The present disclosure relates to protector blocks for mounting in a telecommunications equipment frame. More specifically, the disclosure relates to a protector block integrating interconnections and card based surge protection in a single chassis mountable in a telecommunications equipment housing.
Equipment within a telecommunications infrastructure may be vulnerable to electrical surges. For instance, telecom equipment maintained in an outside plant cabinet might be damaged in an electrical surge caused by a lightning strike. Accordingly, surge protection devices may be provided within a telecommunications infrastructure to protect various equipment and devices.
Traditionally, gas tube type surge protection devices have been used in telecommunication infrastructure to protect telephony devices. As newer technologies, such as DSL, have developed the amount of cabling and speed of telecommunications signal transmission have also increased. Protection in higher speed transmissions requires a quicker reaction time for protective devices. Gas tube devices may not have sufficient reaction time to adequately protect high speed telecommunications infrastructures.
In addition, protection devices and in particular bulky devices like gas tube require additional space within telecommunications equipment housing, which limits the amount of telecommunications equipment a housing or site may hold. Traditional techniques may also use individual protection devices for each circuit further increasing required space. Generally, more space is more costly due to rental cost, lease cost, taxes and so forth. Further, protection devices are traditionally provided separately from interconnection devices such as terminal blocks. Thus, it may be difficult, if not practically impossible to make pre-wired connections between components, such as terminal blocks, and surge protection devices, utilizing traditional techniques.
Accordingly traditional techniques for providing surge protection in a telecommunication infrastructure may provide inadequate protection, add cost due to more required space, and limit the ability to make pre-wired connections.
A protector block is described which integrates equipment termination and interconnections, and surge protection in a single chassis mountable in telecommunications equipment housing. The protector block includes a plurality of terminations configured to interconnect a plurality of network elements in a telecommunications infrastructure. A plurality of surge protections cards are insertable in the chassis to protect interconnected network elements from electrical surges. For example, each of the plurality of terminations may be connected to one of the plurality of surge protection cards, such that a signal pathway is formed via the surge protection card to connect at least two network elements in telecommunications infrastructure. Thus, the protector block provides capability to interconnect a plurality of network elements and provide surge protection in a single chassis.
It should be noted that the following devices are examples and may be further modified, combined and separated without departing from the spirit and scope thereof.
A variety of sites 104(1)-104(j) within infrastructure 102 may maintain various equipment used in the infrastructure 102, where “j” may be any integer from one to “J”. As depicted in
Each site 104 may have one or more housings 106 having a plurality of components 108. A housing refers to a structure to maintain or hold a plurality of components 108 in infrastructure 102 and may be configured in a variety of ways. For example, the housing 106 may be configured as a housing for a cabinet, a terminal block, a panel, a protector block, a chassis, a digital cross-connect, a switch, a hub, a rack, a frame, a bay, a module, an enclosure, an aisle, or other structure for receiving and holding a plurality of components 108. Hereinafter, the terms housing and cabinet will be used for convenience to refer to the variety of structures in infrastructure 102 that may hold components 108. Housings 106 may be inside a building or housings may themselves be configured to be placed outside, e.g. an outside plant cabinet. Housings 106 may typically be configured to protect components 108 from environmental influences. The environment 100 of
Components 108 are pieces of telecommunications equipment in infrastructure 102 that may be kept or maintained in a housing 106 (e.g., a cabinet) within the infrastructure 102. Components for example may be cross-connect panels, modules, terminal blocks, protector blocks, chassis, backplanes, switches, digital radios, repeaters and so forth. Generally, components 108 may be those devices utilized for processing and distributing signals in infrastructure 102 and which may be maintained in a housing 104. Components 108 may also be used to manage cabling in infrastructure 102. Components 108 may terminate, interconnect or cross-connect a plurality of network elements 110 within infrastructure 102. Components 108 may be utilized to distribute telecommunications signals sent to and from infrastructure 102 by one or more end-users 112 using an end-user device 114. The interconnections between telecommunications equipment (e.g., cabinets 106, components 108 and network elements 110) provide signal pathways for telecommunications signals. Interconnection may be via one or more components 108 such as by connectors disposed on a component, such as a protector block, or may be internal to the components 108 such as via cabling within a component 108. Representative interconnections are shown by dashed lines in
Network elements 110 may be implemented in a variety of ways. For example, network elements 110 may be configured as switches, digital cross connect system (DCS), telecommunication panels, terminal blocks, protector blocks, digital radios, fiber optic equipment, network office terminating equipment, and any other telecommunication equipment or devices employed in a telecommunications infrastructure 102. It is noted that one or more of the components 108 within a cabinet 106 may also be a network element 110. In other words, network elements 110 may be found within a cabinet 106 as component 108 of the cabinet. Thus, in a particular cabinet 106 interconnections may be between network elements 110 externally (e.g., not in the same cabinet) or internally (e.g., within the same cabinet). Naturally, internal and external interconnections may be mixed such that a single cabinet 106 will have both internal and external interconnections. Further, such connections for a particular cabinet 106 might be made wholly within a particular site 104. Interconnections may also be made between a plurality of sites 104.
The environment 100 depicts a plurality of end users 112(1)-112(k), where “k” may be any integer from one to “K”. End users 112(1)-112(k) may be communicatively coupled, one to another, via a telecommunication network including infrastructure 102. End users 112 may be implemented in a wide variety of ways, such as consumers, business users, internal users in a private network, and other types of users that use telecommunications signals or transmit and receive telecommunications signals. Additionally, for purposes of the following discussion clients 112(1)-112(k) may also refer to client devices and software which are operable to transmit and receive telecommunications signals. Thus, clients 112(1)-112(k) may be implemented as users, software and devices.
The interconnection of pieces of equipment (e.g. cabinets 106, components 108 and network elements 110, and so forth) provides signal pathways between equipment for signals input to and output from infrastructure 102. For example, end-users 112(1)-112(k) may send signals into the infrastructure 102 and receive signals output from the infrastructure using a variety of end user devices 114. For example, end user 112(2) may communicate with end user 112(k) via end-user device 114 (e.g., a telephone). Thus, signals sent to and from infrastructure by end-users 112 via an end user device 114, may be routed directed, processed, and distributed in a variety of ways via the equipment and interconnections within infrastructure 102.
In an implementation, one or more cabinets 106 may be configured as distribution frame such as a main distribution frame (MDF) or intermediate distribution frame (IDF). A distribution frame has a plurality of components 108. Typically, components 108 in a distribution frame distribute telecommunications signals between network elements 110 within infrastructure 102 and between end-users 112. A distribution frame may provide a centralized interconnection point, for example in a telephone system or digital subscriber line system which provides service to end-users 112, and having equipment for terminating and interconnecting end-user lines (e.g. subscribers). The distribution frame is used to connect end-users lines, one to another, or to connect end user lines through network elements 110 in infrastructure 102. The distribution frame in a site 104 may also holds protective devices and act as a test point between end-users 112 and equipment in infrastructure 102.
In another implementation, a cabinet 106 may be configured for application at an outside plant site such as site 104(5) depicted in
In an implementation, a cabinet 106 has a plurality of components 108 to connect numerous lines. A cabinet 106 may have a plurality of components 108 configured as protector blocks, as depicted in
Further protector blocks 108(1)-108(n) have integrated surge protection devices through which signal pathways between network elements 110 connected to the protector blocks 108(1)-108(n) are routed. In this manner, a protector block 108 provides protection from electrical surges to network elements 110 interconnected via the protector block 108. Thus, in addition to providing an interconnection point for a plurality of network elements 110 in infrastructure 102, protector blocks 108(1)-108(n) also provide integrated protection from electrical surges to the network elements 110. Naturally, protector blocks 108(1)-108(n) are representative of numerous protector blocks which may be found in numerous cabinets 106 within infrastructure 102.
The interior of chassis 200 may be substantially open. The open interior of chassis 200 permits cabling to be run within the protector block 108(1) to make connections to parts of the protector block 108(1) and may provide a location for insertion of surge protector cards as described further below. Chassis 200 may further include a variety of different integrated cable routing mechanisms to route cabling, such as twisted pair cabling, ribbon cables, coaxial lines, and so forth within and around the chassis 200.
Importantly, the protector block 108(1) integrates the ability to interconnect a plurality of network elements 110 within infrastructure (e.g. via twisted pair or other cabling) and protection of the network elements from electrical surges in a single chassis 200. Thus, chassis 200 in
Terminations 202 provide interconnection points in a protector block 108(1) for signals pathways into and out from the protector block 108(1), e.g., transmit and receive signals. Thus, terminations 202 may permit a variety of interconnections between network elements 110(1)-110(p). The network elements 110(1)-110(p), when connected one to another, form a plurality of telecommunication circuits. A telecommunication circuit refers to interconnection (e.g., cross-connection) of at least two network elements 110(1)-110(p). Thus, protector block 108(1) is configured via terminations 202 to form a plurality of circuits. For instance,
The chassis 200 has an array of terminations 202 disposed upon at least one surface of chassis 200 such that the terminations 202 extend through chassis 200 and are supported by the chassis. Terminations may be configured in a variety of ways, such as single post pins, bifurcated pins, insulation displacement connectors, screw terminals and so forth. It is also noted that one or more connectors, such as standard 50 pin or 64 pin connectors, may be used in place of or in conjunction with some or all the terminations 202 to provide the interconnection of network elements 110. Further discussion of connectors used with a protector block 108 for the interconnection of network elements 110 may be found in relation to
Although
The plurality of surge protection cards 204(1)-204(q) may be implemented in a variety of ways. Each surge protection card 204 may be formed from a substrate such as a printed circuit board 206, as depicted in
Thus, network elements, such as network elements as 110(3) and 110(s), may be interconnected via the terminations through surge protection card 204(1). As noted, each such interconnection of network elements 110 is one telecommunication circuit. Further, each interface 208 is configured to connect a respective surge protection card 204 to many signal pathways of many circuits. Thus, each surge protection card 204 is configured to protect numerous circuits and corresponding network elements from electrical surges. In other words, numerous signal pathways corresponding to numerous circuits are routed through a single surge protection card 204.
Surges in a telecommunication infrastructure 102 may occur due to lightning strikes, power faults, malfunction, improper maintenance and so forth. Thus, surge protection cards 204(1)-204(q) are configured to provide protection from these electrical surges. Each surge protector card 204 is depicted having at least one surge protection mechanism 210 disposed on the respective printed circuit board 206. Typically a surge protection card 204 will include a plurality of surge protection mechanisms. Generally, surge protection mechanisms 210 eliminate or mitigate damage to equipment due to electrical surges, e.g., by cutting off the circuit, absorbing the surge, and so forth. Surge protection mechanisms 210 may include but are not limited to, metal oxide varistors, silicon avalanche diodes, fuses, solid state devices, and so forth. Surge protection mechanisms 210 may or may not be consumed by an electrical surge. Numerous surge protection mechanisms 210 of the same or different types maybe used, alone or combination, on the plurality of surge protection cards 204(1)-204(q).
In an implementation, each of the plurality of surge protection cards 204(1)-204(q) protects a plurality of circuits and has at least one surge protection mechanism 210 corresponding to each circuit protected by the respective surge protection card 204. In other words, each surge protection mechanisms 210 is configured to protect a single circuit. Thus, surge protection cards 204(1)-204(q) may have a one to one relationship between surge protection mechanisms 210 and circuits.
In another implementation, a single one of a plurality of surge protection mechanisms 210 disposed on a respective printed circuit board 206 protects numerous circuits. In other words, in a surge situation a single protection mechanism 210 is used to cut off the flow of many circuits, rather than having a one to one relationship between surge protection mechanisms 210 and circuits. For example, a single silicon avalanche diode disposed on surge protector card 204 may protect two or more circuits. Using surge protection mechanisms 210 in a one to many relationship may permit a greater number of circuits to be protected using less space within a chassis 200.
Thus, protector block 108(1) may protect a large number of circuits in a smaller design than using traditional techniques. A protector block having more circuit connections and/or protection for circuits for a given size is desirable, given the cost associated with additional equipment space (e.g., rent, taxes and so forth). Higher density products (more circuits per unit space of equipment housing) are continually sought. A protector block, such as protector block 108(1), having integrated interconnection and surge protection functions permit a higher density than traditional techniques.
In an implementation, protector block 108(2) is configured to removably receive the plurality of surge protection cards 304. For instance, chassis 300 has a plurality of access points 306 corresponding to the plurality of surge protection cards 304. An access point 306 refers to a location within chassis 300 for receiving a surge protection card 304. The plurality of access points 306 may be configured with a variety of features such as a plurality of slots, guides, and/or connectors, clips, “snap-in” connectors, latches and so forth. These features may be used, alone or in combination, to removably receive and secure the plurality of surge protector cards 304 in the chassis 300. Accordingly, the surge protection cards 304 may slide, connect, or “snap” into place in chassis 300, and so forth, at a corresponding access point 306. Thus, surge protection cards 304 may be configured to be inserted and removed from the chassis 300 without using tools. In this way, the surge protector cards 304 are easily maintained or replaced by a technician or other user.
In an implementation, each access point 306 in chassis has a corresponding card edge connector 308. A plurality of card edge connectors are depicted in
The set of connectors 310 and 312 may be configured in a variety of ways. For example, the connectors may be 50 pin or 64 pin type connectors commonly used within the telecommunications industry. Connectors 310 and 312 may also be configured as various other types and sizes suitable for making interconnections of equipment (e.g., cabinets 106, components 108 and network elements 110) in a telecommunication infrastructure 102. It is noted that connectors 310 may be the same or different connectors than connectors 312.
Reference is now made to
As illustrated in
As previously described, the sets of terminations 302(1) and 302(2) are also connected respectively to connectors 310 and the plurality of surge protection cards 304. Further, each of surge protection cards 304 are coupled to a corresponding one of connectors 312. Accordingly, the interconnections of terminations 302(1) with 302(2) via cabling 314 provide a variety of signal pathways between sets of connectors 310 and 312. These interconnections form a plurality of circuits between network elements 110 connected to protector block 108(2) via connectors 310 and connectors 312, respectively. The signal pathways for each circuit are routed through one of surge protection cards 304, thereby protecting the corresponding network elements 110 from electrical surges.
It is noted that terminations 302(1) and 302(2) may be interconnected in a variety of ways to form different interconnections of network elements 110. Numerous interconnections represented in
In an implementation, protector block 108(2) may be configured to provide surge protection to circuits formed without the interconnection of terminations sets 302(1) and 302(2), one to another as just described. For instance, rather than forming interconnections of terminations 302 on the same protector block 108(2) (e.g., between sets 302(1) and 302(2)), terminations 302 may be connected to other equipment (cabinets 106, components 108, network elements 110). Circuits are formed between equipment connected to the terminations 302 and to a corresponding one of the plurality of connectors, through a respective surge protection card 304, which is coupled to both the terminations and a connector.
In this implementation, chassis 300 may have an access point 306 corresponding to each connector (e.g, each of connectors 310 and 312) and configured to receive a surge protection card 304. Thus, although the chassis 300 depicted in
In addition, surge protector cards 304 may be inserted and removed from chassis 300, on the same side of chassis 300 as the terminations 302 (e.g., the “forward facing” side).
The printed circuit board 400 further includes an interface 404 on one edge. The interface 404 may be configured in a variety of ways, such as a pin connector, a card edge interface and so forth. In the implementation depicted in
A protector block 108 with a plurality of surge protector cards 304 may protect many circuits. In the implementation depicted in
Exemplary Procedures
The following discussion describes techniques that may be implemented utilizing the previously described systems and devices. The procedures are shown as a set of blocks that specify operations performed and are not necessarily limited to the orders shown for performing the operations by the respective blocks.
Another portion is formed having a plurality of access points each configured to receive one of a plurality of printed circuit boards connectable to a plurality of the terminations to provide surge protection to network elements (block 504). For instance, a plurality of access points 306 may be formed within chassis 300 of terminal block 108(2) depicted in
Although the invention has been described in language specific to structural features and/or methodological acts, it is to be understood that the invention defined in the appended claims is not necessarily limited to the specific features or acts described. Rather, the specific features and acts are disclosed as exemplary forms of implementing the claimed invention.
Number | Date | Country | |
---|---|---|---|
60687629 | Jun 2005 | US |