components, the outdoor unit 100 drives the fan 4 to blow air from inside the first section A to the outside through the ventilation holes 20g. The outdoor unit 100 is to be used in such a manner that the difference in temperature between the inside and outside of the first section A is less than about 50 degrees C. to 60 degrees C. In the outdoor unit 100, the electric and electronic components whose performance and product life are significantly affected by temperature rise are disposed in the second section B to be isolated from the harmonic suppressing unit 27.
As illustrated in
As illustrated in
By controlling the fan 4 on the basis of the detection value of the temperature detecting unit 28, the controller 2 may change (e.g., reverse) the direction of flow of air circulating between the outside and inside of the housing 20. If the ventilation holes 20g are obstructed, for example, with dust or ice, air inside the first section A may not be fully released to the outside by the fan 4 and may be heated to a high temperature. In the outdoor unit 100, therefore, the fan 4 is controlled to change the flow of air. The ventilation holes 20g obstructed with dust or ice are thus returned to the original state and a temperature rise in the first section A is reduced.
The outdoor unit 100 of the air-conditioning apparatus 300 according to Embodiment 1 includes the compressor 10, the outdoor heat exchanger 12, the outdoor air-sending device 17, and the controller 2. The controller 2 includes the compressor driving circuit 25 that drives the compressor 10, the harmonic suppressing unit 27 that suppresses harmonics in the compressor driving circuit 25, and the housing 20 that contains the compressor driving circuit 25 and the harmonic suppressing unit 27. The housing 20 has the first section A having the ventilation holes 20g that allow communication between the outside and the inside, and the second section B constituting a frame outside the first section A. The first section A contains the harmonic suppressing unit 27 and the fan 4 that blows air from inside the first section A to the outside. The second section B contains electric and electronic components whose performance and product life are significantly affected by temperature rise. In the outdoor unit 100 of the air-conditioning apparatus 300, the housing 20 containing electric and electronic components has the first section A and the second section B, and the electric and electronic components, such as the compressor driving circuit 25, whose performance and product life are significantly affected by temperature rise are disposed in the second section B. Since this enables isolation from the harmonic suppressing unit 27 disposed in the first section A, it is less likely that the performance and product life of the electric and electronic components constituting the controller 2 will be affected.
The first section A contains the temperature detecting unit 28 that detects a temperature inside the first section A. The controller 2 drives or stops the fan 4 on the basis of a determination as to whether the detection value of the temperature detecting unit 28 reaches the target value T. The outdoor unit 100 of the air-conditioning apparatus 300 according to Embodiment 1 drives the fan 4 only when, for example, the daytime outside temperature is high and the temperature of the harmonic suppressing unit 27 rises accordingly. This extends the product life of the fan 4 and improves the energy saving effect.
By controlling the fan 4 on the basis of the detection value of the temperature detecting unit 28, the controller 2 changes (e.g., reverses) the direction of flow of aft circulating between the outside and inside of the housing 20. In the outdoor unit 100 of the air-conditioning apparatus 300 according to Embodiment 1, therefore, if the ventilation holes 20g on the inlet side are obstructed, for example, with dust or ice, the direction of air flow is changed by controlling the fan 4. The ventilation holes 20g are thus returned to the original state and a temperature rise in the first section A is reduced.
In the housing 20, the first section A having the ventilation holes 20g is formed by metal plates. In the first section A, the conductive line 5 for supplying power to the harmonic suppressing unit 27 is disposed in contact with the side wall 20h having the ventilation holes 20g. In the outdoor unit 100 of the air-conditioning apparatus 300, therefore, heat conducted from the harmonic suppressing unit 27 reduces a decrease in the temperature of the side wall 20h having the ventilation holes 20g in wintertime, and prevents the ventilation holes 20g from being obstructed with ice. An excessive temperature rise in the first section A is reduced and this also effectively reduces a temperature rise inside the second section B.
The first section A contains the air-passage forming member 6 that makes the air passage gradually narrower with increasing distance from the ventilation holes 20g toward the harmonic suppressing unit 27. The outdoor unit 100 of the air-conditioning apparatus 300 thus increases the flow rate of air around the harmonic suppressing unit 27, and more effectively cools the harmonic suppressing unit 27 being heated.
The housing 20 includes the first sub-housing 20A forming the first section A, and the second sub-housing 20B forming the second section B. The second sub-housing 20B has the front plate 20a, the right and left side plates 20b and 20c and the back plate 20d longer in the height direction than the front plate 20a, the top plate 20e, and the partitioning member 20f disposed at the lower end of the front plate 20a and configured to separate the first section A and the second section B. The space surrounded by the front plate 20a, the right and left side plates 20b and 20c, the back plate 20d, the top plate 20e, and the partitioning member 20f is the second section B, whereas the space located under the second section B, surrounded by the right and left side plates 20b and 20c, the back plate 20d, and the partitioning member 20f, and open at the front thereof is the storage space C. The first sub-housing 20A is disposed in the storage space C. With this simple structure, the outdoor unit 100 of the air-conditioning apparatus 300 effectively isolates, from the harmonic suppressing unit 27, the electric and electronic components whose performance and product life are significantly affected by temperature rise.
The first sub-housing 20A is disposed closer to the side plate 20c of the right and left side plates 20b and 20c, with the ventilation holes 20g on the suction side facing the other side plate 20b. The outdoor unit 100 of the air-conditioning apparatus 300 is configured such that air flowing in through the opening at the front of the storage space C is turned toward, and fed into, the first section A through the ventilation holes 20g in the side wall 20h. This makes it less likely that dust and other foreign particles will be drawn into the first section A.
The outdoor unit 100 of the air-conditioning apparatus 300 according to Embodiment 2 of the present invention will now be described on the basis of
The controller 2 of Embodiment 2 is characterized in that a transformer 7 is mounted on an upper surface of the housing 20. The configuration of this outdoor unit 100 of the air-conditioning apparatus 300 is effective when the transformer 7 cannot be installed inside the housing 20 due to, for example, power supply conditions at the location of installation.
In the block diagram of
For example, two transformers 7 are vertically stacked and housed inside a waterproofed casing 8. The casing 8 is secured to a securing member 9 on the upper surface of the housing 20. The securing member 9 is formed, for example, by a steel plate and joined to the casing 8 with joining members, such as bolts. The outdoor unit 100 thus reliably stabilizes the transformer 7 installed therein and protects the transformer 7 from exposure to rain and snow. The securing member 9 is not limited to that illustrated herein, and may have any configuration that enables the casing 8 to be secured to the housing 20.
As illustrated in
Although the present invention has been described on the basis of Embodiments 1 and 2, the present invention is not limited to the configurations of Embodiments 1 and 2. For example, the outdoor unit 100 is not limited to that described above and may include other constituent elements. That is, the present invention includes a range of design changes and variations of application typically carried out by those skilled in the art, without departing from the scope of the technical ideas thereof.
1 chassis, 1a bottom plate, 1b frame member, 1c air inlet, 1d air outlet, 1e side panel, 2 controller, 3 AC power supply, 4 fan, 5 conductive line, 6 air-passage forming member, 7 transformer, 8 casing, 9 securing member, 10 compressor, 11 flow switching unit, 12 outdoor heat exchanger, 13 expansion mechanism, 14 indoor heat exchanger, 15 accumulator, 16 refrigerant pipe, 17 outdoor air-sending device, 20 housing, 20A first sub-housing, 20B second sub-housing, 20a front plate, 20b, 20c side plate, 20d back plate, 20e top plate, 20f partitioning member, 20g ventilation hole, 20h, 20i side wall, 21 noise filter, 22 AC-DC converter, 23 power supply circuit, 24 outdoor-unit control device, 25 compressor driving circuit, 25a compressor inverter, 25b IPM driving circuit, 26 air-sending-device driving circuit, 26a air-sending-device inverter, 26b IPM driving circuit, 27 harmonic suppressing unit, 28 temperature detecting unit, 100 outdoor unit, 200 indoor unit, 300 air-conditioning apparatus, A first section, B second section
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/042416 | 11/16/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/100273 | 5/22/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3689203 | Vaughn | Sep 1972 | A |
4266406 | Ellis | May 1981 | A |
5764011 | Nakae | Jun 1998 | A |
10594239 | Li | Mar 2020 | B2 |
20150214863 | Sumi | Jul 2015 | A1 |
20160087547 | Yamada | Mar 2016 | A1 |
20160201973 | Lokhande | Jul 2016 | A1 |
20170124716 | Wang | May 2017 | A1 |
20170214354 | Yamakawa | Jul 2017 | A1 |
20180187905 | Doi | Jul 2018 | A1 |
20210055007 | Yaji | Feb 2021 | A1 |
20210305879 | Nishimori | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
1684023 | Jul 2006 | EP |
2006-317099 | Nov 2006 | JP |
2017-090447 | May 2017 | JP |
2017-101886 | Jun 2017 | JP |
2013001829 | Jan 2013 | WO |
Entry |
---|
Office Action dated Oct. 5, 2021, issued in corresponding JP Patent Application No. 2020-556546 (and English Machine Translation). |
Extended European Search Report dated Oct. 22, 2021, issued in corresponding European Patent Application No. 18940237.3. |
International Search Report dated Dec. 11, 2018, issued in corresponding International Application No. PCT/JP2018/042416. |
Number | Date | Country | |
---|---|---|---|
20220034524 A1 | Feb 2022 | US |