The present invention is directed to an outside air temperature measurement device and method for particular use with vehicles.
The ability to measure the value of the Outside Air Temperature (“OAT”) is a key process supporting the attainment of cabin comfort in heating ventilation and air conditioning (“HVAC”) systems for vehicles that employ Automatic Temperature Control (“ATC”) algorithms. Moreover, an accurate OAT value is required by several algorithms within the HVAC electronic control module other than the ATC algorithm, and finally, OAT is required by other electronic modules within the vehicle, such as the center stack temperature display module or modules that control such features like remote starting of the vehicle.
Due to the substantial thermal noise existing in the engine compartments of automobiles, where ambient temperature sensing devices are typically located for reasons of economy, the acquisition of a timely and accurate estimate of the outside ambient temperature is difficult to achieve once the vehicle has stopped moving for even a short period of time. Difficulty arises from the fact that the temperature sensor, which is usually a type of thermistor, measures not only the desired ambient air temperature component of temperature, but it also measures additional, undesirable “noise” components of engine-generated heat that build up as a result of a lack of air flow over and around the sensing device. In addition to heat being radiated directly from the engine, note that the vehicle's cooling fan is extracting engine heat from the radiator fins and this heat floods the engine compartment. There is no ram air present when a vehicle is stopped to exhaust that hot air. But once the vehicle acquires sufficient velocity, ram air from outside of the engine compartment flows over the sensor and cools it, resulting in a series of exponentially decreasing temperature measurements. In the current state of the art of OAT filtering processes, temperature measurement algorithms do not predict the final value of such a transient, decaying data series. Rather, currently implemented algorithms maintain the last known, trusted value of the OAT until environmental conditions such as vehicle speed, coolant temperature, and engine off time indicate that the sensor is likely to be purged of its thermal noise and is thought to be providing a near accurate representation of the ambient temperature. However, several minutes must expire once vehicle speed is adequate enough to flush the sensing element of retained thermal noise before a numerical convergence can begin to materialize between the last known, trusted value of ambient temperature and the currently reported ambient sensor value. During this time, lacking an accurate OAT temperature, the cabin of the vehicle can be uncomfortable with regard to temperature, freshness of the cabin air, and humidity content of the cabin air.
Techniques that use Newton's Law of Cooling to predict the final value of an exponentially decaying real-time data series from a thermally-monitored engine compartment have not been acceptably successful at deriving accurate numeric thermal model parameters. This failure is due to high-order noise factors that are impossible to characterize in these automotive thermal systems that significantly skew the sensor's data series elements away from an ideal exponential data series, resulting in unstable data predictions that appreciably undershoot or overshoot the true ambient temperature value. A practical characterization of these factors is aggravated by the thermal exponential model's time constant dependency upon vehicle speed.
Existing linear curve fitting and final value estimation approaches which might be employed via Newton's Law of Cooling are good at establishing model parameters from complete, existing data sets that may be available after the thermal transient response has completed, but are not so good at predicting the outcome of real-time data that is necessary to improve the cabin environment.
Also, due to the real-time requirement to predict the final value of the data series, and due to the temperature offset commonly found in exponential numerical models' data series, nonlinear curve fitting approaches must be applied. For example, the value of an exponential decaying numeric converges toward a constant value, which can be, but is not necessarily a value of zero. When the constant value is non-zero, it is often referred to as the “offset”, or the “final value”. But the sensitivity of exponential models to variations in data early in the exponential transient response makes effective use of nonlinear curve fitting approaches difficult, and sometimes incapable of attaining a solution. The solution often diverges rather than converges as the process proceeds due to the deviation of the data from the ideal exponential form.
Other approaches, such as the use of a Kalman filter, weighs predictions based upon model parameters against statistical deviations of the real time data to provide “statistically filtered” data. Such an approach also does not achieve a satisfactory solution to the problem. Because of the data skewing factors previously mentioned, the model required to establish statistical parameters cannot be known ahead of time, yet it is required in the Kalman filter method to correct the current data sample and predict the next. Additionally, the thermal data from the vehicle's environment is not skewed by statistically neutral noise exhibiting an average value of zero, as is required by Kalman filter method, but rather is skewed by thermal characteristics of the system that cannot be practically or economically obtained, and these noise factors generally have a positive bias.
A fast outside air temperature (“OAT”) acquisition process, in accordance with the present invention, reduces the time of acquisition of an accurately determined OAT from minutes to seconds so that cabin comfort and response of temperature sensitive applications is achieved much sooner than with the use of currently employed control processes. The control process of the present invention departs from existing curve fitting approaches because it can determine in real time, rather than after the fact, an exponential mathematical model's characteristic parameters.
In accordance with an example embodiment of the present invention, an OAT measurement device and method derives a useable final value of the OAT within seconds of beginning of vehicle movement, even though positively-biased thermal noise is present in the system. Thus, for automatic temperature control systems, vehicle cabin comfort can be obtained much more quickly.
In accordance with one aspect of the present invention, the final value of the trend of a series of temperature data that exhibits a first order exponential decay is predicted in real time. This invention provides an early determination of a “true” ambient temperature from a sensor even though the sensor is saturated with substantial thermal noise energy from heat generation sources located near the sensor. The process predicts the final value of the exponential data series by developing a mathematical expression (i.e., model) for the exponential data series while being able to discriminate against the thermal noise components existing in the data.
Specifically, the method of the present invention generates three separate areas (i.e. integrals) that are associated with and calculated from the exponentially decaying data series. One of these represent the area under the data series with respect to time, the independent variable, another represents an area that relates the peak value to and the current value of the data series with respect to time, and a third represent a portion of the area bounded by a horizontal line parallel to the horizontal axis that intersects the current datum. The first two areas overlap along the boundary representing the exponential delay and are combined to create a scalar quantity labeled as a “gross” split. The term “gross area” simply implies a representative area that is crude at first, but undergoes a number of iterations as more elements of the data series are received and the area under the curve of the model is refined. Thus, this is a composite area that correlates much more closely to the ideal area found under the analytical exponential delay without the numeric error and positive noise bias that tends to accumulate when the numeric integration is performed alone. Therefore, the gross split tends to moderate the area variances that would occur if only the area under the data series were used, providing a sort of center of mass, and thereby serves to desensitize the computation of the magnitude of the transient response portion of the data series. This magnitude is referred to as the “StepSize”.
Moreover, curve fitting of an exponential data series that exhibits a non-zero final value is difficult because both the StepSize of the transient response and the time constant of the exponential decay must both be estimated from the data series simultaneously (i.e., the non-zero final value, or offset, makes the problem nonlinear). Therefore, because both are unknown, a good initial guess must be made for one and/or the other parameter. Since the final value is quite sensitive to both parameters, an error in one parameter, by virtue of a bad guess, tends to degrade the estimation of the other parameter, or vice versa, and subsequently, the final value estimation suffers. However, the method of the current invention calculates an independent, early estimation of the time constant of the transient response, which is made possible by employing trigonometry to a few of the early data points, thereby eliminating the linearity problem of individual data points having embedded in them the component of the final value (i.e., offset), and also thereby improving the certainty of the initial guess of the time constant. If the time constant is accurately estimated, the accuracy of the StepSize and the subsequent estimation of the final value are greatly enhanced.
The present invention provides a device and method that develops a real-time adaptive exponential model that employs multiple data fitting techniques that together desensitize model parameter estimation due to noise effects. This is particularly useful in employing the exponential time constant to determine a StepSize temperature model parameter which is necessary for estimating the final value of the OAT.
The fundamental thermal model that represents the ambient temperature within a vehicle's engine compartment is represented by the exponential decay equation which exhibits an initial condition temperature and a temperature StepSize, as provided in equation 1:
PresentValue(t)=InitialValue−StepSize*(1−exp(−t/τ)) (EQ. 1)
where PresentValue, InitialValue and StepSize are temperatures, τ is the exponential time constant, and t represents the independent variable time.
Thermal systems in general exhibit both a transient temperature response and a steady state temperature response. The InitialValue is the numeric value at which the system begins its transient response at time t=0. The steady state response, as shown in equation 1a, is the “FinalValue”, which is the numerical value that will be present after the transient response has decayed from the InitialValue to a point where the PresentValue at a later time t will always be the same temperature value. This happens at approximately time t=5*τ. In other words, the FinalValue is the sought after temperature value at which the system is in equilibrium.
The StepSize is defined as the magnitude of the difference between the InitialValue and the Final Value, which can be represented by equation 1a:
StepSize=InitialValue−FinalValue (EQ. 1a)
As an example, the engine compartment temperature can be 85 degrees Celsius, and the outside ambient temperature is 25 degrees Celsius. The expected value of the InitialValue would then be 85 C, and the expected FinalValue would be 25 degrees Celsius. Thus, implementing equation 1a yields a StepSize of 60 degrees Celsius.
In the algorithm described herein, both the StepSize and the FinalValue are unknowns, as well as the time constant, τ. Thus, an estimate of the StepSize is first sought (i.e., the magnitude of the exponential decay). Once the StepSize is found, the FinalValue can be calculated by subtracting the StepSize from the InitialValue. Accordingly, the sought after quantity resulting from accurate model parameter estimation is the FinalValue, which can be represented by equation 1b:
FinalValue=InitialValue−StepSize (EQ. 1b)
where FinalValue is the steady state outside air temperature (OAT) value after thermal noise and stored thermal energy has dissipated from the sensor environment, leaving only the true outside ambient air temperature.
The method 300, in accordance with an example embodiment of the present invention, begins at the Start 305, where controllers are initiated, initial values are determined. The method then proceeds to 310 to begin collecting temperature data 310. As discussed herein, outside air temperature sensors are often located within the engine compartment. After collecting data in real time, the exponential time decay constant τ is determined 320. τ is determined by employing a series of calculations based on collected data. For example, a trigonometrically-based τ estimation can be made that removes the model dependency on the offset (i.e., the InitialValue minus the StepSize) from the curve fitting mathematics. Removing this dependency allows for a linearization of the exponential expression and therefore eliminates the need to iteratively curve fit an inherently non-linear function. An example method of calculating τ begins with analyzing the data, as shown in equation 2:
θt(k)=tan−1((datat(k-1)−datat(k)/(t(k)−t(k-1))) (EQ. 2)
where θt(k) is the angle formed between a line connecting two data points and a horizontal line, parallel to the independent variable axis, connecting the elapsed time between those two data points; data(t) and datat(k-1) are two data points taken from the collected sensor data series; and t(k) and t(k-1) are time values associated with respective data points. Once θt(k) is calculated, it is applied to equation 3:
τ=−t(k)/ln(θt(k)/θ0) (EQ. 3)
where τ is the time constant of the exponential decay; t(k) is the time value since time zero at the beginning of the exponential decay; θt(k) is the computed angle at t(k) from equation 2; and θ0 is an initial angle estimate. In other words, equation 3 results from equation 2 being applied to the initial value and a first data point from the data series. τ can also be estimated from a table of δ temperature data versus θ pairs, depending on the particular application. Table temperature data can include empirical results acquired during experimental testing. In this respect, a broad sample of vehicle data acquired experimentally and listed as example values can serve as a look up table, thereby simplifying and expediting the processing of available data.
Such an approach is advantageous, as the trigonometric calculation is tolerant of variations in the data that would otherwise skew the value of τ iteratively used in the nonlinear approach. The nonlinear approach also lends itself to unreliable and potentially unstable results in the absence of an accurate initial guess for either or both τ and StepSize. In order to calculate an accurate FinalValue, numeric stability is critical in the early stages of the exponential decay, while not so critical is the absolute accuracy of τ, especially given the practical range of initial values and settling times typical for vehicle thermal systems. In other words, a moderately wide range of possible values for the initial angle estimate (which is derived from a potentially noisy data series) yields a suitable estimate of τ. Moreover, the estimates of τ can be refined as the data series progresses.
In accordance with other embodiments of the present invention, alternative methods for the estimation of τ are also provided. Alternative methods may be useful depending on the particular application, including processing capability, design requirements, and other practical considerations. A first example alternative is provided in equation 3a:
τ=−t(k)/((ln(datat(k)−weightOffset−data0+StepSize)/StepSize) (EQ. 3a)
where the weightOffset is introduced to favor data elements that appear to be skewed lower than the model is trending. It is noted that equation 3a is an iterative calculation. In other words, a good estimate of StepSize is required to achieve a suitable value of τ. A second alternative is provided in equation 3b:
τ=(t(k)−t(k/2))/ln((data0−datat(k/2))/(datat(k/2)−datat(k))) (EQ. 3b)
The value of τ may also be determined empirically by testing and calibration of any particular vehicle design.
Once calculated, τ is averaged over successive driving instances, so that τ versus vehicle speed is adaptively characterized over the life of the vehicle. The equation that relates speed to τ is then used as a moderator on future initial computations of τ for a given driving instance. The value of τ is then further stabilized 320 by a least squares approximation of its actual value as data is received in real time during a driving instance. Once an estimate of τ is achieved, τ is then used to estimate 340 StepSize, which is a necessary model parameter used for final temperature value estimation.
A geometrically-oriented calculation (i.e., an integration of the exponential decay progression) is applied to compute the StepSize of the exponential model. For example, by using selected integrals associated with the fundamental model, and by performing the corresponding numerical integration procedures on the sensor data series, a StepSize calculation is performed.
The numeric integral under the real-time exponential decay data series (“exponential data area” (EDA)) is computed, as provided in equation 4:
EDAt(k)=Σn=1 to k(datat(n)+(t(n)−t(n-1))+((data(n-1)−datat(n))*(t(n)−t(n-1)))/2) (EQ. 4)
Then, an area referred to as “gross data area” (GDA), which is the product of the difference between the current data point and the Initial Value times the elapsed time at the current data point is computed according to equation 5:
GDAt(k)=(data0−datat(k))*t(k) (EQ. 5)
Combining the results from equation 4 and equation 5, a quantity referred to as “gross data split” (GDS) can be computed by taking the difference between the two integration values, dividing the difference by two, and adding it to the gross data area, as shown in equation 6:
GDSt(k)=((EDAt(k)−GDAt(k))/2)+GDAt(k) (EQ. 6)
When the gross data split and the gross model split are compared as the data series progresses, they form two lines that substantially overlap, and the congruence of the lines is an indication of the quality of the model parameter fit. Although this congruence check is not necessary to perform during the estimation process, it could be used as either a separate or complimentary means to adjust the StepSize estimation, as well as the estimation of τ. However, the calculations and methods to estimate τ are employed to assure a good estimate. Equation 7, derived from a re-arrangement of the GDS, provides the estimation of StepSize:
StepSizet(k)=((data0*t(k))−(2*GDSt(k)))/((τ*exp(−t(k)/τ)−τ+(t(k)*exp(−t(k)/τ))) (EQ. 7)
Further, a least squares approximation of StepSizet(k), k=0 to N is calculated repeatedly as data is received in real time and the subsequent values of StepSizet(k), k=0 to N are included in this least squares approximation of the (ideally straight-lined) FinalValuet(k), k=0 to N.
In the example of a moving vehicle experiencing driving conditions representative of repeated stop and go driving, the data series has a pronounced “shark's tooth” or “saw tooth” geometric character, as illustrated in
By employing the above techniques and data, the desired final value of the decay (the “true OAT” estimate) is predicted 350 by subtracting the StepSize from the InitialValue. The final value is then filtered 360 to provide an accurate reporting value. In an application of the algorithm, a reported value (i.e., the algorithm output) is the result of exponential filtering that smoothes the transition between the last known reported value (i.e., the originally reported OAT at the time the vehicle was initially stopped and data was collected) and the final, steady state value of the algorithm. As the process is iterative, the method loops from the filtered final value 360 to temperature data collection 310 to develop and refine the reporting value.
Additionally, The FilteredAmbient 440 is based upon an initial filtered value provided in the vehicle data, which is shown as 41 degrees Celsius in
The system 800 can include a system bus 802, a processing unit 804, a system memory 806, memory devices 808 and 810, a communication interface 812 (e.g., a network interface), a communication link 814, a display 816 (e.g., a video screen), and one or more input devices 818 (e.g., the vehicle speed sensor 210 and the temperature sensor 220 of
The additional memory devices 806, 808 and 810 can store data, programs, instructions, database queries in text or compiled form, and any other information that can be needed to operate a computer. The memories 806, 808 and 810 can be implemented as non-transitory computer-readable media (integrated or removable) such as a memory card, disk drive, compact disk (CD), or server accessible over a network. In certain examples, the memories 806, 808 and 810 can store text, images, video, and/or audio, along with appropriate instructions to make the stored data available at an associated display 816 in a human comprehensible form. Additionally, the memory devices 808 and 810 can serve as databases or data storage for the system illustrated in
In operation, the system 800 can be used to implement a control system for a system that governs the interaction between any sensors and associated applications. Computer executable logic for implementing the system resides on one or more of the system memory 806 and the memory devices 808, 810 in accordance with certain examples. The processing unit 804 executes one or more computer executable instructions originating from the system memory 806 and the memory devices 808 and 810. The term “computer readable medium” as used herein refers to a medium that participates in providing instructions to the processing unit 804 for execution, and can include multiple physical memory components linked to the processor via appropriate data connections.
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications. Such improvements, changes and modifications within the skill of the art are intended to be covered by the present invention.
This patent application claims priority to U.S. Provisional Application Ser. No. 61/781,978 filed Mar. 14, 2013, entitled OUTSIDE AIR TEMPERATURE MEASUREMENT DEVICE AND METHOD, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5033473 | Wang | Jul 1991 | A |
5416728 | Rudzewicz | May 1995 | A |
5737243 | Wallrafen | Apr 1998 | A |
5803608 | Randoll | Sep 1998 | A |
6974251 | DeRonne | Dec 2005 | B2 |
7599812 | Kyrtsos | Oct 2009 | B2 |
8577514 | Kyrtsos | Nov 2013 | B2 |
20030101026 | Rabinowitz | May 2003 | A1 |
20040184509 | DeRonne | Sep 2004 | A1 |
20060209921 | Brown | Sep 2006 | A1 |
Entry |
---|
European Search Report EP 14 02 0030 with Written Opinion mailed Aug. 11, 2014. |
Number | Date | Country | |
---|---|---|---|
20140269823 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61781978 | Mar 2013 | US |