This invention relates generally to an outlet guide vane assembly in a gas turbine engine.
An industrial gas turbine engine typically includes a compressor section, a turbine section, and a mid-frame section disposed therebetween. The compressor section includes multiple stages of compressor blades and vanes and an outlet guide vane assembly aft of the last stage blade and vane. The mid-frame section typically includes a compressor exit diffusor and a combustor assembly. The compressor exit diffusor diffuses the compressed air from the compressor section into a plenum through which the compressed air flows to a combustor assembly which mixes the compressed air with fuel and ignites the mixture and transits the ignited mixture to the turbine section for mechanical power. The turbine section includes multiple stages of turbine blades and vanes.
There is an increasing demand for higher efficiencies and power ranges of gas turbine engines. Such demand leads to larger radial temperature gradients and thermal deflections of components, especially at compressor rear stages. These circumstances make it challenging to keep radial clearances between tips of compressor vanes and compressor inner annuals small. A small radial clearance between tips of compressor vanes and compressor inner annuals is important to achieve both higher efficiency and stability of the compressor.
Briefly described, aspects of the present invention relate to a gas turbine engine, an outlet guide vane assembly in a gas turbine engine, and a method for assembling an outlet guide vane assembly in a gas turbine engine.
According to an aspect, a gas turbine engine is presented. The gas turbine engine comprises a compressor section comprising an outlet guide vane assembly. The gas turbine engine comprises a mid-frame section arranged downstream of the compressor section. The mid-frame section comprises an inner compressor exit diffuser. A forward side of the inner compressor exit diffuser interfaces with the outlet guide vane assembly. The gas turbine engine comprises a turbine section arranged downstream of the mid-frame section. The outlet guide vane assembly comprises an inner shroud comprising a circular shape and extending axially. The outlet guide vane assembly comprises an outlet guide vane comprising an airfoil radially extending between an airfoil root and an inner platform. The inner shroud comprises a flange arranged at an aft side and extending radially downwardly. The inner platform comprises a flange arranged at a forward side and extending radially downwardly. The outlet guide vane is connected to the inner shroud at an interface of the inner platform flange and the inner shroud flange.
According to an aspect, an outlet guide vane assembly in a gas turbine is presented. The outlet guide vane assembly comprises an inner shroud comprising a circular shape and extending axially. The outlet guide vane assembly comprises an outlet guide vane comprising an airfoil radially extending between an airfoil root and an inner platform. The inner shroud comprises a flange arranged at an aft side and extending radially downwardly. The inner platform comprises a flange arranged at a forward side and extending radially downwardly. The outlet guide vane is connected to the inner shroud at an interface of the inner platform flange and the inner shroud flange. According to an aspect, a method for assembling an outlet guide vane assembly in a gas turbine engine is presented. The gas turbine engine comprises an inner compressor exit diffuser. A forward side of the inner compressor exit diffuser interfaces the outlet guide vane assembly. The method comprises providing an inner shroud comprising a circular shape and extending axially. The inner shroud comprises a flange arranged at an aft side and extending radially downwardly. The method comprises providing an outlet guide vane comprising an airfoil radially extending between an airfoil root and an inner platform. The inner platform comprises a flange arranged at a forward side and extending radially downwardly. The method comprises connecting the outlet guide vane to the inner shroud at an interface of the inner platform flange and the inner shroud flange.
Various aspects and embodiments of the application as described above and hereinafter may not only be used in the combinations explicitly described, but also in other combinations. Modifications will occur to the skilled person upon reading and understanding of the description.
Exemplary embodiments of the application are explained in further detail with respect to the accompanying drawings. In the drawings:
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
A detailed description related to aspects of the present invention is described hereafter with respect to the accompanying figures.
For illustration purpose, term “axial” or “axially” refers to a direction along a longitudinal axis of a gas turbine engine, term “radial” or “radially” refers to a direction perpendicular to the longitudinal axis of the gas turbine engine, term “downstream” or “aft” refers to a direction along a flow direction, term “upstream” or “forward” refers to a direction against the flow direction.
The compressor section 100 includes multiple stages of compressor rotating blades 111 and compressor stationary vanes 112.
The compressor exit diffusor 220 typically includes an outer compressor exit diffusor 221 and an inner compressor exit diffusor 222. The outer compressor exit diffusor 221 is connected to the inner compressor exit diffusor 222 by bolting to a strut 223. The inner compressor exit diffusor 222 may enclose the shaft cover 16. Forward side of the outer compressor exit diffusor 221 interfaces with the outer casing 12. Forward side of the inner compressor exit diffusor 222 interfaces with the last stage compressor vane 112 and the outlet guide vane assembly 400.
In operation of the gas turbine engine 10, the compressor section 100 inducts air via an inlet duct (not shown). The air is compressed and accelerated in the compressor section 100 while passing through the multiple stages of compressor rotating blades 111 and compressor stationary vanes 112, as indicated by the flow direction A. The compressed air passes through the outlet guide vane assembly 400 and enters the compressor exit diffuser 220. The compressor exit diffuser 200 diffuses the compressed air to the combustor assembly 210. The compressed air is mixed with fuel in the combustor assembly 210. The mixture is ignited and burned in the combustor assembly 210 to form a combustion gas. The combustion gas enters the turbine section 300, as indicated by the flow direction A. The combustion gas is expanded in the turbine section 300 while passing through the multiple stages of turbine stationary vanes 312 and turbine rotating blades 311 to generate mechanical power which drives the rotor 14. The rotor 14 may be linked to an electric generator (not shown) to convert the mechanical power to electrical power. The expanded gas constitutes exhaust gas and exits the gas turbine engine 10.
Referring to
The protrusion 414 of the inner shroud 410 engages the recess 434 of the inner platform 430. The inner shroud 410 is thus positioned in radial direction and axially direction. The protrusion 414 and the recess 434 may be dimensioned to provide a tight fit against each other. The engagement of the protrusion 414 and the recess 434 forms a form fit connection interface between the inner shroud 410 and the outlet guide vane 420. The form fit connection interface may allow enough displacement between the inner shroud 410 and the outlet guide vane 420 for compensating thermal expansions while positioning the inner shroud 410 and the outlet guide vane 420 radially and axially. The form fit connection interface between the protrusion 414 and the recess 434 has large enough contact area to minimize local contact stress concentration which results in less wear and a longer product life.
As shown in the exemplary embodiment of
Referring to
The outlet guide vane assembly 400 may include a plurality of outlet guide vane assembly segments 450. As shown in the exemplary embodiment of
Referring to
According to an aspect, the proposed outlet guide vane assembly 400 may allow simple assembly. The outlet guide vane assembly 400 is assembled using bolted connections and form fit connection interfaces. The outlet guide vane assembly 400 may thus eliminates requirements of special machines and/or expensive techniques for assembly.
According to an aspect, the proposed outlet guide vane assembly 400 may be easy to use during operation. The inner shroud 410 and the outlet guide vane 420 of the outlet guide vane assembly 400 are easy to be replaced. The outlet guide vane assembly segments 450 of the outlet guide vane assembly 400 are easy to be replaced. The outlet guide vane assembly 400 do not require welding, brazing or staking for assembly.
According to an aspect, the proposed outlet guide vane assembly 400 uses form fit connection interfaces in an axially direction between the inner shroud 410 and the outlet guide vane 420 and in a circumferential direction between adjacent outlet guide vanes 420. The form fit connection interface may allow enough displacement for compensating thermal expansions. The form fit connection interfaces have large enough contact area. The large contact area may minimize local contact stress concentration which results less wear and a longer product life.
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings. The invention is not limited in its application to the exemplary embodiment details of construction and the arrangement of components set forth in the description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/029672 | 4/24/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/263394 | 12/30/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6179560 | Kouris et al. | Jan 2001 | B1 |
20090191053 | Bridge | Jul 2009 | A1 |
20180195403 | Kerns et al. | Jul 2018 | A1 |
20200318652 | McCaffrey | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
1790828 | May 2007 | EP |
2354459 | Aug 2011 | EP |
Entry |
---|
PCT International Search Report and Written Opinion of International Searching Authority dated Jul. 28, 2020 corresponding to PCT International Application No. PCT/US2020/029672 filed Apr. 24, 2020. |
Number | Date | Country | |
---|---|---|---|
20220243618 A1 | Aug 2022 | US |
Number | Date | Country | |
---|---|---|---|
62867983 | Jun 2019 | US |