Outer casing for a recessed lighting fixture

Information

  • Patent Grant
  • 11118768
  • Patent Number
    11,118,768
  • Date Filed
    Monday, February 3, 2020
    4 years ago
  • Date Issued
    Tuesday, September 14, 2021
    2 years ago
Abstract
The recessed lighting fixture includes a light source module and a driver housed within a unified casting, and within a shared outer casing. The outer casing may be coupled to a hangar holder that is movably coupled to a corresponding hangar bar. The outer casing, including the light source module and driver installed therein, may move both 1) in the length direction of the hangar bar and 2) perpendicular to the length direction of the hangar bar. The recessed lighting fixture may have less bulk and size than traditional recessed lighting fixtures. Other embodiments are also described and claimed.
Description
FIELD

An embodiment of the invention relates to an outer casing for a recessed lighting fixture that houses a unified light source module and driver, and that is directly attached to a set of hangar bars without the use of a horizontally oriented frame. Other embodiments are also described.


BACKGROUND

Recessed lighting fixtures are typically installed or mounted into an opening in a ceiling or a wall. Modern recessed lighting fixtures generally consist of a trim, a light source module, a driver circuit, a legacy incandescent “can” in which the light source module and driver circuit are housed, a junction box, and a set of hangar bars to which a horizontally oriented frame or platform is directly attached. The can and junction box are attached to the horizontally oriented platform. The combination of the can and junction box attached to the horizontal platform is bulky and expensive to manufacture. Moreover, the can and the junction box once attached to the platform cannot be adjusted vertically or horizontally.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment of the invention in this disclosure are not necessarily to the same embodiment, and they mean at least one. Also, in the interest of conciseness and reducing the total number of figures, a given figure may be used to illustrate the features of more than one embodiment of the invention, and not all elements in the figure may be required for a given embodiment.



FIG. 1 shows a front cross-section view of an outer casing, with a unified casting positioned inside the outer casing, coupled to hangar bars according to one embodiment.



FIG. 2 shows a side cross-section view of the embodiment of FIG. 1.



FIG. 3 shows a top view of the embodiment of FIG. 1.



FIG. 4 shows an overhead perspective view of an outer casing, hangar holders, and a ring according to one embodiment.



FIG. 5 shows an underneath perspective view of the embodiment of FIG. 4 with the ring inserted into the cavity of the outer casing.



FIG. 6 shows a side cross-section view of an outer casing with hangar holders and a ring according to one embodiment.



FIG. 7 shows a top view of the embodiment of FIG. 6.



FIG. 8 shows a side cross section view of an outer casing, unified casting, trim, and two friction clips according to one embodiment.





DETAILED DESCRIPTION

Several embodiments are described with reference to the appended drawings. While numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known circuits, structures, and techniques have not been shown in detail so as not to obscure the understanding of this description.



FIG. 1 shows a cross-section view of a recessed lighting fixture or system 1 installed so that the exposed edge of the ceiling or wall 2, where a hole is formed, is covered. The recessed lighting fixture 1 may include an outer casing 3, a unified casting 4, a trim 5, a set of hangar bars 6, and a set of hangar holders 7 (shown in a side view in FIG. 2 and also in FIG. 4). The unified casting 4 may house both a light source module 8 (e.g. a module of several LED elements) and a driver 9 in a single compact unit. The trim 5 serves the primary purpose of covering the exposed edge of the ceiling or wall where a hole is formed in which the recessed lighting fixture 1 resides while still allowing light from a light source module 8 to be emitted into a room through an aperture 23 of the trim 5 to illuminate the room. In doing so, the trim 5 helps the recessed lighting fixture 1 appear seamlessly integrated into the ceiling or wall. The trim 5 may be attached to the outer casing 3 also to hide at least the periphery at the bottom edge of the outer casing 3 from view. This can be seen in FIG. 1 where a flange 28 extends outward from a trim base 24 so as to hide from view (below the light fixture) the bottom edge of the casing 3. As will be described in further detail below, the recessed lighting fixture 1 provides a more compact and cost effective design that also allows the outer casing 3 to be moved so that its position relative to the hangar bars 6 can be adjusted, while complying with various building and safety codes/regulations. Each of the elements of the recessed lighting fixture 1 will be explained by way of example below.


Instead of using a junction box that is mounted along with a can to a horizontal platform (which is in turn attached to a joist or other structural member behind the ceiling or wall 2), as is already known in the art, the outer casing 3 may be used in such a way that obviates the need for a separate junction box and that also eliminates the horizontal platform. As seen FIG. 2 and in FIG. 3, the outer casing 3, and in particular its sidewall 13, is directly attached to a hangar bar 6 via a hangar holder 7. The hangar bar 6 is in turn attached directly to a joist, beam, or other structural member behind the ceiling or wall 2 at a mounting block 31a, 31b, so that the aperture 23 of the trim 5 will be aligned with and covers the hole in the wall 2. The outer casing 3 may serve as both a protective barrier between wall insulation materials and wiring junctions inside its cavity, and as a luminaire enclosure. As shown in FIG. 1, the outer casing 3 is a structure that separates the inner components of the recessed lighting fixture 1, i.e., those that are located inside the outer casing 3, including electrical wires/cables 11, 12 and connectors 22 that electrically connect a driver 9 in the unified casting 4 to an external power source 10, from items such as thermal/heat insulation materials and the power source 10 that are outside of the outer casing 3 and inside a ceiling or crawl space in which the outer casing has been installed. In one embodiment, the outer casing 3 may accommodate a wall thickness 18 of the ceiling or wall 2 of ½ inch to 2½ inches. The outer casing 3 may have a fire rating of up to two hours without any need for modification, where the fire rating is described in the National Electrical Code (NEC) and by the Underwriters Laboratories (UL) such as specified in UL 263. The outer casing 3 may receive electrical wires 11 into its cavity from the power source 10, such as an electrical power distribution system (e.g., 120 VAC or 277 VAC) within a building or structure in which the recessed lighting fixture 1 is installed. There may be one or more wire connectors 22 inside the outer casing 3 that join one or more wires 11 which carry 120/277 VAC power and that extend into the casing, to deliver 120/277 VAC power from a circuit breaker or wall switch to the driver 9. The electrical wires 11 from the power source 10 may thus be connected inside the outer casing 3 to corresponding wires 12 of the driver 9 which is inside the unified casting 4, as will be described in greater detail below.


As shown in FIG. 4, the outer casing 3 may have a side wall 13 that extends from and is joined at its upper edge (or upper end) to a closed base end 14, which together define a cavity 15 therein (see FIG. 1 and FIG. 5). The side wall 13 may surround the cavity 15, with its lower edge (or lower end) defining the perimeter of an opening through which various components can be placed inside the cavity 15, including for example, a ring 21, the unified casting 4, and the trim 5, as shown in FIG. 4, FIG. 5, and in FIG. 1. In one embodiment, as shown in FIG. 5, the lower edge (lower end) of the sidewall 13 is devoid of any tabs that extend inward (towards a center vertical axis that is shown as a dotted line). While the side wall 13 is depicted in the relevant figures here as being cylindrical, in other embodiments the side wall 13 of the outer casing 3 have any suitable shape, including a polyhedron, ellipsoid, frusto-conical, or otherwise curved. The cavity 15 that is formed in the outer casing 3 is larger than the outside dimensions of the unified casting 4 such that the entirety of the unified casting 4 fits into the cavity 15—see the front and side views in FIG. 1 and FIG. 2. The unified casting 4 may or may not come into direct contact with the side wall 13 of the outer casing 3. The outer casing 3 is less than 5 inches in height between its base end and the other end of its sidewall.


As seen in FIG. 4, the outer casing 3 may have on its base end 14 one or more knockouts 16 as shown. The knockouts 16 may be punched through and removed to leave an opening behind on the base end 14, for electrical wires 11 or 12 to be inserted through the opening (which wires serve to deliver power to the driver 9). As shown in the top view of FIG. 3, one or more knockouts 16 may also have smaller openings 17 in them (e.g., a slit, slot, etc., that is smaller than the opening that results when the knockout 16 has been removed from the base end 14) that may allow the electrical wires 11 or 12 to be inserted through without the need to punch through the knockouts 16. The knockout 16 may be more than ½ inch in diameter. In one embodiment, one or more of the knockouts 16 allow for the installation therethrough of a non-metallic sheathed cable (as the wires 11). As shown in FIG. 4, one or more of the knockouts 16 may also be positioned on the side wall 13 of the outer casing 3.


In one embodiment, as shown in FIG. 1, the electrical wires 11 received by the outer casing 3 from a power source 10 (e.g. the electrical system of a building or structure) may be connected to the electrical wires 12 of the unified casting 4. As shown, the electrical wires 11 and 12 are connected together through the use of connectors 22 that may be contained within the outer casing 3 (together with the unified casting 4). The term “connector” here is used broadly to not just interlocking or mating connector pairs but also cover wire terminal blocks and wire caps or other devices. In one embodiment, the connectors 22 may be kept outside the outer casing 3 (while the unified casting 4 is retained inside) if the wires 12 are long enough to reach outside of the casing 3. The electrical wires 12 of the unified casting 4 may terminate in a connection with the driver 9 installed within the unified casting 4. When the wires 11 and 12 are connected to each other, electricity may pass from the power source 10 to the driver 9 to enable the driver 9 to power the light source module 8. In one embodiment, the driver 8 has three or more current carrying electrical wires 12.


As seen in FIG. 5, the outer casing 3 may have within its cavity 15 a ring 21. The ring 21 maybe shaped as a circle (shown), a polygon, or an ellipsoid, where it conforms to the sidewall 13 of outer casing 3. The ring 21 may be inserted into the cavity 15 of the outer casing 3 through the open end of the side wall 13, and then secured to the inner surface of the side wall 13 of the outer casing 3 as seen in FIG. 6. Once the ring 21 has been secured, the unified casting 4 may be inserted into the cavity 21 (through the same open end of the side wall 13) and then attached to the ring 21 so as to secure the unified casting 4 to the outer casing 3 and prevent the unified casting 4 from falling out of the outer casing. The ring 21 has one or more tabs 18 formed as a flat segment of the ring, each having an opening 19 that passes through the ring 21 (from one face to the other face)—see FIG. 4 and FIG. 6. These are used for coupling (fastening) the outer casing 3 to the unified casting 4—see FIG. 1. In the embodiment of FIG. 4, there are two tabs 18 located diametrically opposite each other (along the circumference of the ring). When the ring 21 is fitted inside the casing 3 (as seen in FIG. 5), each tab 18 may extend inward from and is perpendicular to an inner surface of the side wall 13 of the outer casing 3. Each tab 18 and its opening 19 serves to receive a fastener 20, so as to firmly hold the weight of the unified casting 4 including the light source module 8 and the driver 9 contained in the unified casting 4. The fastener 20 may be a screw, bolt, pin, or the like. In other embodiments, the tabs 18 may incorporate other types of fastening mechanisms (to fasten the unified casting 4 to the outer casing 3), such as a twist-and-lock friction connection that does not require the use of separate tools or other devices. The ring 21 should be affixed inside the cavity so that its tabs 18 may be further recessed inside the cavity 15, towards the base end 14, so that the unified casting 4 and trim 5 may also be further recessed inside the outer casing 3.


In another embodiment, the tab 18 is formed as a portion of the sidewall 13 that has bee bent inward, without the need for a ring 21. In this embodiment, the ring 21 is not necessary, as long as the unified casting 4 can otherwise be secured to the outer casing 3 via the table 18, so as to be prevented from falling out of the outer casing 3.


In other embodiments, as shown in FIG. 8, the unified casting 4 may be held inside the outer casing 3, without being directly fastened to any tabs 18. Friction clips 36 (or tension clips) may be utilized to retain the unified casting 4 inside the outer casing 3. Each friction clip 36 may be attached via a screw 39 (or other fastening mechanism such as a bolt, resin, glue, or the like) to a trim base 24 of the trim 5, or directly to the unified casting 4. The friction clip 36 may be flexible and resilient. The friction clip 36 may be a piece of metal that has a straight portion 37 extending from the screw 39 and is then bent backward to form a bent portion 38. The bent portion 38 of the friction clip 36 may directly contact the inner surface of the side wall 13 of the outer casing 3, as shown, preventing the unified casting 4 and the trim 5 from falling out of the outer casing 3.


The unified casting 4 is a shell and/or enclosure that further prevents the exposure of heat from the light source module 8 and the driver 9 to the items inside a ceiling or crawl space (e.g., insulation) in which the recessed lighting fixture 1 has been installed. The unified casting 4 may be formed of metals, polymers, metal alloys, and/or other heat insulating materials. As shown in FIG. 1, the unified casting 4 may be a cylindrical structure; however, in other embodiments, the unified casting 4 may be any suitable shape, including an ellipsoid, cone, or polyhedron that is capable of housing the light source module 8 and the driver 9.


In one embodiment, the unified casting 4 includes one or more heat sinks to dissipate heat generated by the light source module 8 and/or the driver 9. Although the heat sinks are shown as fins (in FIG. 2 and FIG. 8) which are passive components (formed on the outer surface of the end wall and/or the side wall of the unified casting 4) that cool the combined unified casting 4, light source module 8, and driver 9, by dissipating heat into the surrounding air, active heat sinks (e.g., fans) may also be used. In one embodiment, the heat sinks are defined by a set of fins surrounding the unified casting 4, which are formed in the same casting (manufacturing) process that results in the unified casting 4 being formed. The heat sinks may be composed of any thermally conductive material. For example, the heat sinks may be made of aluminium alloys, copper, copper-tungsten pseudoalloy, AlSiC (silicon carbide in aluminium matrix), Dymalloy (diamond in copper-silver alloy matrix), E-Material (beryllium oxide in beryllium matrix), and/or thermally conductive plastics or ceramics.


Still referring to FIG. 8, the recessed lighting fixture 1 may include the driver 9 contained within the unified casting 4. The driver 9 is an electronic circuit or device that supplies and/or regulates electrical energy to the light source module 8 and thus powers the light source module 8 to emit light. The light source module 8 and the driver 9 may be coupled to the end wall of the unified casting 4 as shown in FIG. 8, using any suitable connecting mechanism, including screws, resins, clips, or clamps. The driver 9 may be any type of electrical power supply, including power supplies that deliver an alternating current (AC) or a direct current (DC) voltage to the light source module 8. Upon receiving electricity through the wires 12, the driver 9 may regulate current or voltage to supply a stable voltage or current within the operating parameters of the light source module 8. The driver 9 receives an input current from the power source 10 and may drop the voltage of the input current to an acceptable level for the light source module 8 (e.g., from 120V-277V to 36V-48V). The driver 9 may transfer electrical power to the light source module 8 through an electrical connector (not shown). For example, the driver 9 may deliver electricity to the light source module 8 through an electrical cable (not shown) coupled between the light source module 8 and the driver 9 through removable or permanent connectors or soldered leads originating from the driver 9. The driver 8 may include a magnetic transformer or additional or alternative circuitry for voltage conversion and for regulating the input current or voltage to the light source module 8.


The light source module 8 may be any electro-optical device or combination of devices for emitting light. For example, the light source module 8 may have a single type of light emitting element, as a light emitting diode (LED), organic light-emitting diode (OLED), or polymer light-emitting diode (PLED). In some embodiments, the light source module 8 may have multiple light emitting elements (e.g., LEDs, OLEDs, and/or PLEDs). The light source module 8 receives electricity from the driver 9, as described above, such that the light source module 8 may emit a controlled beam of light into a room or surrounding area. The driver 9 is designed to ensure that the appropriate voltage and current are fed to the light source module 8 to enable the emission of light by the one or more light sources within the light source module 8.


In some embodiments, the recessed lighting fixture 1 may include a reflector 34 contained in the unified casting 4, as shown in FIG. 8. The reflector 34 may surround the entire light source module 8 as shown, or it may surround just a light emitting element of the light source module 8, to adjust the way light emitted by the light source module 8 is directed into a room or surrounding area. In one embodiment, the reflector 34 surrounds the entirety of the light source module 8 and also separates the light source module 8 from the driver 9. This separation allows light from the light source module 8 to be emitted into a room or surrounding area, while shielding the driver 9 from being exposed to the room or surrounding area. For example, in one embodiment, the reflector 34 and the unified casting 4 may together create a sealed structure to shield the driver 9 from the outside environment and the light source module 8. By shielding the driver 9 from the outside environment, the reflector 34 might reduce the risk of fire or other dangers and may help ensure the recessed lighting fixture 1 complies with building and safety codes/regulations. The reflector 34 may be formed of any fire retardant material, including steel, aluminum, metal alloys, calcium silicate, and other similar materials.


The reflector 34 may be formed in any shape that may direct and/or focus light. For example, the reflector 34 may be parabolic or spherical. In one embodiment, the front surface of the reflector 34 may be coated with a reflecting material or include one or more reflecting elements that assists in the adjustment of light emitted by the light source module 8. For example, the reflector 34 may be coated with a shiny enamel or include one or more mirrors or retroreflectors or a microcellular polyethylene terephthalate (MCPET) material to adjust the focus of light emitted by the light module 8. In other embodiments, the reflector 34 may include various other optic elements to assist in the focusing of light emitted by the light source module 8.


Still referring to FIG. 8, in one embodiment, the recessed lighting fixture 1 may include a lens 35. The lens 35 may be formed to converge or diverge light emitted by the light source module 8. The lens 35 may be a simple lens 35 comprised of a single optical element or a compound lens 35 comprised of an array of simple lenses 35 (elements) with a common axis. In one embodiment, the lens 35 also provides a protective barrier for the light source module 8 and shields the light source module 8 from moisture or inclement weather. The lens 35 may also assist in the diffusion of light and increase the uniformity of light over the surface of the recessed lighting fixture 1. The lens 35 may be made of any at least partially transparent material, including glass and hard plastics. In one embodiment, the lens 35 and the reflector 34 are contained in a single indivisible unit of the unified casting 4, to work in conjunction to focus and adjust light emitted by the light source module 8. In one embodiment, the reflector and the lens are housed together with the driver and the light source module in the unified casting 4 as a single, indivisible unit. In other embodiments, the lens 35 and the reflector 34 may be separate, divisible elements.


Still referring to FIG. 8, in one embodiment, the recessed lighting fixture 1 may include a trim 5. The trim 5 may be attached directly to the unified casting 4 as well as to the outer casing 3 as shown, while in other embodiments the trim 5 is to only be attached to the outer casing 3 (where in that case the unified casting 4 is separately attached to the casing 3, as in FIG. 1 for example). The trim 5 may be attached to the unified casting 4 and/or the outer casing 3 using any suitable connecting mechanism, including resins, clips, screws, bolts, or clamps. In one embodiment, the trim 5 may include grooves and/or slots that are designed to engage with corresponding bumps or tabs of the unified casting 4 and/or the outer casing 3 to form a rotate and lock (or friction lock) connection which prevents axial separation (in FIG. 8, in the vertical or longitudinal direction) of the trim 5 and the outer casing 4, and without the use of separate tools or other devices.


In one embodiment, the entire height 21 of the trim 5, which may or may not be attached to the casting 4, may be inserted into the cavity 15 of the outer casing 3. This is where the unified casting 4 is positioned further (deeper) into the outer casing 3 so that glare from the emitted light is reduced. As seen in FIG. 1 and FIG. 2, for example, the trim 5 may have a trim base 24 (an annular segment) having a height 21, with an inner circumferential surface 25 that is open to the central, light passing aperture 23 and an outer circumferential surface 26 that is closer to the side wall 13 of the outer casing 3. The trim base 24 may have a top surface 27 that extends, in a lateral or horizontal direction, from the inner surface 25 to the outer surface 26 and may be in contact with the lower most surface of the unified casing 4. The height 21 of the trim base 24 may be increased so as to position the lens 35 further into the outer casing 3. It is preferred that the height 21 of the trim base 24 is less than. The trim 5 may have a flange 28 that extends laterally outward from the base 24, with a top surface 29 and a bottom surface 30 as shown. In one embodiment, referring now back to FIG. 1, the trim base 24 may be shaped and sized such that the outer surface 26 thereof conforms to an inner surface of the side wall 13 of the outer casing 3 so that the trim 5 and the outer casing 3 are in direct contact. In one embodiment, the trim 5 may be fitted tightly to the side wall 13 of the outer casing 3 (friction fit) so that the trim 5 does not fall out of the outer casing 3 (when the trim 5 is not also separately attached to the unified casting 4). In another embodiment, the outer surface 26 of the trim base 24 of the trim 5 may be attached to the inner surface of the side wall 13 of the outer casing 3 through any connecting mechanism. The trim 5 may be pushed into the outer casing 3 so that the bottom end or edge of the side wall 13 of the outer casing 3 comes into direct contact with the top surface 29 of the flange 28 of the trim 5, for a tight, snug fit as shown in FIGS. 1 and 2. However, it is not necessary for the end of the side wall 13 of the outer casing 3 to directly contact the top surface 29 of the flange 28 of the trim 5. In yet another embodiment, the outer surface 26 of the trim base 24 need not contact the inner surface of the side wall 13 of the outer casing 3 (e.g., when friction clips 36 are used as shown in FIG. 8).


In one embodiment, different diameter trims 5 may be capable of being coupled to the same unified casting 4 and/or the same outer casing 3, where the diameter is measured at the periphery of the flange 28. The size and design of the trims 5 may depend on the size of the hole the wall 2 in which the recessed lighting fixture 1 has been fitted to conceal the exposed wall or ceiling edge that defines the hole. The recessed lighting system 1 may include two or more trims 5 of different sizes to cover ceiling or wall openings of different sizes. The trim 5 may need to meet the aesthetic demands of the consumer. The trim 5 may be made of aluminum plastic polymers, alloys, copper, copper-tungsten pseudoalloy, AlSiC (silicon carbide in aluminum matrix), Dymalloy (diamond in copper-silver alloy matrix), and E-Material (beryllium oxide in beryllium matrix).


In one embodiment, the recessed lighting fixture 1 may include a set of hangar bars 6 as shown in FIG. 1. The hangar bars 6 may be rigid, elongated members that are connected to adjacent joists and/or beams in the walls or ceilings of a structure. In one embodiment, each of the hangar bars 6 may be telescoping such that each hangar bar 6 may be extended or retracted to meet the gap between the joists and/or beams. In one embodiment, each of the hangar bars 6 may include a set of mounting blocks 31. The mounting blocks 31 may be used to directly attach the hangar bars 6 to the joists and/or beams in the walls or ceilings of a structure. For example, as shown in FIG. 1, the mounting blocks 31 may include holes for receiving screws and/or nails or other fasteners that enable the hangar bars 6 to be securely attached to a building structure. Although shown in FIG. 1 and described above in relation to holes and screws, in other embodiments, other mechanisms of attachment may be used in conjunction with the mounting blocks 31, including resins, clips, or clamps to attached the bars 6 to the building structure. In one embodiment, the mounting blocks 31 may be integrated in one indivisible structure along with the hangar bars 6, while in other embodiments, as shown in FIG. 1, the mounting blocks 31 may be coupled to the hangar bars 6 through the use of one or more attachment mechanisms (e.g., screws, bolts, resins, clips, or clamps). Using the above telescoping and mounting features, the recessed lighting fixture 1 may be installed in almost all the 2″×2″ through 2″×18″ wood joist constructions, metal stud constructions, and t-bar ceiling constructions.


In one embodiment, referring back to FIG. 3, the recessed lighting fixture 1 may have a mounting mechanism that includes a set of hangar holders 7 (two are shown) that couple the outer casing 3 to the hangar bars 6, respectively. The hangar holder 7 may be a plate that is configured to slide substantially horizontally or otherwise move along the length of a corresponding hangar bar 6 that has a fixed length. Alternatively, the hangar holder 7 may be fixed to a telescoping section of the hangar bar (having a variable length).



FIG. 4 shows a perspective view of the hangar holder 7 according to one embodiment. The hangar holder 7 has an attachment mechanism 32 for coupling with the outer casing 3, so that the outer casing 3 can be coupled to a hangar bar 6, as seen in FIG. 6. The attachment mechanism 32 may be a pin attached to and extending inward from the inner face of the plate of hangar holder 7. The attachment mechanism 32 may be inserted into an elongated opening 33 (e.g. slot, slit, etc.) in the side wall 13 of the outer casing 3. The hangar holder 7 may also include a tab 40 located near the attachment mechanism 32 that is inserted into the opening 33. The opening 33 may be vertically or substantially vertically oriented (parallel to the direction of the wall thickness 18, or perpendicular to the longitudinal axis of the hangar bar 6—see FIG. 1) so that when the outer casing 3 is coupled to the hangar holder 7, the outer casing 3 may be moved up or down as desired (while restricted in the sideways or lateral direction due to the attachment mechanism 32 being captured within the elongated opening 33). The outer casing 3 may be moved along the length of the elongated opening 33 before being locked in a particular position. It is preferred that the elevation of the casing 3 behind the ceiling or wall 2 be adjusted in this manner so that the flange 28 of the trim 5 is flush with the ceiling or wall 2 as seen in FIG. 1


In another embodiment, the attachment mechanism 32 may be a screw that couples the hangar holder 7 to the outer casing 3. When the screw is inserted into the opening 33 of the outer casing 3 and turned, the outer casing 3 may move up or down relative to the hangar bar 6 depending on the direction the screw is turned. Accordingly, the outer casing 3, along with the light source module 8 and the driver 9, may be moved and adjusted so that the flange 28 is flush or sufficiently close to the ceiling or wall during installation. In yet another embodiment, the location of the attachment mechanism 32 and the elongated opening 33 are reversed, so that the opening 33 is formed in the hangar holder 7 rather than in the side wall 13 of the outer casing 3, and the attachment mechanism 32 is affixed to and extending outward from the outside surface of the sidewall 13 of the casing 3.


By being moveably coupled to the hangar holders 7, the outer casing 3, along with the light source module 8 and the driver 9 therein, may be moved in a length direction of the hangar bars 6 to a desired location. The outer casing 3 may also be moved substantially vertically relative to the hangar bars 6. For example, the outer casing 3 may be adjusted vertically more than one inch upwards and one inch downwards. The hangar holders 7 may then be fixed to the hangar bars 6 so that they no longer move substantially horizontally or vertically relative to the hangar bars 6.


As described above, the combination of a hangar bar 6 and a hangar holder 7 allows the outer casing 3 to be moved in a direction parallel to a longitudinal axis of the hangar bar 6, as well as in a direction not parallel (e.g., perpendicular) to the hangar bar 6. Accordingly, the outer casing 3 may be moved to a preferred location between a set of joists or beams in a structure and at a desired height before the being locked into position using the attachment mechanism 32. The unified casting 4 is then positioned inside the outer casing 3, by being inserted into the cavity 15 through the opening defined by the lower end, edge or periphery of the side wall 13. By being configured such that the outer casing 3, along with the light source module 8 and the driver 9 therein, is coupled to a unified set of moveable elements that assist in positioning the combined structure, the recessed lighting fixture 1 eliminates the added bulk and size of traditional recessed lighting fixtures. In particular, the recessed lighting fixture 1 allows adjustment of the position of the light source module 8 between joists or beams, without the need for both a compartment or can that is dedicated to housing the light source module 8 and a separate compartment that is dedicated to housing the driver 9. Instead, the light source module 8 may be housed along with the driver 9 in the same cavity 15 of the outer casing 3, where the latter itself can be directly moved to a desired position. This compact design provides an affordable design by cutting the cost of raw materials and other components and reduces shipping costs by reducing bulk. Also, by having the driver 9 and the light source module 8 placed in the same cavity of the outer casing 3, serviceability and replacement of the driver 9 will be easier to perform and more convenient. In contrast, traditional housings have the driver 9 mounted on the outer casing 3 and contractors are forced to spend a significant amount of time removing parts to gain access to the outer casing 3 and the driver 9.


While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. The description is thus to be regarded as illustrative instead of limiting.

Claims
  • 1. An apparatus, comprising: an outer casing having a cavity to contain a light source module and a driver for the light source module, the outer casing comprising: a base end whose largest extension defines a base end plane;a sidewall joined to the base end and extending perpendicular to the base end plane such that the sidewall and the base end together define the cavity; anda ring, disposed within the cavity and coupled to the sidewall of the outer casing, to couple at least the light source module, when present in the lighting fixture, to the outer casing,wherein:at least a portion of an exterior of the sidewall has a substantially cylindrical shape;the exterior of the sidewall comprises two diametrically opposed flat portions that start at and extend from the base end; andat least one flat portion of the two diametrically opposed flat portions includes at least one knockout.
  • 2. A lighting fixture, comprising: the apparatus of claim 1; andthe light source module and the driver disposed in the cavity of the outer casing wherein, during operation, the light source module emits light and the driver regulates electrical energy to the light source module.
  • 3. The lighting fixture of claim 2, wherein: at least the light source module is contained in a housing disposed in the cavity of the outer casing;the housing includes a first opening;the ring includes a tab having a second opening that aligns with the first opening of the housing; andthe lighting fixture further comprises: a fastener, inserted through the first opening of the housing and the second opening of the ring, to couple the housing to the ring.
  • 4. The lighting fixture of claim 2, wherein: at least the light source module is contained in a housing disposed in the cavity of the outer casing;the sidewall of the outer casing has an edge defining an opening into the cavity of the outer casing; andthe lighting fixture further comprises: a trim, coupled to at least one of the housing or the outer casing, to cover the edge of the sidewall of the outer casing.
  • 5. The lighting fixture of claim 2, wherein: at least the light source module is contained in a housing disposed in the cavity of the outer casing;the outer casing includes at least one knockout; andthe outer casing serves as a junction box to contain both of the housing and a non-metallic sheathed cable inserted through an opening formed on the outer casing by the removal of the at least one knockout in the outer casing, the non-metallic sheathed cable being coupled to an external power distribution system to supply at least one of 120 VAC or 277 VAC power to the driver disposed in the cavity of the outer casing.
  • 6. The apparatus of claim 1, wherein the outer casing further comprises: a first knockout disposed on the base end; anda second knockout disposed on the base end having a different size than the first knockout.
  • 7. The apparatus of claim 1, wherein: the sidewall of the outer casing has an edge defining an opening into the cavity of the outer casing; andthe outer casing has an outside height, defined between the base end and the edge of the sidewall, that is less than 5 inches.
  • 8. An apparatus, comprising: the outer casing of claim 1;a first hangar bar assembly coupled to the outer casing, the first hangar bar assembly comprising: a first hangar holder coupled to the sidewall of the outer casing; anda first pair of telescopically slidable hangar bars slidably coupled to the first hangar holder; anda second hangar bar assembly coupled to the outer casing, the second hangar bar assembly comprising: a second hangar holder coupled to the sidewall of the outer casing; anda second pair of telescopically slidable hangar bars slidably coupled to the second hangar holder.
  • 9. An apparatus, comprising: an outer casing, comprising: a base end whose largest extension defines a base end plane;a sidewall joined to the base end and extending perpendicular to the base end plane such that the sidewall and the base end together define a cavity, the sidewall having an edge defining an opening into the cavity of the outer casing,wherein at least an inner portion of the sidewall, proximate to the edge defining the opening of the cavity, has a circular shape;a first hangar bar assembly coupled to the outer casing, the first hangar bar assembly comprising: a first hangar holder coupled to the sidewall of the outer casing; anda first pair of telescopically slidable hangar bars slidably coupled to the first hangar holder; anda second hangar bar assembly coupled to the outer casing, the second hangar bar assembly comprising: a second hangar holder coupled to the sidewall of the outer casing; anda second pair of telescopically slidable hangar bars slidably coupled to the second hangar holder,wherein:at least a portion of an exterior of the sidewall has a substantially cylindrical shape;the exterior of the sidewall comprises two diametrically opposed flat portions that start at and extend from the base end; andat least one flat portion of the two diametrically opposed flat portions includes at least one knockout.
  • 10. The apparatus of claim 9, wherein the outer casing further comprises: a first knockout disposed on the base end; anda second knockout disposed on the base end having a different size than the first knockout.
  • 11. The apparatus of claim 10, wherein: the outer casing has an outside height, defined between the base end and the edge of the sidewall, that is less than 5 inches.
  • 12. The apparatus of claim 9, wherein: the outer casing has an outside height, defined between the base end and the edge of the sidewall, that is less than 5 inches.
  • 13. A lighting fixture, comprising: the outer casing of claim 9;a light source module disposed in the cavity of the outer casing; anda driver, disposed in the cavity of the outer casing, to regulate electrical energy to the light source module.
  • 14. The lighting fixture of claim 13, further comprising: a ring, disposed in the cavity of the outer casing and coupled to the sidewall, to couple at least the light source module to the outer casing; anda trim, coupled to at least one of the light source module or the outer casing, to cover the edge of the sidewall of the outer casing.
  • 15. The lighting fixture of claim 13, further comprising: a trim, coupled to the light source module and coupled to the outer casing, to cover the edge of the sidewall of the outer casing,wherein the light source module does not physically contact the sidewall and the base end of the outer casing.
  • 16. The lighting fixture of claim 13, wherein the outer casing serves as a junction box to contain the light source module, the driver, and a non-metallic sheathed cable inserted through an opening formed on the outer casing by the removal of a knockout in the outer casing, the non-metallic sheathed cable being coupled to an external power distribution system to supply at least one of 120 VAC or 277 VAC power to the driver contained in the housing.
  • 17. An outer casing, comprising: a base end whose largest extension defines a base end plane;a sidewall coupled to the base end and extending perpendicular to the base end plane such that the sidewall and the base end together define a cavity, the sidewall comprising: a first flat portion of the sidewall abutting the base end; anda second flat portion of the sidewall abutting the base end and located diametrically opposite from the first flat portion, wherein:at least a portion of an exterior of the sidewall has a substantially cylindrical shape;the sidewall of the outer casing has an edge defining an opening into the cavity of the outer casing;the outer casing has an outside height, defined between the base end and the edge of the sidewall, that is greater than 2½ inches and less than 5 inches; andat least one of the first flat portion and the second flat portion includes at least one knockout.
  • 18. The outer casing of claim 17, further comprising: a first knockout on the first flat portion of the sidewall;a second knockout on the second flat portion of the sidewall; anda third knockout on the base end,wherein the first knockout, the second knockout, and the third knockout are substantially similar in shape and dimensions.
  • 19. The outer casing of claim 17, wherein the sidewall includes an interior curved portion defining a portion of the cavity.
  • 20. The outer casing of claim 19, wherein the interior curved portion of the sidewall is cylindrical in shape.
  • 21. An apparatus, comprising; the outer casing of claim 17;a first hangar bar assembly coupled to the outer casing, the first hangar bar assembly comprising a first pair of telescopically slidable hangar bars; anda second hangar bar assembly coupled to the outer casing, the second hangar bar assembly comprising a second pair of telescopically slidable hangar bars.
  • 22. An apparatus, comprising: the outer casing of claim 17; anda ring, disposed in the cavity of the outer casing and coupled to at least a portion of the sidewall, the ring having a substantially circular shape.
  • 23. A lighting fixture, comprising: the outer casing of claim 17;a housing, disposed in the cavity of the outer casing, the housing comprising a plurality of fins for cooling and containing a light source module to emit light; anda driver to regulate electrical energy to the light source module.
  • 24. The lighting fixture of claim 23, wherein the housing does not physically contact the sidewall and the base end of the outer casing.
  • 25. The lighting fixture of claim 23, further comprising: a trim, directly attached to the housing via one or more screws and coupled to the outer casing via one or more friction clips, to cover the edge of the sidewall of the outer casing.
  • 26. The lighting fixture of claim 25, wherein: the sidewall of the outer casing includes an interior curved portion defining a portion of the cavity; andthe one or more friction clips physically contacts the interior curved portion of the sidewall of the outer casing.
  • 27. The lighting fixture of claim 23, further comprising: electrical wires inserted through an opening on the sidewall of the outer casing and electrically coupled to an external power distribution system to supply at least one of 120 VAC or 277 VAC power to the driver.
  • 28. The lighting fixture of claim 23, further comprising: electrical wires, disposed in the cavity of the outer casing and electrically coupled to the driver, wherein the electrical wires comprise at least one interlocking connector.
  • 29. The outer casing of claim 17, further comprising: an attachment mechanism, inserted through an opening of the sidewall, to couple the outer casing to a mounting mechanism.
  • 30. An apparatus, comprising: the outer casing of claim 29; andthe mounting mechanism, wherein the mounting mechanism comprises: a hangar holder, coupled to the attachment mechanism, that is translationally movable with respect to the outer casing and not rotationally movable with respect to the outer casing.
  • 31. The apparatus of claim 30, further comprising: a first hangar bar slidably coupled to the mounting mechanism;a second hangar bar slidably coupled to the mounting mechanism and telescopically slidable with respect to the first hangar bar;a first mounting block coupled to the first hangar bar; anda second mounting block coupled to the second hangar bar,wherein the first mounting block and the second mounting block each include attachment features to couple to at least one of a wood joist or a t-bar.
  • 32. An apparatus, comprising: an outer casing comprising: a base end;a sidewall coupled to the base end such that the sidewall and the base end together define a cavity, the sidewall comprising an edge defining an opening into the cavity, an interior cylindrical portion of the sidewall defining a portion of the cavity, the sidewall comprising: a first flat portion of the sidewall abutting the base end; anda second flat portion of the sidewall abutting the base end and located diametrically opposite from the first plat portion of the sidewall;a first knockout on the first flat portion;a second knockout on the second flat portion; anda third knockout on the base end;a first hangar bar assembly directly coupled to the outer casing, the first hangar bar assembly comprising: a first hangar holder, coupled to the sidewall of the outer casing via a first attachment mechanism; anda first pair of telescopically slidable hangar bars slidably coupled to the first hangar holder, each hangar bar in the first pair of telescopically slidable hangar bars having a mounting block; anda second hangar bar assembly directly coupled to the outer casing, the second hangar bar assembly comprising: a second hangar holder, coupled to the sidewall of the outer casing via a second attachment mechanism; anda second pair of telescopically slidable hangar bars slidably coupled to the second hangar holder, each hangar bar in the second pair of telescopically slidable hangar bars having a mounting block;wherein: the outer casing has an outside height, defined between the base end and the edge of the sidewall, less than 5 inches;the first knockout, the second knockout, and the third knockout each have a diameter greater than 0.5 inches;the first hangar holder and the second hangar holder are each translationally movable with respect to the outer casing and not rotationally movable with respect to the outer casing;the first hangar holder is physically decoupled from the second hangar holder such that the translational movement of the first hangar holder with respect to the outer casing is independent of the translational movement of the second hangar holder with respect to the outer casing; andthe mounting block of each hangar bar in the first pair of telescopically slidable hangar bars and the second pair of telescopically slidable hangar bars has attachment features to couple to at least one of a wood joist or a t-bar.
  • 33. The apparatus of claim 32, wherein the outer casing, the first hangar holder of the first hangar bar assembly, and the second hangar holder of the second hangar bar assembly are arranged and shaped to be mirror symmetric about a plane that bisects the outer casing, the first hangar holder, and the second hangar holder.
  • 34. A lighting fixture, comprising: the apparatus of claim 32;a driver to regulate electrical energy to the light source module;a housing having a second sidewall with a plurality of fins for cooling;a light source module to emit light;a trim, directly attached to the housing via one or more screws and coupled to the outer casing via one or more friction clips, to cover the edge of the sidewall of the outer casing, the one or more friction clips physically contacts the interior cylindrical portion of the sidewall of the outer casing; andelectrical wires, inserted through a second opening on the sidewall of the outer casing formed by the removal of a knockout substantially similar to the first, second, and third knockouts and electrically coupled to an external power distribution system to supply at least one of 120 VAC or 277 VAC power to the driver.
  • 35. A lighting kit, comprising: an outer casing, comprising: a base end whose largest extension defines a base end plane;a sidewall coupled to the base end and extending perpendicular to the base end plane such that the sidewall and the base end together define a cavity, the sidewall comprising: a first flat portion of the sidewall abutting the base end; anda second flat portion of the sidewall abutting the base end and located diametrically opposite from the first flat portion,wherein: the sidewall of the outer casing has an edge defining an opening into the cavity of the outer casing; andthe outer casing has an outside height, defined between the base end and the edge of the sidewall, that is greater than 2½ inches and less than 5 inches;a first hangar bar assembly coupled to the outer casing, the first hangar bar assembly comprising: a first hangar holder coupled to the sidewall of the outer casing; anda first pair of telescopically slidable hangar bars slidably coupled to the first hangar holder;a second hangar bar assembly coupled to the outer casing, the second hangar bar assembly comprising: a second hangar holder coupled to the sidewall of the outer casing; anda second pair of telescopically slidable hangar bars slidably coupled to the second hangar holder;a light source module and a driver for placement in the cavity of the outer casing wherein, during operation, the light source module emits light and the driver regulates electrical energy to the light source module; anda trim for coupling to at least one of the outer casing and the light source module to cover the edge of the sidewall of the outer casing.
  • 36. The lighting kit of claim 35, wherein at least a portion of an exterior of the sidewall has a substantially cylindrical shape.
  • 37. The lighting kit of claim 35, wherein at least an inner portion of the sidewall, proximate to the edge defining the opening of the cavity, has a circular shape.
  • 38. The lighting kit of claim 35, wherein at least one of the first flat portion of the sidewall and the second flat portion of the sidewall includes at least one knockout.
  • 39. The lighting kit of claim 35, wherein the outer casing further comprises a plurality of knockouts disposed on the base end.
  • 40. The lighting kit of claim 35, wherein the outer casing further comprises a ring to couple at least the light source module to the outer casing.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. application Ser. No. 15/132,875, filed Apr. 19, 2016, entitled “OUTER CASING FOR A RECESSED LIGHTING FIXTURE,” which claims priority to U.S. Provisional Patent Application No. 62/151,308, filed Apr. 22, 2015, entitled “OUTER CASING FOR A RECESSED LIGHTING FIXTURE.” Each of the aforementioned applications is incorporated by reference herein in its entirety.

US Referenced Citations (700)
Number Name Date Kind
1133535 Cain et al. Mar 1915 A
1471340 Knight Oct 1923 A
1856356 Owen May 1932 A
2038784 Ghadiali Apr 1936 A
2179161 Rambusch Nov 1939 A
2197737 Appleton Apr 1940 A
2352913 Morrill Jul 1944 A
2528989 Ammells Nov 1950 A
2597595 Ordas May 1952 A
2642246 Larry Jun 1953 A
2670919 Vincent Mar 1954 A
2697535 Olson Dec 1954 A
2758810 Good Aug 1956 A
D180844 Poliakoff Aug 1957 S
2802933 Harry Aug 1957 A
2998512 Duchene et al. Aug 1961 A
3023920 Cook et al. Mar 1962 A
3057993 Gellert Oct 1962 A
3104087 Joseph et al. Sep 1963 A
3214126 Roos Oct 1965 A
3422261 McGinty Jan 1969 A
3460299 Wilson Aug 1969 A
3650046 Skinner Mar 1972 A
3675807 Lund et al. Jul 1972 A
3700885 Bobrick Oct 1972 A
3711053 Drake Jan 1973 A
D227989 Geisel Jul 1973 S
3773968 Copp Nov 1973 A
3812342 Mcnamara May 1974 A
3836766 Auerbach Sep 1974 A
3874035 Schuplin Apr 1975 A
3913773 Copp et al. Oct 1975 A
D245905 Taylor Sep 1977 S
4088827 Kohaut May 1978 A
4176758 Glick Dec 1979 A
4280169 Allen Jul 1981 A
4399497 Druffel Aug 1983 A
4450512 Kristofek May 1984 A
4460948 Malola Jul 1984 A
4520435 Baldwin May 1985 A
4539629 Poppenheimer Sep 1985 A
4601145 Wilcox Jul 1986 A
4667840 Lindsey May 1987 A
4723747 Karp et al. Feb 1988 A
4729080 Fremont et al. Mar 1988 A
4754377 Wenman Jun 1988 A
4770311 Wang Sep 1988 A
4880128 Jorgensen Nov 1989 A
4910651 Montanez Mar 1990 A
4919292 Hsu Apr 1990 A
4929187 Hudson et al. May 1990 A
4930054 Krebs May 1990 A
5044582 Walters Sep 1991 A
D326537 Gattari May 1992 S
5216203 Gower Jun 1993 A
5222800 Chan et al. Jun 1993 A
5239132 Bartow Aug 1993 A
5250269 Langer et al. Oct 1993 A
5266050 O'Neil et al. Nov 1993 A
5303894 Deschamps et al. Apr 1994 A
5382752 Reyhan et al. Jan 1995 A
5420376 Rajecki et al. May 1995 A
5465199 Bray et al. Nov 1995 A
5505419 Gabrius Apr 1996 A
5544870 Kelly et al. Aug 1996 A
5562343 Chan et al. Oct 1996 A
5571993 Jones et al. Nov 1996 A
5580158 Aubrey et al. Dec 1996 A
5588737 Kusmer Dec 1996 A
5603424 Bordwell et al. Feb 1997 A
5609408 Targetti Mar 1997 A
5613338 Esposito Mar 1997 A
D381111 Lecluze Jul 1997 S
5662413 Akiyama et al. Sep 1997 A
D386277 Lecluze Nov 1997 S
5690423 Hentz et al. Nov 1997 A
D387466 Lecluze Dec 1997 S
5738436 Cummings et al. Apr 1998 A
5836678 Wright et al. Nov 1998 A
5942726 Reiker Aug 1999 A
5944412 Janos et al. Aug 1999 A
5957573 Wedekind et al. Sep 1999 A
6082878 Doubek et al. Jul 2000 A
6095669 Cho Aug 2000 A
6098945 Korcz Aug 2000 A
6105334 Monson et al. Aug 2000 A
6161910 Reisenauer et al. Dec 2000 A
6170685 Currier Jan 2001 B1
6174076 Petrakis et al. Jan 2001 B1
6176599 Farzen Jan 2001 B1
6267491 Parrigin Jul 2001 B1
6332597 Korcz et al. Dec 2001 B1
6350043 Gloisten Feb 2002 B1
6350046 Lau Feb 2002 B1
6364511 Cohen Apr 2002 B1
6375338 Cummings et al. Apr 2002 B1
6402112 Thomas et al. Jun 2002 B1
D461455 Forbes Aug 2002 S
6461016 Jamison et al. Oct 2002 B1
6474846 Kelmelis et al. Nov 2002 B1
6491413 Benesohn Dec 2002 B1
D468697 Straub, Jr. Jan 2003 S
D470970 Huang Feb 2003 S
6515313 Ibbetson et al. Feb 2003 B1
6521833 DeFreitas Feb 2003 B1
D471657 Huang Mar 2003 S
6583573 Bierman Jun 2003 B2
6585389 Bonazzi Jul 2003 B2
6600175 Baretz et al. Jul 2003 B1
D478872 Heggem Aug 2003 S
6632006 Rippel et al. Oct 2003 B1
6657236 Thibeault et al. Dec 2003 B1
6666419 Vrame Dec 2003 B1
D488583 Benghozi Apr 2004 S
6719438 Sevack et al. Apr 2004 B2
6758578 Chou Jul 2004 B1
6777615 Gretz Aug 2004 B1
6779908 Ng Aug 2004 B1
6827229 Dinh et al. Dec 2004 B2
6838618 Newbold et al. Jan 2005 B2
6906352 Edmond et al. Jun 2005 B2
D509314 Rashidi Sep 2005 S
6948829 Verdes et al. Sep 2005 B2
6958497 Emerson et al. Oct 2005 B2
6964501 Ryan Nov 2005 B2
6967284 Gretz Nov 2005 B1
D516235 Rashidi Feb 2006 S
7025477 Blessing Apr 2006 B2
7064269 Smith Jun 2006 B2
D528673 Maxik et al. Sep 2006 S
7102172 Lynch Sep 2006 B2
D531740 Maxik Nov 2006 S
D532532 Maxik Nov 2006 S
7148420 Johnson et al. Dec 2006 B1
7148632 Berman et al. Dec 2006 B2
7154040 Tompkins Dec 2006 B1
7170015 Roesch et al. Jan 2007 B1
D536349 Humber et al. Feb 2007 S
D537039 Pincek Feb 2007 S
D539229 Murphey Mar 2007 S
7186008 Patti Mar 2007 B2
7190126 Paton Mar 2007 B1
7211833 Slater, Jr. et al. May 2007 B2
7213940 Van De Ven et al. May 2007 B1
7234674 Rippel et al. Jun 2007 B2
D547889 Huang Jul 2007 S
D552969 Bobrowski et al. Oct 2007 S
D553267 Yuen Oct 2007 S
D555106 Pape et al. Nov 2007 S
D556144 Dinh Nov 2007 S
7297870 Sartini Nov 2007 B1
7312474 Emerson et al. Dec 2007 B2
7320536 Petrakis et al. Jan 2008 B2
D561372 Yan Feb 2008 S
D561373 Yan Feb 2008 S
7335920 Denbaars et al. Feb 2008 B2
D563896 Greenslate Mar 2008 S
7347580 Blackman et al. Mar 2008 B2
D570012 Huang May 2008 S
7374308 Sevack et al. May 2008 B2
D570504 Maxik et al. Jun 2008 S
D570505 Maxik et al. Jun 2008 S
7399104 Rappaport Jul 2008 B2
7429025 Gretz Sep 2008 B1
D578677 Huang Oct 2008 S
7431482 Morgan et al. Oct 2008 B1
7432440 Hull et al. Oct 2008 B2
7442883 Jolly et al. Oct 2008 B2
7446345 Emerson et al. Nov 2008 B2
7470048 Wu Dec 2008 B2
7473005 O'Brien Jan 2009 B2
7488097 Reisenauer et al. Feb 2009 B2
7494258 McNaught Feb 2009 B2
7503145 Newbold et al. Mar 2009 B2
7524089 Park Apr 2009 B2
D591894 Flank May 2009 S
7534989 Suehara et al. May 2009 B2
D596154 Rivkin Jul 2009 S
7566154 Gloisten et al. Jul 2009 B2
D599040 Alexander et al. Aug 2009 S
D600836 Hanley et al. Sep 2009 S
7588359 Coushaine et al. Sep 2009 B2
7592583 Page et al. Sep 2009 B2
D606696 Chen et al. Dec 2009 S
7625105 Johnson Dec 2009 B1
7628513 Chiu Dec 2009 B2
7651238 O'Brien Jan 2010 B2
7654705 Czech et al. Feb 2010 B2
D611650 Broekhoff Mar 2010 S
7670021 Chou Mar 2010 B2
7673841 Wronski Mar 2010 B2
7677766 Boyer Mar 2010 B2
7692182 Bergmann et al. Apr 2010 B2
7704763 Fujii et al. Apr 2010 B2
D616118 Thomas et al. May 2010 S
7722208 Dupre et al. May 2010 B1
7722227 Zhang et al. May 2010 B2
7735795 Wronski Jun 2010 B2
7735798 Kojima Jun 2010 B2
7748887 Zampini, II et al. Jul 2010 B2
7766518 Piepgras et al. Aug 2010 B2
7769192 Takagi et al. Aug 2010 B2
7771082 Peng Aug 2010 B2
7771094 Goode Aug 2010 B2
7784754 Nevers et al. Aug 2010 B2
D624691 Zhang et al. Sep 2010 S
D624692 Mackin et al. Sep 2010 S
D625847 Maglica Oct 2010 S
D625876 Chen et al. Oct 2010 S
D627507 Lai et al. Nov 2010 S
D627727 Alexander et al. Nov 2010 S
7828465 Roberge et al. Nov 2010 B2
D629366 Ericson et al. Dec 2010 S
7845393 Kao et al. Dec 2010 B2
7857275 de la Borbolla Dec 2010 B2
7871184 Peng Jan 2011 B2
7874539 Wright et al. Jan 2011 B2
7874703 Shastry et al. Jan 2011 B2
7874709 Beadle Jan 2011 B1
D633224 Lee Feb 2011 S
7909487 Venetucci et al. Mar 2011 B1
D636903 Torenbeek Apr 2011 S
D637339 Hasan et al. May 2011 S
D637340 Hasan et al. May 2011 S
7950832 Tanaka et al. May 2011 B2
D639499 Choi et al. Jun 2011 S
D640819 Pan Jun 2011 S
7956546 Hasnain Jun 2011 B2
7959332 Tickner et al. Jun 2011 B2
7967480 Pickard et al. Jun 2011 B2
D642317 Rashidi Jul 2011 S
7972035 Boyer Jul 2011 B2
7972043 Schutte Jul 2011 B2
D642536 Robinson Aug 2011 S
D643970 Kim et al. Aug 2011 S
8002425 Russo et al. Aug 2011 B2
D646011 Rashidi Sep 2011 S
8013243 Korcz et al. Sep 2011 B2
8038113 Fryzek et al. Oct 2011 B2
D648476 Choi et al. Nov 2011 S
D648477 Kim et al. Nov 2011 S
D650115 Kim et al. Dec 2011 S
8070328 Knoble et al. Dec 2011 B1
8096670 Trott Jan 2012 B2
D654205 Rashidi Feb 2012 S
D656262 Yoshinobu et al. Mar 2012 S
D656263 Ogawa et al. Mar 2012 S
8142057 Roos et al. Mar 2012 B2
8152334 Krogman Apr 2012 B2
D658788 Dudik et al. May 2012 S
D658802 Chen May 2012 S
D659862 Tsai May 2012 S
D659879 Rashidi May 2012 S
D660814 Wilson May 2012 S
8182116 Zhang et al. May 2012 B2
8201968 Maxik et al. Jun 2012 B2
D663058 Pan Jul 2012 S
D663466 Rashidi Jul 2012 S
D664274 de Visser et al. Jul 2012 S
D664705 Kong et al. Jul 2012 S
8215805 Cogliano et al. Jul 2012 B2
8220970 Khazi et al. Jul 2012 B1
8226270 Yamamoto et al. Jul 2012 B2
8235549 Gingrich, III et al. Aug 2012 B2
8240630 Wronski Aug 2012 B2
D667155 Rashidi Sep 2012 S
8262255 Rashidi Sep 2012 B1
D668372 Renshaw et al. Oct 2012 S
D668809 Rashidi Oct 2012 S
D669198 Qiu Oct 2012 S
D669199 Chuang Oct 2012 S
D669620 Rashidi Oct 2012 S
8277090 Fryzek et al. Oct 2012 B2
D671668 Rowlette, Jr. et al. Nov 2012 S
8308322 Santiago et al. Nov 2012 B2
D672899 Ven et al. Dec 2012 S
D673869 Yu Jan 2013 S
D676263 Birke Feb 2013 S
D676814 Paul Feb 2013 S
8376593 Bazydola et al. Feb 2013 B2
D677417 Rashidi Mar 2013 S
D677634 Korcz et al. Mar 2013 S
D679044 Jeswani et al. Mar 2013 S
D679047 Tickner et al. Mar 2013 S
8403533 Paulsel Mar 2013 B1
8403541 Rashidi Mar 2013 B1
8405947 Green et al. Mar 2013 B1
D681259 Kong Apr 2013 S
8408759 Rashidi Apr 2013 B1
D682459 Gordin et al. May 2013 S
D683063 Lopez et al. May 2013 S
D683890 Lopez et al. Jun 2013 S
D684269 Wang et al. Jun 2013 S
D684287 Rashidi Jun 2013 S
D684719 Rashidi Jun 2013 S
D685118 Rashidi Jun 2013 S
D685120 Rashidi Jun 2013 S
8454204 Chang et al. Jun 2013 B1
D685507 Sun Jul 2013 S
D687586 Rashidi Aug 2013 S
D687587 Rashidi Aug 2013 S
D687588 Rashidi Aug 2013 S
D687980 Gravely et al. Aug 2013 S
D688405 Kim et al. Aug 2013 S
8506127 Russello et al. Aug 2013 B2
8506134 Wilson et al. Aug 2013 B2
D690049 Rashidi Sep 2013 S
D690864 Rashidi Oct 2013 S
D690865 Rashidi Oct 2013 S
D690866 Rashidi Oct 2013 S
D691314 Rashidi Oct 2013 S
D691315 Samson Oct 2013 S
D691763 Hand et al. Oct 2013 S
8550669 Macwan et al. Oct 2013 B2
D693043 Schmalfuss et al. Nov 2013 S
D693517 Davis Nov 2013 S
D694456 Rowlette, Jr. et al. Nov 2013 S
8573816 Negley et al. Nov 2013 B2
D695441 Lui et al. Dec 2013 S
D695941 Rashidi Dec 2013 S
D696446 Huh Dec 2013 S
D696447 Huh Dec 2013 S
D696448 Huh Dec 2013 S
8602601 Khazi et al. Dec 2013 B2
D698067 Rashidi Jan 2014 S
D698068 Rashidi Jan 2014 S
8622361 Wronski Jan 2014 B2
8632040 Mass et al. Jan 2014 B2
D698985 Lopez et al. Feb 2014 S
D699384 Rashidi Feb 2014 S
D699687 Baldwin et al. Feb 2014 S
D700387 Snell Feb 2014 S
8641243 Rashidi Feb 2014 B1
8659034 Baretz et al. Feb 2014 B2
D700991 Johnson et al. Mar 2014 S
D701175 Baldwin et al. Mar 2014 S
D701466 Clifford et al. Mar 2014 S
8672518 Boomgaarden et al. Mar 2014 B2
D702867 Kim et al. Apr 2014 S
D703843 Cheng Apr 2014 S
8684569 Pickard et al. Apr 2014 B2
D705472 Huh May 2014 S
D705481 Zhang et al. May 2014 S
8727582 Brown et al. May 2014 B2
D708381 Rashidi Jul 2014 S
8777449 Ven et al. Jul 2014 B2
D710529 Lopez et al. Aug 2014 S
8801217 Oehle et al. Aug 2014 B2
8820985 Tam et al. Sep 2014 B1
8833013 Harman Sep 2014 B2
8845144 Davies et al. Sep 2014 B1
D714989 Rowlette, Jr. et al. Oct 2014 S
8870426 Biebl et al. Oct 2014 B2
8890414 Rowlette, Jr. et al. Nov 2014 B2
D721845 Lui et al. Jan 2015 S
8926133 Booth Jan 2015 B2
8939418 Green et al. Jan 2015 B2
D722296 Taylor Feb 2015 S
D722977 Hagarty Feb 2015 S
D722978 Hagarty Feb 2015 S
8950898 Catalano Feb 2015 B2
D723781 Miner Mar 2015 S
D723783 Miner Mar 2015 S
D725359 Miner Mar 2015 S
8967575 Gretz Mar 2015 B1
D726363 Danesh Apr 2015 S
D726949 Redfern Apr 2015 S
9004435 Wronski Apr 2015 B2
9039254 Danesh May 2015 B2
D731689 Bernard et al. Jun 2015 S
9062866 Christ et al. Jun 2015 B1
9065264 Cooper et al. Jun 2015 B2
9068719 Van De Ven et al. Jun 2015 B2
9068722 Wronski et al. Jun 2015 B2
D734525 Gordin et al. Jul 2015 S
D735012 Cowie Jul 2015 S
D735142 Hagarty Jul 2015 S
9078299 Ashdown Jul 2015 B2
D739355 D'Aubeterre Sep 2015 S
D739590 Redfern Sep 2015 S
9140441 Goelz et al. Sep 2015 B2
D741538 Ghasabi Oct 2015 S
9151457 Pickard et al. Oct 2015 B2
9151477 Pickard et al. Oct 2015 B2
D742325 Leung Nov 2015 S
D743079 Adair Nov 2015 S
D744723 Yoo Dec 2015 S
9217560 Harbers et al. Dec 2015 B2
9222661 Kim et al. Dec 2015 B2
9239131 Wronski et al. Jan 2016 B1
D750317 Lui et al. Feb 2016 S
9285103 Van De Ven et al. Mar 2016 B2
9291319 Kathawate et al. Mar 2016 B2
9301362 Dohn et al. Mar 2016 B2
D754078 Baldwin et al. Apr 2016 S
D754079 Baldwin et al. Apr 2016 S
D754605 McMillan Apr 2016 S
9303812 Green et al. Apr 2016 B2
9310038 Athalye Apr 2016 B2
9322543 Hussell et al. Apr 2016 B2
9347655 Boomgaarden et al. May 2016 B2
9366418 Gifford Jun 2016 B2
9371966 Rowlette, Jr. et al. Jun 2016 B2
D762181 Lin Jul 2016 S
9395051 Hussell et al. Jul 2016 B2
D762906 Jeswani et al. Aug 2016 S
D764079 Wu Aug 2016 S
9417506 Tirosh Aug 2016 B1
D766185 Hagarty Sep 2016 S
D767199 Wronski et al. Sep 2016 S
9447917 Wronski et al. Sep 2016 B1
9447953 Lawlor Sep 2016 B2
D768325 Xu Oct 2016 S
D768326 Guzzini Oct 2016 S
D769501 Jeswani et al. Oct 2016 S
D770065 Tittle Oct 2016 S
D770076 Li et al. Oct 2016 S
9476552 Myers et al. Oct 2016 B2
D774676 Ng Dec 2016 S
D776324 Gierl et al. Jan 2017 S
D777967 Redfern Jan 2017 S
9534751 Maglica et al. Jan 2017 B2
D778241 Holbrook et al. Feb 2017 S
D778484 Guzzini Feb 2017 S
D779100 Redfern Feb 2017 S
9581302 Danesh Feb 2017 B2
9599315 Harpenau et al. Mar 2017 B1
9605842 Davis Mar 2017 B1
9605910 Swedberg et al. Mar 2017 B2
D785228 Guzzini Apr 2017 S
D786472 Redfern May 2017 S
D786473 Dean May 2017 S
D786474 Fujisawa May 2017 S
D788330 Johnson et al. May 2017 S
D790102 Guzzini Jun 2017 S
9673597 Lee Jun 2017 B2
9689541 Wronski Jun 2017 B2
D791709 Holton Jul 2017 S
D791711 Holton Jul 2017 S
D791712 Holton Jul 2017 S
9696021 Wronski Jul 2017 B2
9702516 Vasquez et al. Jul 2017 B1
D795820 Wengreen Aug 2017 S
9732904 Wronski Aug 2017 B1
9732947 Christ et al. Aug 2017 B1
9739464 Wronski Aug 2017 B2
D799105 Eder et al. Oct 2017 S
D800957 Eder et al. Oct 2017 S
9791111 Huang et al. Oct 2017 B1
9797562 Dabiet et al. Oct 2017 B2
9803839 Visser et al. Oct 2017 B2
D805660 Creasman et al. Dec 2017 S
D809176 Partington Jan 2018 S
9860961 Chemel et al. Jan 2018 B2
9863619 Mak Jan 2018 B2
D809465 Keirstead Feb 2018 S
9903569 O'Brien et al. Feb 2018 B2
9964266 Danesh May 2018 B2
D820494 Cohen Jun 2018 S
D821615 Trice Jun 2018 S
D821627 Ko Jun 2018 S
9995441 Power et al. Jun 2018 B2
D822505 Gibson et al. Jul 2018 S
D824494 Martins et al. Jul 2018 S
D825829 Guo Aug 2018 S
10041638 Vasquez et al. Aug 2018 B2
10054274 Athalye et al. Aug 2018 B2
D827903 Wu Sep 2018 S
D832218 Wronski et al. Oct 2018 S
D833977 Danesh et al. Nov 2018 S
10125959 Cohen Nov 2018 B2
10139059 Danesh Nov 2018 B2
D836976 Reese et al. Jan 2019 S
D847414 Danesh et al. Apr 2019 S
D847415 Danesh et al. Apr 2019 S
10247390 Kopitzke et al. Apr 2019 B1
D848375 Danesh et al. May 2019 S
10281131 Cohen May 2019 B2
10295163 Cohen May 2019 B1
D850695 Dabiet et al. Jun 2019 S
D851046 Peng et al. Jun 2019 S
10408395 Danesh Sep 2019 B2
10408396 Wronski et al. Sep 2019 B2
10408436 Wronski et al. Sep 2019 B2
D863661 Tian et al. Oct 2019 S
D864877 Danesh Oct 2019 S
D867653 Gorman Nov 2019 S
10488000 Danesh et al. Nov 2019 B2
10551044 Peng et al. Feb 2020 B2
10563850 Danesh Feb 2020 B2
10591120 Bailey et al. Mar 2020 B2
D880733 Lo et al. Apr 2020 S
D883562 Hu May 2020 S
D885648 Zeng May 2020 S
D885649 McLaughlin, III et al. May 2020 S
10663127 Danesh et al. May 2020 B2
10663153 Nikooyan et al. May 2020 B2
D888313 Xie et al. Jun 2020 S
10683994 Wronski et al. Jun 2020 B2
10684003 Wronski et al. Jun 2020 B2
D890410 Stanford et al. Jul 2020 S
10753558 Danesh Aug 2020 B2
10816148 Danesh Oct 2020 B2
D901398 Danesh et al. Nov 2020 S
D901745 Yang Nov 2020 S
D902871 Danesh et al. Nov 2020 S
D903605 Danesh et al. Dec 2020 S
20020172047 Ashley Nov 2002 A1
20030006353 Dinh et al. Jan 2003 A1
20030016532 Reed Jan 2003 A1
20030021104 Tsao Jan 2003 A1
20030161153 Patti Aug 2003 A1
20040001337 Defouw et al. Jan 2004 A1
20040120141 Beadle Jun 2004 A1
20040156199 Rivas et al. Aug 2004 A1
20050078474 Whitfield Apr 2005 A1
20050225966 Hartmann et al. Oct 2005 A1
20050227536 Gamache et al. Oct 2005 A1
20050231962 Koba et al. Oct 2005 A1
20050237746 Yiu Oct 2005 A1
20060005988 Jorgensen Jan 2006 A1
20060158873 Newbold et al. Jul 2006 A1
20060198126 Jones Sep 2006 A1
20060215408 Lee Sep 2006 A1
20060221620 Thomas Oct 2006 A1
20060237601 Rinderer Oct 2006 A1
20060243877 Rippel Nov 2006 A1
20060250788 Hodge et al. Nov 2006 A1
20060262536 Nevers Nov 2006 A1
20060262545 Piepgras et al. Nov 2006 A1
20070012847 Tai Jan 2007 A1
20070035951 Tseng Feb 2007 A1
20070121328 Mondloch et al. May 2007 A1
20070131827 Nevers et al. Jun 2007 A1
20070185675 Papamichael et al. Aug 2007 A1
20070200039 Petak Aug 2007 A1
20070206374 Petrakis et al. Sep 2007 A1
20080002414 Miletich et al. Jan 2008 A1
20080112168 Pickard et al. May 2008 A1
20080112170 Trott May 2008 A1
20080112171 Patti et al. May 2008 A1
20080130308 Behr et al. Jun 2008 A1
20080137347 Trott et al. Jun 2008 A1
20080165545 O'Brien Jul 2008 A1
20080170404 Steer et al. Jul 2008 A1
20080224008 Dal Ponte et al. Sep 2008 A1
20080232116 Kim Sep 2008 A1
20080247181 Dixon Oct 2008 A1
20080285271 Roberge et al. Nov 2008 A1
20090003009 Tessnow et al. Jan 2009 A1
20090034261 Grove Feb 2009 A1
20090080189 Wegner Mar 2009 A1
20090086484 Johnson Apr 2009 A1
20090097262 Zhang et al. Apr 2009 A1
20090135613 Peng May 2009 A1
20090141500 Peng Jun 2009 A1
20090141506 Lan et al. Jun 2009 A1
20090141508 Peng Jun 2009 A1
20090147517 Li Jun 2009 A1
20090161356 Negley et al. Jun 2009 A1
20090237924 Ladewig Sep 2009 A1
20090280695 Sekela et al. Nov 2009 A1
20090283292 Lehr Nov 2009 A1
20090290343 Brown et al. Nov 2009 A1
20100014282 Danesh Jan 2010 A1
20100033095 Sadwick Feb 2010 A1
20100061108 Zhang et al. Mar 2010 A1
20100110690 Hsu et al. May 2010 A1
20100110698 Harwood et al. May 2010 A1
20100110699 Chou May 2010 A1
20100148673 Stewart et al. Jun 2010 A1
20100149822 Cogliano et al. Jun 2010 A1
20100165643 Russo et al. Jul 2010 A1
20100244709 Steiner et al. Sep 2010 A1
20100246172 Liu Sep 2010 A1
20100259919 Khazi et al. Oct 2010 A1
20100270903 Jao et al. Oct 2010 A1
20100277905 Janik et al. Nov 2010 A1
20100284185 Ngai Nov 2010 A1
20100302778 Dabiet et al. Dec 2010 A1
20110043040 Porter et al. Feb 2011 A1
20110063831 Cook Mar 2011 A1
20110068687 Takahasi et al. Mar 2011 A1
20110069499 Trott et al. Mar 2011 A1
20110080750 Jones et al. Apr 2011 A1
20110116276 Okamura et al. May 2011 A1
20110121756 Thomas et al. May 2011 A1
20110134634 Gingrich, III et al. Jun 2011 A1
20110134651 Berman Jun 2011 A1
20110140633 Archenhold Jun 2011 A1
20110170294 Mier-Langner et al. Jul 2011 A1
20110194299 Crooks et al. Aug 2011 A1
20110216534 Tickner et al. Sep 2011 A1
20110226919 Fryzek et al. Sep 2011 A1
20110255292 Shen Oct 2011 A1
20110267828 Bazydola et al. Nov 2011 A1
20110285314 Carney et al. Nov 2011 A1
20120020104 Biebl et al. Jan 2012 A1
20120074852 Delnoij Mar 2012 A1
20120106176 Lopez et al. May 2012 A1
20120113642 Catalano May 2012 A1
20120140442 Woo et al. Jun 2012 A1
20120140465 Rowlette, Jr. et al. Jun 2012 A1
20120162994 Wasniewski et al. Jun 2012 A1
20120182744 Santiago et al. Jul 2012 A1
20120188762 Joung et al. Jul 2012 A1
20120243237 Toda et al. Sep 2012 A1
20120266449 Krupa Oct 2012 A1
20120268688 Sato et al. Oct 2012 A1
20120287625 Macwan et al. Nov 2012 A1
20120305868 Callahan et al. Dec 2012 A1
20120314429 Plunk Dec 2012 A1
20130009552 Page Jan 2013 A1
20130010476 Pickard et al. Jan 2013 A1
20130016864 Ivey et al. Jan 2013 A1
20130033872 Randolph et al. Feb 2013 A1
20130051012 Oehle et al. Feb 2013 A1
20130077307 Yamamoto Mar 2013 A1
20130083529 Gifford Apr 2013 A1
20130141913 Sachsenweger Jun 2013 A1
20130155681 Nall et al. Jun 2013 A1
20130163254 Chang et al. Jun 2013 A1
20130170232 Park et al. Jul 2013 A1
20130170233 Nezu et al. Jul 2013 A1
20130227908 Gulbrandsen et al. Sep 2013 A1
20130258677 Fryzek et al. Oct 2013 A1
20130265750 Pickard et al. Oct 2013 A1
20130271989 Hussell et al. Oct 2013 A1
20130294084 Kathawate et al. Nov 2013 A1
20130301252 Hussell et al. Nov 2013 A1
20130322062 Danesh Dec 2013 A1
20130322084 Ebisawa Dec 2013 A1
20130335980 Nakasuji et al. Dec 2013 A1
20140029262 Maxik et al. Jan 2014 A1
20140036497 Hussell et al. Feb 2014 A1
20140049957 Goelz et al. Feb 2014 A1
20140063776 Clark et al. Mar 2014 A1
20140071679 Booth Mar 2014 A1
20140071687 Tickner et al. Mar 2014 A1
20140140490 Roberts et al. May 2014 A1
20140063818 Randolph et al. Jun 2014 A1
20140233246 Lafreniere et al. Aug 2014 A1
20140254177 Danesh Sep 2014 A1
20140268836 Thompson Sep 2014 A1
20140268869 Blessitt et al. Sep 2014 A1
20140299730 Green et al. Oct 2014 A1
20140313775 Myers et al. Oct 2014 A1
20140321122 Domagala et al. Oct 2014 A1
20140347848 Pisavadia et al. Nov 2014 A1
20150009676 Danesh Jan 2015 A1
20150029732 Hatch Jan 2015 A1
20150078008 He Mar 2015 A1
20150085500 Cooper et al. Mar 2015 A1
20150138779 Livesay et al. May 2015 A1
20150176823 Leshniak et al. Jun 2015 A1
20150184837 Zhang et al. Jul 2015 A1
20150198324 O'Brien et al. Jul 2015 A1
20150204491 Yuan et al. Jul 2015 A1
20150219317 Gatof et al. Aug 2015 A1
20150233556 Danesh Aug 2015 A1
20150241039 Fryzek Aug 2015 A1
20150263497 Korcz et al. Sep 2015 A1
20150276185 Bailey et al. Oct 2015 A1
20150308662 Vice et al. Oct 2015 A1
20150345761 Lawlor Dec 2015 A1
20150362159 Ludyjan Dec 2015 A1
20160084488 Wu et al. Mar 2016 A1
20160209007 Belmonte et al. Jul 2016 A1
20160238225 Doust Aug 2016 A1
20160308342 Witherbee et al. Oct 2016 A1
20160312987 Danesh Oct 2016 A1
20160348860 Danesh Dec 2016 A1
20160348861 Bailey et al. Dec 2016 A1
20160366738 Boulanger et al. Dec 2016 A1
20170003007 Wronski Jan 2017 A1
20170045213 Williams et al. Feb 2017 A1
20170059135 Jones Mar 2017 A1
20170138576 Peng et al. May 2017 A1
20170138581 Doust May 2017 A1
20170167672 Stauner et al. Jun 2017 A1
20170167699 Schubert et al. Jun 2017 A1
20170198896 May Jul 2017 A1
20170284616 Coakley et al. Oct 2017 A1
20170307188 Oudina et al. Oct 2017 A1
20180112857 Wronski et al. Apr 2018 A1
20180142871 Morales May 2018 A1
20180216809 Cohen Aug 2018 A1
20180224095 Cohen Aug 2018 A1
20180231197 Danesh Aug 2018 A1
20180283677 Cohen Oct 2018 A1
20180372284 Danesh et al. Dec 2018 A1
20190032874 Bonnetto et al. Jan 2019 A1
20190041050 Cairns et al. Feb 2019 A1
20190049080 Danesh Feb 2019 A1
20190063701 Lotfi et al. Feb 2019 A1
20190093836 Danesh Mar 2019 A1
20200182420 Cohen et al. Jun 2020 A1
20200291652 Shen Sep 2020 A1
20200393118 Danesh et al. Dec 2020 A1
20210010647 Danesh et al. Jan 2021 A1
Foreign Referenced Citations (70)
Number Date Country
2243934 Jun 2002 CA
2502637 Sep 2005 CA
2691480 Apr 2012 CA
2734369 Oct 2013 CA
2561459 Nov 2013 CA
2815067 Nov 2013 CA
2848289 Oct 2014 CA
2998173 Jul 2018 CA
2182475 Nov 1994 CN
201059503 May 2008 CN
201259125 Jun 2009 CN
101608781 Dec 2009 CN
201636626 Nov 2010 CN
102062373 May 2011 CN
202014067 Oct 2011 CN
202392473 Aug 2012 CN
202733693 Feb 2013 CN
103307518 Sep 2013 CN
103322476 Sep 2013 CN
203202661 Sep 2013 CN
203215483 Sep 2013 CN
101498411 Nov 2013 CN
203273663 Nov 2013 CN
203297980 Nov 2013 CN
203628464 Dec 2013 CN
203641919 Jun 2014 CN
204300818 Apr 2015 CN
104654142 May 2015 CN
204513161 Jul 2015 CN
204611541 Sep 2015 CN
204786225 Nov 2015 CN
204829578 Dec 2015 CN
103712135 Apr 2016 CN
205606362 Sep 2016 CN
206130742 Apr 2017 CN
103154606 May 2017 CN
206222112 Jun 2017 CN
107013845 Aug 2017 CN
107084343 Aug 2017 CN
9109828 Feb 1992 DE
199 47 208 May 2001 DE
1 589 289 Oct 2005 EP
1 672 155 Jun 2006 EP
1688663 Aug 2006 EP
2 306 072 Apr 2011 EP
2 453 169 May 2012 EP
2 193 309 Jul 2012 EP
2 735 787 May 2014 EP
3 104 024 Dec 2016 EP
2325728 Dec 1998 GB
2427020 Dec 2006 GB
2466875 Jul 2010 GB
2471929 Jan 2014 GB
2509772 Jul 2014 GB
H02113002 Sep 1990 JP
2007091052 Apr 2007 JP
2007265961 Oct 2007 JP
2011060450 Mar 2011 JP
2012064551 Mar 2012 JP
2015002027 Jan 2015 JP
2015002028 Jan 2015 JP
2016219335 Dec 2016 JP
2017107699 Jun 2017 JP
1020110008796 Jan 2011 KR
1020120061625 Jun 2012 KR
2011002947 Sep 2011 MX
474382 Jan 2002 TW
WO 2013128896 Sep 2013 WO
WO 2015000212 Jan 2015 WO
WO 2016152166 Sep 2016 WO
Non-Patent Literature Citations (259)
Entry
“Advanced LED Solutions,” Imtra Marine Lighting. Jun. 17, 2011. 39 pages.
“Cree LMH2 LED Module with TrueWhite Technology,” Cree Product Family Data Sheet. Dec. 21, 2011. 3 pages.
“Cree LMH2 LED Modules Design Guide,” Cree Product Design Guide. 2011. 20 pages.
“Cree LMH2 LED Modules,” Mouser Electronics. Accesssed at www.mouser.com/new/cree/creelmh2 on Sep. 9, 2012. 2 pages.
“LED Undercabinet Pocket Guide,” ELCO Lighting. Nov. 2, 2016. 12 pages.
“Membrane Penetrations in Fire-Resistance Rated Walls,” https://www.ul.com/wp-content/uploads/2014/04/ul_MembranePenetrations.pdf, Issue 1, 2009, published Feb. 26, 2010, 2 pages.
“Metallic and Non-metallic Outlet Boxes Used in Fire-rated Assembly,” https://iaeimagazine.org/magazine/2000/09/16/metallic-and-non-metallic-outlet-boxes-used-in-fire-rated-assembly/, Sep. 16, 2000, 5 pages.
“Metallic Outlet Boxes,” UL 514A, Underwriters Laboratories, Inc., Feb. 16, 2004 (Title Page Reprinted Aug. 10, 2007), 106 pages.
“Outlet Boxes for Use in Fire Rated Assemblies,” https://www.ul.com/wp-content/uploads/2014/04/Ul_outletboxes.pdf, Apr. 2007, 2 pages.
“Portland Bi-Color, Warm White/Red,” item:ILIM30941.lmtra Marine Products. 2012. 3 pages. Accessed athttp://www.imtra.com:80/0ade25fb-3218-4cae-a926-6abe64ffd93a/lighting-light-fixtures-downlights-3-to-4-inches-detail.htm on Jan. 25, 2013.
“Undercabinet Pucks, Xyris Mini LED Puck Light,” ELCO Lighting. Sep. 2018. 1 page.
“VERSI LED Mini Flush,” Lithonia Lghting. Sep. 2013. 6 pages.
<https://www.zhagastandard.org/books/book18/>, Mar. 2017, 5 pages. Accessed on May 14, 2018.
2006 International Building Code, Section 712 Penetrations, Jan. 2006, 4 pages.
3 & 4″ DLE Ser ies LED Sample Case Now Available. DMF Light. Issued Jan. 6, 2012. 1 page.
4″ Octagon Concrete Boxes and Back Plates. Appleton. Accessed at www.appletonelec.com on May 6, 2019. 1 page.
Acrich COB Zhaga Module, Product Description, Seoul Semiconductor, Nov. 11, 2016, 39 pages.
Be seen in the best light. Lightolier by signify. Comprehensive 2019 Lighting Catalog. 114 pages.
BXUV.GuideInfo, Fire Resistance Ratings—ANSI/UL 263, UL Online Certifications Directory, last updated Nov. 3, 2016, 27 pages.
Canadian Office Action dated Aug. 11, 2017 from Canadian Application No. 2,941,051, 4 pages.
Canadian Office Action dated Dec. 23, 2013 from Canadian Application No. 2,778,581, 3 pages.
Canadian Office Action dated Dec. 6, 2016 from Canadian Application No. 2,879,629, 3 pages.
Canadian Office Action dated Feb. 1, 2016 from Canadian Application No. 2,879,486, 5 pages.
Canadian Office Action dated Jun. 12, 2017 from Canadian Application No. 2,927,601, 4 pages.
Canadian Office Action dated Mar. 22, 2016 from Canadian Application No. 2,879,629, 4 pages.
Canadian Office Action dated Mar. 9, 2017 from Canadian Application No. 2,931,588, 5 pages.
CEYY.GuideInfo, Outlet Boxes and Fittings Certified for Fire Resistance, UL Online Certifications Directory, last updated May 16, 2013, 2 pages.
Cooper Lighting HALO ML56 LED System Product Sheet. Mar. 2, 2015. Accessed at http://www.cooperindustries.com/content/dam/public/lighting/products/documents/halo/spec_sheets/halo-ml56600-80cri-141689-sss.pdf. 8 pages.
Corrected Notice of Allowance dated Oct. 10, 2019 from U.S. Appl. No. 16/016,040, 2 pages.
Corrected Notice of Allowance dated Sep. 27, 2019 from U.S. Appl. No. 15/167,682 , 2 pages.
Cree LED Lamp Family Sales Sheet—Better light is beautiful light , Apr. 24, 2017, 2 pages.
Cree® LMR2 LED Module. Product Family Data Sheet Cree 2011. 3 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 61 pages.
CS&E PCT Collaborative Search and Examination Pilot Upload Peer Contribution in International Patent Application No. PCT/US18/67614 dated Apr. 24, 2019, 53 pages.
Delhi Rehab & Nursing Facility ELM16-70884. Vertex Innovative Solutions Feb. 25, 2016. 89 pages.
DLEI3 3″ Recessed LED New Construction, IC. DMF Light. Issued Nov. 30, 2011. 2 pages.
DLEI411 4″ Recessed LED New Construction, IC. DMF Light. Issued Nov. 30, 2011. 1 page.
DLEIR411 4″ Recessed LED Remodel, IC. DMF Light. Issued Jun. 15, 2011. 1 page.
DLER411 4″ Recessed LED Retrofit Module. DMF Light. Issued Jun. 15, 2011. 1 page.
DME Series Installation Instructions, Oct. 18, 2011, 2 pages.
DMF, Inc., “dmfLighting: LED Recessed Downlighting,” DRD2 Product Brochure, Oct. 23, 2014, 50 pages.
DMF, Inc., “dmfLighting: LED Recessed Downlighting,” Product Catalog, Aug. 2012, 68 pages.
DMF, Inc., “dmfLighting: LED Recessed Lighting Solutions,” Info sheets, Mar. 15, 2012, 4 pages.
Ex-Parte Quayle Action dated Jun. 27, 2019 from U.S. Appl. No. 29/683,730, 5 pages.
Final Office Action dated Apr. 2, 2015 from U.S. Appl. No. 13/484,901, 13 pages.
Final Office Action dated Apr. 27, 2016 from U.S. Appl. No. 14/184,601, 19 pages.
Final Office Action dated Jan. 29, 2016 from U.S. Appl. No. 14/183,424, 21 pages.
Final Office Action dated Jul. 26, 2017 from U.S. Appl. No. 14/184,601, 18 pages.
Final Office Action dated Jun. 23, 2016 from U.S. Appl. No. 13/484,901, 18 pages.
Final Office Action dated Jun. 6, 2019 from U.S. Appl. No. 15/688,266, 7 pages.
Final Office Action dated Mar. 15, 2019 from U.S. Appl. No. 15/132,875,15 pages.
Final Office Action dated Mar. 17, 2020 for U.S. Appl. No. 29/653,142, 13 pages.
Final Office Action dated Oct. 3, 2019 from U.S. Appl. No. 29/678,482, 6 pages.
Final Office Action dated Sep. 27, 2019 from U.S. Appl. No. 16/200,393, 34 pages.
Halo, H7 LED Downlight Trims 49x Series, 6-inch LED Trims for Use with MI7x LED Modules, Cooper Lighting, ADV110422, rev. Aug. 12, 2011, 15 pages.
Halo, Halo LED H4 H7 Collection, SustainabLEDesign, Cooper Lighting, (emphasis on p. 18 “H7 Collection LED Modules—Halo LED H7 Module Features,”) Mar. 28, 2012, 52 pages.
Halo, LED Module ML706x, Cooper Lighting, General Installation for All Modules/p. 1; Tether Installation/pp. 2-3; Installation into Halo H750x Series LED-only (Non-Screw Based), Recessed Fixture, p. 4, Oct. 20, 2009, 4 pages.
IC1JB Housing 4″ IC-Rated New Construction Junction Box Housing. AcuityBrands. Accessed at https://www.acuitybrands.com/en/products/detail/845886/juno/ic1jb-housing/4-ic-rated-new-construction-junction-box-housing on Jun. 27, 2019.
Imtra Marine Lighting 2008 Catalog. 40 pages.
Imtra Marine Lighting 2009 Catalog. 32 pages.
Imtra Marine Lighting Spring 2007 Catalog. 36 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/39048 dated Dec. 14, 2018. 24 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/62868 dated Mar. 14, 2019, 13 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US18/67614 dated Apr. 25, 2019, 20 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US19/32281 dated Aug. 2, 2019, 18 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/036477 dated Oct. 17, 2019, 15 pages.
International Search Report and Written Opinion in International Patent Application No. PCT/US2019/054220 dated Feb. 24, 2020, 23 pages.
International Search Report and Written Opinion in PCT/US2018/048357 dated Nov. 14, 2018, 13 pages.
KWIKBRACE® New Construction Braces for Lighting Fixtures or Ceiling Fans 1-1/2 in. Depth. Hubbel. Accessed at https://hubbellcdn.com/specsheet/926.pdf on Jun. 27, 2019. 1 page.
LED Book Pr ice Guide 2012. DMF Light. Issued Jun. 26, 2013. 3 pages.
Maxim Convert Fixture. LMXCAT1805 Maxim Main Catalog 2018 p. 639.
Maxim Lighting Trim Trifold LMXBRO1905 2019. Accessed at https://www.maximlighting.com/Upload/download/brochure/pdf/LMXBRO1905.pdf on Feb. 13, 2020. 2 pages.
Maxim Lighting Wafer Trifold Brochure LMXBRO1711 2017. Accessed at https://www.maximlighting.com/Upload/download/brochure/pdf/LMXBRO1711.pdf on Feb. 13, 2020. 2 pages.
Maxim Wafer. LMXCAT1805 Maxim Main Catalog 2018 pp. 636-638.
ML56 LED Lighting System 600 / 900 /1200 Series Halo. Cooper Lighting Brochure 2015. Accessed at https://images.homedepot-static.com/catalog/pdfImages/06/06d28f93-4bf6-45be-a35a-a0239606f227.pdf. 41 pages.
Non-Final Office Action dated Apr. 12, 2018 for U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Apr. 2, 2020 for U.S. Appl. No. 16/522,275, 21 pages.
Non-Final Office Action dated Apr. 30, 2010 from U.S. Appl. No. 12/173,232, 13 pages.
Non-Final Office Action dated Apr. 4, 2019 from U.S. Appl. No. 29/678,482, 8 pages.
Non-Final Office Action dated Dec. 15, 2016 from U.S. Appl. No. 14/184,601, 18 pages.
Non-Final Office Action dated Dec. 30, 2019 from U.S. Appl. No. 16/653,497, 8 pages.
Non-Final Office Action dated Dec. 5, 2018 from U.S. Appl. No. 14/942,937, 13 pages.
Non-Final Office Action dated Feb. 7, 2019 from U.S. Appl. No. 16/200,393, 32 pages.
Non-Final Office Action dated Feb. 6, 2018 from U.S. Appl. No. 15/167,682, 9 pages.
Non-Final Office Action dated Jul. 20, 2015 from U.S. Appl. No. 14/184,601, 16 pages.
Non-Final Office Action dated Jul. 24, 2018 from U.S. Appl. No. 29/638,259, 5 pages.
Non-Final Office Action dated Jun. 11, 2019 from U.S. Appl. No. 15/901,738, 6 pages.
Non-Final Office Action dated Jun. 2, 2015 from U.S. Appl. No. 14/183,424, 20 pages.
Non-Final Office Action dated Jun. 25, 2018 for U.S. Appl. No. 29/541,565, 10 pages.
Non-Final Office Action dated Mar. 15, 2010 from U.S. Appl. No. 12/100,148, 8 pages.
Non-Final Office Action dated May 16, 2018 for U.S. Appl. No. 15/132,875, 18 pages.
Non-Final Office Action dated May 17, 2017 from U.S. Appl. No. 14/183,424, 20 pages.
Non-Final Office Action dated Oct. 16, 2014 from U.S. Appl. No. 13/484,901, 11 pages.
Non-Final Office Action dated Oct. 24, 2018 for U.S. Appl. No. 15/688,266, 14 pages.
Non-Final Office Action dated Sep. 15, 2015 from U.S. Appl. No. 13/484,901, 16 pages.
Non-Final Office Action dated Sep. 5, 2014 from U.S. Appl. No. 13/791,087, 8 pages.
Non-Final Office Action dated Sep. 6, 2017 from U.S. Appl. No. 14/726,064, 8 pages.
Notice of Allowance dated Apr. 1, 2019 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Apr. 17, 2019 from U.S. Appl. No. 29/678,478, 7 pages.
Notice of Allowance dated Apr. 8, 2019 from U.S. Appl. No. 29/653,142, 8 pages.
Notice of Allowance dated Aug. 23, 2017 from Canadian Application No. 2,879,629, 1 page.
Notice of Allowance dated Feb. 15, 2019 from U.S. Appl. No. 15/947,065 , 9 pages.
Notice of Allowance dated Feb. 5, 2020 from U.S. Appl. No. 15/901,738 , 8 pages.
Notice of Allowance dated Feb. 5, 2020 from U.S. Appl. No. 29/678,482 , 13 pages.
Notice of Allowance dated Feb. 8, 2019 from U.S. Appl. No. 29/541,565, 5 pages.
Notice of Allowance dated Jan. 16, 2015 from U.S. Appl. No. 29/467,026, 9 pages.
Notice of Allowance dated Jan. 2, 2019 from U.S. Appl. No. 29/541,565, 6 pages.
Notice of Allowance dated Jan. 28, 2019 from U.S. Appl. No. 29/664,471, 8 pages.
Notice of Allowance dated Jan. 30, 2015 from U.S. Appl. No. 13/791,087, 9 pages.
Notice of Allowance dated Jul. 31, 2019 from U.S. Appl. No. 15/167,682 , 7 pages.
Notice of Allowance dated Jun. 12, 2019 from U.S. Appl. No. 16/016,040, 8 pages.
Notice of Allowance dated Mar. 24, 2016 from U.S. Appl. No. 14/247,149, 8 pages.
Notice of Allowance dated Mar. 26, 2018 for U.S. Appl. No. 14/184,601, 10 pages.
Notice of Allowance dated May 10, 2018 from U.S. Appl. No. 14/726,064, 7 pages.
Notice of Allowance dated May 22, 2018 from U.S. Appl. No. 14/183,424, 9 pages.
Notice of Allowance dated Nov. 27, 2018 from U.S. Appl. No. 15/167,682, 11 pages.
Notice of Allowance dated Oct. 1, 2019 from U.S. Appl. No. 14/942,937, 7 pages.
Notice of Allowance dated Oct. 16, 2019 from U.S. Appl. No. 15/132,875, 12 pages.
Notice of Allowance dated Oct. 21, 2016 from U.S. Appl. No. 13/484,901, 7 pages.
Notice of Allowance dated Oct. 4, 2018 from U.S. Appl. No. 15/947,065 , 9 pages.
Notice of Allowance dated Oct. 9, 2018 from U.S. Appl. No. 29/653,142, 7 pages.
Notice of Allowance dated Sep. 11, 2019 from U.S. Appl. No. 29/653,142, 6 pages.
Notice of Allowance dated Sep. 19, 2018 from U.S. Appl. No. 15/167,682, 7 pages.
Notice of Allowance dated Sep. 19, 2019 from U.S. Appl. No. 16/016,040, 7 pages.
Notice of Allowance dated Sep. 21, 2018 from U.S. Appl. No. 29/645,941, 5 pages.
OneFrame Recessed LED Downlight. Dmflighting.com. Published Jun. 6, 2018. Retrieved at https://www.dmflighting.com/product/oneframe on Jun. 6, 2018. 11 pages.
RACO 4 in. Octagon Welded Concrete Ring, 3-1/2 in. Deep with 1/2 and 3/4 in. Knockouts and ilcludes 890 cover (20-Pack). Model # 280. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-3-1-2-in-Deep-with-1-2-and-3-4-in-Knockouts-and-ilcludes-890-cover-20-Pack-280/203638679 on Jan. 18, 2019. 3 pages.
RACO 4 in. Octagon Welded Concrete Ring, 6 in. Deep with 1/2 and 3/4 in. Knockouts (10-Pack). Model # 276. Accessed at https://www.homedepot.com/p/RACO-4-in-Octagon-Welded-Concrete-Ring-6-in-Deep-with-1-2-and-3-4-in-Knockouts-10-Pack-276/203638675 on Jan. 16, 2019. 4 pages.
RACO Commercial, Industrial and Residential Electrical Products. Hubbell. Accessed at www.Hubbell-RTB.com on May 6, 2019. 356 pages.
Ridgway-Barnes, SlimSurface LED Downlight: One of the thinnest LED surface mount downlights in the market. Philips Lighting Blog. Oct. 28, 2014. Accessed at http://applications.nam.lighting.philips.com/blog/index.php/2014/10/28/slimsurface-led-downlight-one-of-the-thinnest-led-surface-mount-downlights-in-the-market/. 3 pages.
SlimSurface LED S5R, S7R & S10R Round 5″, 7″ and 10″ Apertures. Lightolier by Signify. Nov. 2018. 9 pages.
SlimSurface surface mount downlighting. Philips Lightolier 2018. 8 pages.
Specification & Features 4″ Octagonal Concrete Box Covers. Orbit Industries, Inc. Accessed at https://www.orbitelectric.com on May 6, 2019. 1 page.
Supplemental Notice of Allowance dated Aug. 5, 2019 from U.S. Appl. No. 15/947,065, 2 pages.
Switch and Outlet Boxes and Covers Brochure. Appelton 2010. 77 pages.
Civil Action No. 2:18-cv-07090. Complaint For Infringement And Unfair Competition. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting. 52 pages. Dated Aug. 15, 2018.
Petition for Inter Partes Review of U.S. Pat. No. 9,964,266 Pursuant to 37 C.F.R. § 42.100 et seq. AMP Plus Inc. dbd ELCO Lighting v. DMF, Inc, IPR2019-01094 filed May 17, 2019. 108 pages.
IPR2019-01094 Exhibit 1001. U.S. Pat. No. 9,964,266 (“the '266 Patent”). 14 pages.
IPR2019-01094 Exhibit 1002. Declaration of Eric Bretschneider, Ph.D. (“Bretschneider”). 107 pages.
IPR2019-01094 Exhibit 1003. Curriculum Vitae of Dr. Bretschneider. 11 pages.
IPR2019-01094 Exhibit 1004. Excerpts from the File History of U.S. Pat. No. 9,964,266. 105 pages.
IPR2019-01094 Exhibit 1005. Imtra 2011 Marine Lighting Catalog—Advanced LED Solutions (“Imtra 2011”). 40 pages.
IPR2019-01094 Exhibit 1006. Imtra 2007 Marine Lighting Catalog (“Imtra 2007”). 36 pages.
IPR2019-01094 Exhibit 1007. U.S. Pat. No. 9,366,418 (“Gifford”). 9 pages.
IPR2019-01094 Exhibit 1008. Declaration of Colby Chevalier (“Chevalier”). 89 pages.
IPR2019-01094 Exhibit 1009. U.S. Pat. No. 7,102,172 (“Lynch”). 41 pages.
IPR2019-01094 Exhibit 1010. Illuminating Engineering Society, ANSI RP-16-10, Nomenclature and Definitions for Illuminating Engineering (approved as an American National Standard Jul. 15, 2005, approved by the IES Board of Directors Oct. 15, 2005). 4 pages.
IPR2019-01094 Exhibit 1011. Underwriters Laboratories Inc. Standard for Safety, Standard UL-8750, entitled Light Emitting Diode (LED) Equipment for Use in Lighting (1st ed. 2009). 5 pages.
IPR2019-01094 Exhibit 1012. Celanese CoolPoly® D5502 Thermally Conductive Liquid Crystalline Polymer Specification (“CoolPoly”). 1 page.
IPR2019-01094 Exhibit 1013. Illuminating Engineering Society of North America, IES Lighting Handbook (John E. Kaufman and Howard Haynes eds., Application vol. 1981) (“Lighting Handbook”). 5 pages.
IPR2019-01094 Exhibit 1014. California Energy Commission, PIER Lighting Research Program: Project 2.3 Low-profile LED Luminaires Final Report (Prepared by Lighting Research Center, Jan. 2005) (“PIER LRP”). 70 pages.
IPR2019-01094 Exhibit 1015. Jim Sinopoli, Using DC Power to Save Energy and End the War on Currents, GreenBiz (Nov. 15, 2012), https://www.greenbiz.com/news/2012/11/15/using-dc-power-save-energy-end-war-currents (“Sinopoli”). 6 pages.
IPR2019-01094 Exhibit 1016. Robert W. Johnson, “Thought Leadership White Paper: AC Versus DC Power Distribution” (Nov. 2012) (“Johnson”). 10 pages.
IPR2019-01094 Exhibit 1017. Lumileds, LUXEON Rebel General Purpose Product Datasheet, Specification DS64 (2016) (“Luxeon Rebel”). 26 pages.
IPR2019-01094 Exhibit 1018. U.S. Pat. No. 8,454,204 (“Chang”). 11 pages.
IPR2019-01094 Exhibit 1019. U.S. Department of Energy, CALiPER Benchmark Report: Performance of Incandescent A-Type and Decorative Lamps and LED Replacements (prepared by Pacific National Laboratory, Nov. 2008) (“CALiPER 2008”). 25 pages.
IPR2019-01094 Exhibit 1020. U.S. Pat. No. 3,836,766 (“Auerbach”). 13 pages.
IPR2019-01094 Exhibit 1021. U.S. Department of Energy, CALiPER Application Summary Report 16: LED BR30 and R30 Lamps (prepared by Pacific Northwest National Laboratory, Jul. 2012) (“CALiPER 2012”). 26 pages.
IPR2019-01094 Exhibit 1022. Sandia National Laboratories, Sandia Report: “The Case for a National Research Program on Semiconductor Lighting” (Jul. 2000) (“Haitz”). 24 pages.
IPR2019-01094 Exhibit 1023. Sylvania, Post Top Street Light LED Retrofit Kit Specification, LED40POST (2009) (“Sylvania”). 4 pages.
IPR2019-01094 Exhibit 1024. Webster's New Collegiate Dictionary (1973) (“Webster's”). 2 pages.
IPR2019-01094 Exhibit 1025. 3M Wire Connectors and Tools Catalog 2013 (“3M Catalog”). 22 pages.
IPR2019-01094 Exhibit 1026. Wakefield Semiconductor Heat Sinks and Thermal Products 1974 Catalog (“Wakefield”). 3 pages.
IPR2019-01094 Exhibit 1027. U.S. Department of Energy, Solid-State Lighting Research and Development Portfolio: Multi-Year Program Plan FY'07-FY' 12 (prepared by Navigant Consulting, Inc., Mar. 2006) (“DOE 2006”). 129 pages.
IPR2019-01094 Exhibit 1028. U.S. Department of Energy, Solid-State Lighting Research and Development: Multi-Year Program Plan (Apr. 2013) (“DOE 2013”). 89 pages.
Declaration of Colby Chevalier from Central District of California Civil Docket for Case #: 2:18-cv-07090-CAS-GJS filed Jun. 3, 2019, signed Jun. 3, 2019. 2 pages.
Docket Listing in Inter Partes Review of U.S. Pat. No. 9,964,266. Docket Navegator AMP Plus, Inc. d/b/a Elco Lighting et al v. DMF, Inc. PTAB-IPR2019-01094. Downloaded Mar. 25, 2020. 4 pages.
Petition for Inter Partes Review of U.S. Pat. No. 9,964,266 Pursuant to 37 C.F.R. § 42.100 et seq. AMP Plus Inc. dbd ELCO Lighting v. DMF, INC, PTAB-IPR2019-01500 filed Aug. 14, 2019. 99 pages.
Docket Listing in Inter Partes Review of U.S. Pat. No. 9,964,266 . AMP Plus, Inc. d/b/a ELCO Lighting et al v. DMF, Inc. PTAB-IPR2019-01500. Downloaded Mar. 25, 2020. 3 pages.
Docket Listing in Civil Action No. 2:18-cv-07090. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting et al CDCA-2-18-cv-07090. Downloaded on Mar. 25, 2020. 39 pages.
Civil Action No. 2:19-cv-4519.Complaint For Patent Infringement. DMF, Inc. v. AMP Plus, Inc. d/b/a ELCO Lighting. 52 pages dated May 22, 2019. 23 pages.
Docket Listing in Civil Action No. 2:19-cv-4519. DMF Inc v. AMP Plus, Inc. d/b/a ELCO Lighting et al CDCA-2-19-cv-04519. Downloaded on Mar. 25, 2020. 3 pages.
Decision Denying Institution of Inter Partes Review of U.S. Pat. No. 9,964,266 in IPR2019-01500 dated Mar. 17, 2020. 21 pages.
Defendants' Notice of Prior Art Pursuant To 35 U.S.C. § 282 in Civil Action No. 2:18-cv-07090-CAS-GJS dated Feb. 28, 2020. 7 pages.
Defendant AMP Plus, Inc.'s Opposition to DMF's Motion for Summary Judgement in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 10, 2020. 32 pages.
Declaration of Eric Bretschneider, Ph.D In Support of Amp Plus, Inc.'s Opposition to Dmf, Inc.'s Motion for Partial Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 10, 2020. 210 pages.
Plaintiff DMF's Reply in Support Of Motion For Partial Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 18, 2020. 33 pages.
Declaration of James R. Benya In Support of Plaintiff DMF's Motion for Summary Judgment in Civil Action No. 2:18-cv-07090-CAS-GJS filed Feb. 3, 2020. 193 pages.
Underwriters Laboratories Inc. Standard for Safely. UL 1598. Luminaires Jan. 11, 2020. 12 pages.
Exceptional LED Lighting Technology Product Portfolio. LightingScience 2012. 11 pages.
“Cree LMH2 LED Modules,” Mouser Electronics. Sep. 9, 2012. 4 pages.
Slim Line Disc. EYE LEDs Specification Sheet 2012. 2 pages.
HiBay LED Heat Sink. Wakefield-vette. Dec. 11, 2017. 1 pages.
Thermal Management of Cree® XLamp® LEDs. Cree Application Note. 2004. 19 pages.
Imtra Marine Lighting Fall 2007 Catalog. 32 pages.
Notice of Allowance dated May 18, 2020 from U.S. Appl. No. 15/901,738 , 7 pages.
Non-Final Office Action dated May 20, 2020 for U.S. Appl. No. 15/688,266, 6 pages.
Non-Final Office Action dated May 26, 2020 for U.S. Appl. No. 16/719,361, 10 pages.
Maxim Lighting International, “Wafer LED 7” RD 3000K Wall/Flush Mount, undated.
Maxim Lighting International, “Convert LED Flush Mount”, undated.
Maxim Lighting International, “Views of the Wafer Flush Mount”, undated.
Maxim Lighting International, “Product/Drawing Specification Sheet”, undated.
International Search Report and Written Opinion in PCT/US2020/017331 dated Jun. 22, 2020, 16 pages.
Taiwan Office Action and translation thereof dated Jun. 12, 2020 from Taiwan Application No. 108116564, 8 pages.
Access Lighting Installation Instructions. No. 20870LEDD/20871LEDD/20872LEDD. Dec. 16, 2019. 2 pages.
Model No. 20870LEDD-WH/ACR Infinite Specification Sheet. Access Lighting. Apr. 9, 2020. 1 page.
Notice of Allowance dated Apr. 9, 2020 from U.S. Appl. No. 16/653,497, 7 pages.
Notice of Allowance dated Jul. 10, 2020 from U.S. Appl. No. 29/694,475, 6 pages.
Corrected Notice of Allowability dated Oct. 25, 2018 from U.S. Appl. No. 14/183,424, 3 pages.
Dmf DRD2 Recessed LED Downlight General Retrofit Junction Box Dated: Dec. 18, 2015 Downloaded Jul. 28, 2018, from https://www.a Iconlighting.com/specsheets/DMF/DRD2-Junction-Box-Retrofit-Spec-Sheet .pdf, 6 pages.
Dmf DRD2 Recessed LED Downlight General New Construction 4″, 5″, 6″ Aperture Dated: Aug. 31, 2016 Downloaded Jul. 28, 2018, from https://www. cansandfans.com/sites/default/files/DRD2-General-New-Construction-Spec-Sheet_7_0 .pdf, 9 pages.
Mar. 5, 2016—The DMF Lighting DRD2 Recessed LED Downlight General Retrofit Junction Box—Wet Location Rated is the ideal solution for Commercial LED recessed lighting retrofit applications. web cache https://ww w.alconlighting.com/dmf-drd2m.html (downloaded Jul. 28, 2018), 6 pages.
Ex Parte Quayle Office Action dated Oct. 16, 2018 for U.S. Appl. No. 29/663,037, 7 pages.
Notice of Allowance dated Nov. 19, 2018 from U.S. Appl. No. 29/663,037, 5 pages.
Notice of Allowance dated Nov. 15, 2018 from U.S. Appl. No. 29/663,040, 5 pages.
LED modules advance in performance, standardization questions persist (MAGAZINE). LEDs Magazine. Oct. 29, 2013. Accessed at https://www.ledsmagazine.com/leds-ssl-design/modular-light-engines/article/16695073/led-modules-advance-in-performance-standardization-questions-persist-magazine. 9 pages.
Notice of Allowance dated Jul. 20, 2020 from U.S. Appl. No. 29/648,046, 5 pages.
Octagon Concrete Box Cover with (3) 1/2 in. & (2) 3/4 in. Conduit Knockouts. Garvin. Accessed at https://www.garvinindustries.com/covers-and-device-rings/concrete-slab-box-covers-adaptor-rings/flat-covers-all-styles/cbp?gclid=Cj0KCQjw9b_4BRCMARIsADMUIypJc0K80UHdDTI9C5m4BDzR3U87PRYV1NdQIBFxEWQ2I_3otTCTqEkaAi_DEALw_wcB on Jul. 20, 2020. 1 page.
Notice of Allowance dated Jul. 28, 2020 from U.S. Appl. No. 16/719,361, 8 pages.
Notice of Allowance dated Jul. 29, 2020 from U.S. Appl. No. 16/522,275, 8 pages.
Non-Final Office Action dated Aug. 19, 2020 for U.S. Appl. No. 16/886,365, 16 pages.
Notice of Allowance dated Sep. 8, 2020 from U.S. Appl. No. 29/678,482, 5 pages.
Corrected Notice of Allowance dated Sep. 11, 2020 from U.S. Appl. No. 16/719,361, 2 pages.
Canadian Office Action in Application No. 2931588 dated Aug. 13, 2020, 5 pages.
Corrected Notice of Allowance dated Sep. 14, 2020 from U.S. Appl. No. 16/522,275, 2 pages.
Notice of Allowance dated Sep. 22, 2020 from U.S. Appl. No. 29/683,730, 6 pages.
Notice of Allowance dated Sep. 22, 2020 from U.S. Appl. No. 29/653,142, 6 pages.
Notice of Allowance dated Oct. 27, 2020 from U.S. Appl. No. 29/648,046, 5 pages.
Notice of Allowance dated Oct. 27, 2020 from U.S. Appl. No. 29/694,475, 5 pages.
Notice of Allowance dated Nov. 10, 2020 from U.S. Appl. No. 29/688,143, 6 pages.
Notice of Allowance dated Nov. 10, 2020 from U.S. Appl. No. 29/688,172, 6 pages.
Non-Final Office Action dated Nov. 30, 2020 from U.S. Appl. No. 17/000,702, 7 pages.
Notice of Allowance dated Dec. 2, 2020 from U.S. Appl. No. 29/746,262, 6 pages.
International Search Report and Written Opinion in PCT/US2020/050767 dated Dec. 9, 2020, 25 pages.
Non-Final Office Action dated Dec. 16, 2020 from U.S. Appl. No. 17/080,080, 28 pages.
Canadian Office Action in Application No. 2941051 dated Dec. 8, 2020, 5 pages.
Final Office Action dated Jan. 11, 2021 from U.S. Appl. No. 15/688,266, 7 pages.
Non-Final Office Action dated Jan. 11, 2021 from U.S. Appl. No. 16/725,606, 7 pages.
Non-Final Office Action dated Jan. 13, 2021 from U.S. Appl. No. 17/085,636, 14 pages.
Notice of Allowance dated Jan. 15, 2021 from U.S. Appl. No. 17/000,702, 7 pages.
Notice of Allowance dated Jan. 22, 2021 from U.S. Appl. No. 17/080,080, 14 pages.
Notice of Allowance dated Jan. 22, 2021 from U.S. Appl. No. 16/886,365, 7 pages.
Final Office Action dated Feb. 5, 2021 from U.S. Appl. No. 16/200,393, 7 pages.
“Electrical Boxes” accessed at http://electrical-inspector.blogspot.com/2013/06/electrical-boxes.html Jun. 22, 2013 retrieved from Wayback Machine Archinve.org on Jan. 25, 2021. 12 pages.
“Electrical Boxes Volume and Fill Calculations” accessed at http://electrical-inspector.blogspot.com/2013/06/electrical-boxes-Volume-and-Fill-Calculations.html Jun. 22, 2013 retrieved from Wayback Machine Archinve.org on Jan. 25, 2021. 8 pages.
U.S. Appl. No. 61/881,162, filed Sep. 23, 2013. Prioirty application to US Publication No. 2015/0085500 to Cooper et al. 31 pages.
Non-Final Office Action dated Jan. 19, 2021 from U.S. Appl. No. 17/099,650, 15 pages.
Supplemental Notice of Allowance dated Mar. 10, 2021 from U.S. Appl. No. 16/886,365, 2 pages.
Notice of Allowance dated Apr. 6, 2021 from U.S. Appl. No. 16/200,393, 11 pages.
Non-Final Office Action dated Apr. 12, 2021 from U.S. Appl. No. 29/694,475, 11 pages.
Notice of Allowance dated Apr. 13, 2021 from U.S. Appl. No. 16/725,606, 7 pages.
Notice of Allowance dated Apr. 26, 2021 from U.S. Appl. No. 17/080,080, 11 pages.
Corrected Notice of Allowance dated Apr. 28, 2021 from U.S. Appl. No. 16/725,606, 2 pages.
Notice of Allowance dated May 5, 2021 from U.S. Appl. No. 17/085,636, 8 pages.
Notice of Allowance dated May 14, 2021 from U.S. Appl. No. 16/881,686, 8 pages.
Cree LMH2 LED Modules Product Family Data Sheet. Cree 2011-2014, 18 pages.
Cree LMH2 LED Modules Design Guide. Cree 2011-2015, 23 pages.
Brochure of Elco EL49A, EL49ICA, EL49RA modules. ELCO Lighting Nov. 25, 2009. 1 page.
Image of Elco E347/247 module identified by Elco in response to DMF's Request for Production in Civil Action No. 2:18-cv-07090-CAS-GJS on Aug. 28, 2019. 1 page.
Screenshots from the Deposition of Brandon Cohen in Civil Action No. 2:18-cv-07090-CAS-GJS. Conducted Sep. 2, 2020. 8 pages.
Defendant AMP Plus, Inc.'s Initial Disclosure and Designation of Expert Witnesses in Civil Action No. 2:19-CV-4519-CAS. 37 pages.
Defendant AMP Plus, Inc. D/B/A Elco Lighting's Supplemental Responses to Plaintiff DMF, Inc.'s First Set of Interrogatories (Nos. 1-16) in Civil Action No. 2:19-CV-4519-CAS, Redacted. 13 pages.
Final Written Decision in IPR2019-01094 dated Nov. 19, 2020, 58 pages.
U.S. Appl. No. 29/688,172, filed Apr. 18, 2019, Danesh et al.
U.S. Appl. No. 29/688,143, filed Apr. 18, 2019, Danesh et al.
U.S. Appl. No. 16/883,144, filed May 26, 2020, Nikooyan et al.
U.S. Appl. No. 29/696,830, filed Jul. 1, 2019, Kopitzke.
U.S. Appl. No. 16/182,481, filed Nov. 6, 2018, Kopitzke.
U.S. Appl. No. 29/762,016, filed Dec. 14, 2020, Williams et al.
Related Publications (1)
Number Date Country
20210033268 A1 Feb 2021 US
Provisional Applications (1)
Number Date Country
62151308 Apr 2015 US
Continuations (1)
Number Date Country
Parent 15132875 Apr 2016 US
Child 16779824 US