The invention relates to an outlet device of a solid-bowl screw centrifuge for separating a multi-phase material, which outlet device is arranged on an end wall of a centrifuge drum, which rotates about a longitudinal axis, at an outlet opening formed in the end wall, which outlet device comprises a diverting channel for diverting a liquid phase of the material which passes through the outlet opening and which has an aligned rectilinear weir edge for limiting the emergence of the liquid phase.
In general, solid-bowl screw centrifuges have a rotatable centrifuge drum, which have a drum shell, which is closed to the greatest possible extent, with a mostly horizontally extending rotational axis or longitudinal axis. The centrifuge drum is rotated by means of a drive at high rotational speed. Into the centrifuge drum, a multi-phase material to be centrifuged is introduced by means of an inlet tube that is centrally arranged in most cases. By the rotation of the centrifuge drum, the multi-phase material is then subjected to a high centrifugal force, whereby it attaches inside to the drum shell as a pool. In the material centrifuged in such a way, a phase separation occurs, wherein a comparatively light-weight material in the pool migrates radially inward as a light liquid phase, and comparatively heavy material migrates radially outward as a heavy solid phase. Radially inside, the light liquid phase can be discharged by means of an outlet device, whereas the heavy solid phase is withdrawn from the centrifuge drum by means of a screw.
From DE 20 2011 110 235 U1, a liquid phase outlet port component arranged at a drum of a decanter centrifuge is known, for example, which has a rectilinear channel. This channel forms a track which is arranged spaced from a longitudinal axis of the decanter centrifuge by a track radius. The channel is arranged at an acute angle relative to an end-sided base plate of the drum so as to divert a material reaching an outlet opening present in the base plate sideways of the drum. This allows the material exiting the outlet opening substantially in an axial direction to be diverted laterally outward along the track element for the purpose of energy recovery, before it is dropped at the end of the straight channel or the track at the level of the track radius from the liquid phase outlet port component.
The invention is based on the task of further developing generic outlet devices of a solid-bowl screw centrifuge in order to achieve an effective energy recovery.
The task of the invention is solved by an outlet device of a solid-bowl screw centrifuge for separating a multi-phase material, which outlet device is arranged on an end wall of a centrifuge drum, which rotates about a longitudinal axis, at an outlet opening formed in the end wall, which outlet device comprises a diverting channel for diverting a liquid phase of the material which passes through the outlet opening, wherein the diversion relative to the longitudinal axis amounts to an angle between 50° and 90° with respect to the circumferential direction, and which outlet device has an aligned rectilinear weir edge for limiting the emergence of the liquid phase, wherein the alignment of the weir edge relative to the end wall as viewed from the outlet opening amounts to between 0° relative to the end wall and minus 6° toward the end wall.
According to the invention, the outlet device comprises a diverting channel quite specially formed with respect to the angle of diversion with a thereto quite specially adapted configuration and alignment of the weir edge. Verifications according to the invention have shown that such a configuration altogether results in a particularly strong rebounding effect of the exiting liquid phase at the outlet device. According to the invention, the energy saving for driving the centrifuge drum achieved with the outlet device may again be improved.
The task of the invention is also solved by an associated method for energy recovery at a solid-bowl screw centrifuge.
The outlet device according to the invention is advantageously provided with a diverting channel formed as a channel that is open radially inward. This allows the diverting channel to not become plugged and to be better cleaned during maintenance. Alternatively, the diverting channel may be designed as a tube enclosing the exiting liquid phase.
The diverting channel is further designed to be narrowing, in particular continuously narrowing, preferably in the flow direction of the liquid phase. Such a narrowing allows a nozzle effect to be achieved for the exiting liquid phase. Alternatively, the diverting channel is designed to have substantially equally spaced sidewalls all throughout the entire flow track of the liquid phase.
In an optional embodiment of the invention, it is possible that the alignment of the weir edge relative to the end wall as viewed from the outlet opening amounts to less than 0° relative to the end wall.
In other words, the weir edge extends at an angle of between 0° relative to the end wall and minus 6° toward the end wall.
It is possible for the angle to be less than 0° to minus 6°.
Furthermore, at least one flow guiding element is preferably arranged in the diverting channel. Such a flow guiding element may be designed preferably in the form of a rib or web extending in the flow direction.
The flow guiding element leads to a division of the diverting channel into a plurality of narrow channels in which mostly equally high liquid levels will then develop. This will prevent the exiting liquid phase during the diversion from accumulating at the outside in the diversion curve, which would reduce the energy saving effect as verifications according to the invention have shown.
In the flow direction of the liquid phase, the outlet device according to the invention further advantageously has a flow guiding surface behind the weir edge, over which surface exiting liquid phase flows, and which is designed at least in sections as viewed in the axial direction to have no side wall on one side. Particularly advantageously, the flow guiding surface according to the invention has no side wall especially in the area of the axial projection of the weir edge. The side wall lacking there forms a kind of lateral air inlet area for ambient air to the upper side of the flow guiding surface.
The flow guiding surface preferably has a main flow direction which is oriented to be pivoted above the weir edge toward the end wall as compared to a main flow direction of the liquid phase. Such an orientation of the flow guiding surface achieves that exiting liquid phase will not flow off laterally, thus in the axial direction from the flow guiding surface, even if the side wall is lacking.
The flow guiding surface is in this case designed to be preferably spaced from the end wall on the side of the drum. Alternatively, the flow guiding surface is designed to be adjacent outside at the end wall in the axial direction. Both variants have particular advantages with respect to the attachment and adjustability of the outlet device according to the invention.
The effect of hitherto known outlet devices normally is based on the fact that the liquid phase having passed through the outlet opening is diverted in a channel with side walls and is drained in the such diverted state. Here, the flow velocity of the liquid phase, which will be guided toward the end wall circumference and withdrawn, depends to a large extent on the liquid amount flowing in the channel per unit of time. If the liquid amount is large, a high liquid level will develop in the channel. If the liquid amount is low, a small liquid level will develop. According to the height of the liquid level, however, the amount of recovered energy decreases as verifications according to the invention have shown. The solution according to the invention, however, enables the exiting liquid phase to laterally distribute on a flow guiding surface, whereby the liquid level can be kept comparatively low.
In the outlet device, the diverting channel is further advantageously integrated at least in part into a drum cover of the centrifuge drum. Thus, a particularly compact, space-saving solution can be created which is particularly advantageous in comparatively small machines.
Furthermore, the diverting channel of the outlet device according to the invention may be advantageously mounted to the end wall of the centrifuge drum so as to be adjustable. Adjusting allows the liquid level of the light phase in the centrifuge drum, the so-called pool depth, to be adjusted. The liquid level is in this case determined by the shortest radial distance of the weir edge of the outlet device from the longitudinal axis of the centrifuge drum. The outlet device according to the invention accordingly is adjustable in a particularly preferred manner in the distance from the longitudinal axis and/or in the angle of inclination to the circumferential direction.
The invention is finally also directed to a use of such an outlet device according to the invention on a solid-bowl screw centrifuge for separating a multi-phase material by means of a centrifuge drum.
Hereinafter, exemplary embodiments of the outlet device according to the invention on a solid-bowl screw centrifuge will be explained in more detail with reference to the attached schematic drawings. Shown is in:
In
In
In the flow through direction behind the outlet opening 20 or outside in front of the outlet opening 20, the outlet device 10 is positioned with an associated diverting channel 22. The exiting light phase flows through the outlet opening 20 into this diverting channel 22 and is diverted on this occasion from the direction of the longitudinal axis 14 transversely to the longitudinal axis 14 into the associated circumferential direction of the centrifuge drum. In this manner, the flow pulse of the liquid phase flowing out may be utilized to impart a pulse to the centrifuge drum acting in the rotational direction. This allows driving energy for driving the centrifuge drum to be recovered.
The diverting channel 22 is designed as a radially inward open channel with a first side wall 24, a bottom surface 26 and a second side wall 28. In this case, the side walls 24 and 28 are oriented such that this channel continuously tapers in the flow direction of the exiting light phase. At the end of the gutter-like channel, an associated weir edge 30 of the outlet device 10 is positioned. This weir edge 30 forms the part of the bottom surface 26 projecting furthest radially inward, and this defines the liquid level 18.
The diversion of the outflowing material of the liquid phase by means of the diverting channel 22 relative to the outside of the end wall 12 has an angle 32 of between 50° and 90° from the direction of the longitudinal axis 14 toward the circumferential direction or rotational direction 16 of the centrifuge drum.
The weir edge 30 at the end of the diverting channel 22 is in this case designed to be rectilinear and extends at an angle 34 of between minus 6° toward the end wall 12 and 0° away from the end wall 12. In other words, the weir edge 30 extends at an angle 34 of between 0° relative to the end wall 12 and minus 6° toward the end wall 12.
A rib-shaped flow guiding element 36 is positioned in the diverting channel 22 according to
In
In
Finally, it should be noted that all of the features mentioned in the application documents and in particular in the dependent claims should be provided, even individually or in any combination, with individual protection, despite of the formal back reference made to one or more particular claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2017 130 904.7 | Dec 2017 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2018/086034 | 12/20/2018 | WO | 00 |