This application claims domestic priority from U.S. Provisional Patent Application Ser. No. 62/892,157, filed on Aug. 27, 2019, the content of which is hereby incorporated by reference.
This invention relates generally to cover member that is placed on a pre-cast concrete structural member to cover an access opening for a lift hook or lift bar and, more particularly, to a cover member that has a secure attachment device that enhances the retention of the cover member on the pre-cast concrete structural member.
Pre-cast concrete structural members are typically formed remotely from the site on which the structural member is to be used utilizing concrete and reinforcing steel hooks and other members. Such pre-cast concrete structural members are used in foundations, buildings, and parking garages, to provide examples. These pre-cast concrete structural members are large and heavy members, and have to be lifted from the form unto a large truck or other transport device to be moved to the job site. Once at the job site, the pre-cast structural member has to be lifted off the transport device and installed at the proper location for utilization. Lifting and placing pre-cast concrete structural members typically requires a crane that is connected to a lift hook or lift bar, sometimes referred to as the hook or the anchor, which is embedded into the pre-cast structural member below the surface of the member. The pre-cast member can then be lifted and moved as needed. The lift hook or lift bar is usually located in a pocket formed for the exposure of lift hook or lift bar. Once the pre-cast structural member is installed at the job site, covering the pocket is desired to prevent accumulation of debris, moisture, bird's nests, etc., in the exposed pocket.
Cover members have been developed to be placed on top of the open pocket, resting on the outer surface of the pre-cast structural member and covering the pocket from exposure. One such cover member can be found in U.S. Design Pat. No. D558,365, granted to Harry A. Thompson, the Applicant herein, on Dec. 25, 2007. This particular cover member is sized to cover conventional pockets with a pair of protrusions that project into the pocket with a valley between the protrusions that receives the top portion of the lift bar. This cover member has an oval circumferential flange that rests on the exterior surface of the pre-cast structural member around the pocket formed for access to the lift bar. The circumferential flange is secured to the exterior surface of the pre-cast structural member by an adhesive. One possible problem with this cover member configuration is that the adhesive securing the circumferential flange to the exterior surface of the pre-cast structural member can weaken with age and exposure to the elements to allow the cover member to be removed or even simply fall off the structural member, exposing the pocket.
U.S. Pat. No. 5,528,867, granted to Harry A. Thompson, the Applicant herein, on Jun. 25, 1996, discloses a different configuration of a cover member in which the hollow vessel is formed with an inwardly tapered aperture that incorporates slits that allow expansion of the hollow vessel to encompass the hook head and be secured thereon. U.S. Pat. No. 7,222,460, granted to Sidney E. Francies III, et al., on May 29, 2007, discloses yet a different configuration of a cover member intended to be secured on an anchor or hook members used for lifting the pre-cast concrete structural member. In the Francies patent the central portion of the underside of the cover member is formed with a receiver having a plurality of flexible fins that yield around the anchor or hook members and secure the cover member to the anchor or hook members. Installation is done by pressing the receiver over the anchor or hook members and pressing downwardly onto the structural member until the flange engages the exterior surface of the structural member. In this manner, the cover member keeps the pocket from being exposed externally.
It is desirable to provide a cover member that incorporates a fastening device that firmly secures the cover member to the hook or anchor residing in a pocket formed in a pre-cast concrete structural member.
It is an object of this invention to overcome the disadvantages of the prior art by providing a cover member for use on a pre-cast concrete structural member that firmly secures to the anchor within a pocket covered by the cover member.
It is another object of this invention that the oval cover member can be secured to the anchor within the pocket by a cable tie.
It is a feature of this invention that the cover member is formed with an exterior dome portion made of high density polyethylene and covers the lift anchor formed within a pocket of the pre-cast structural member.
It is another feature of this invention that the underside of the cover member is formed with a pair of protrusions forming a valley therebetween.
It is an advantage of this invention that the protrusions are formed to be positioned on opposing sides of the anchor.
It is another advantage of this invention that the anchor can be positioned within the valley between the opposing protrusions.
It is still another feature of this invention that the first protrusion is formed with an opening of sufficient size to permit the placement of a cable tie into the opening.
It is yet another feature of this invention that the second protrusion is formed with an opening for the passage of the body portion of the cable tie.
It is still another advantage of this invention that the opening in the second protrusion is not large enough to permit the passage of the head of the cable tie therethrough.
It is a further feature of this invention that the cover member is formed with a peripheral channel on the underside thereof for the placement of a gasket to be seated within said channel to seal the opening.
It is still another object of this invention to provide a shaped cover member for covering and sealing a pocket in a pre-cast concrete structural member concealing a lift member in which the cover member can be secured to the lift member with a cable tie, which could be any shape that covers the pocket including oval, round or other shapes and in which the cover member is inexpensive in use, carefree of maintenance and simple and effective in utilization.
These and other objects, features and advantages are accomplished according to the instant invention by providing an oval cover member formed of high density polyethylene and sized to cover a pocket in which a lift member is secured in a pre-cast concrete structural member. The cover member can be secured to the lift member by a cable tie that is threaded through the opening of a first protrusion and back through a smaller opening in a second protrusion and pulled to draw the cover member tightly against the concrete structural member. The opposing protrusions form a valley therebetween for the positioning of the lift member. The smaller opening in the second protrusion is sized to be too small for the passage of the head of the cable tie to enable the cover member to be tightly secured to the lift member. The cover member is formed with a peripheral channel in which a gasket or adhesive can be placed to seal the cover member against the surface of the concrete structural member.
The advantages of this invention will become apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the accompanying drawings wherein:
Referring now to
The cover member 10 is preferably manufactured from a high density polyethylene (HDPE) material that may incorporate a color concentrate and an ultraviolet inhibitor, as is known in the art. One skilled in the art will understand that the HDPE material is impervious to water and, thus, can prevent the entrance of moisture into the pocket 2 of the pre-cast structural member 1 which helps to limit any deterioration of the anchor. Furthermore, the ultraviolet inhibitor limits exposure of the anchor to ultraviolet rays which can further deteriorate the anchor.
The cover member 10 is formed in a shape that corresponds to shape of the pocket in which the anchor is exposed for engagement by lifting devices (not shown), which typically is an elongated oval shape, but could be other suitable shapes capable of covering the pocket in which the lift hook is located. The top surface 12 of the cover member, which is exposed to the atmosphere when installed onto the exterior surface of the pre-cast concrete structural member, as will be described in greater detail below, is preferable a smooth, flat dome elevated above a peripheral flange 15 extending around the perimeter of the cover member 10. The elevation of the top surface 12 above the peripheral flange 15 provides some strength in the cover member 10 to resist inwardly directed forces, such as from a person stepping on the cover member 10. As will be described in greater detail below, the dome 12 can be molded into substantially any ornamental shape as desired so long as the dome 12 or top surface provides a passage for the cable tie to fit between the inside top surface of the valley 19 and shaped top surface 12.
Similar to the cover member disclosed in U.S. Design Pat. No. D558,365, granted to Harry A. Thompson on Dec. 25, 2007, the underside of the cover member 10 is formed with a pair of integral protrusions 16, 20 that project below the surface of the peripheral flange 15 and extend into the void formed by the pocket 2 in the pre-cast concrete structure member 1. The cover member 10 defines a valley 19 between the two protrusions 16, 20, in which the anchor 5 may reside if appropriately positioned within the pocket 2. As will be described in greater detail below, the first protrusion 16 has a downwardly extending, sloped vertical wall 17 that terminates at a level that is spaced below the corresponding vertically sloped wall 22 of the second protrusion 20. The first protrusion 16 is formed with a large opening 18 defined by the terminus of the first vertical wall 17. The drawing figures depict this opening 18 as encompassing the entire lower portion of the first protrusion 16, but this opening 18 can be significantly smaller, so long as adequate access into the protrusion 16 is provided by the opening 18.
The second protrusion 20 has a closed surface, except for an access opening 25 formed at an interior position of the second protrusion 20 next to the valley 19. The closed surface of the second protrusion 20 incorporates the access opening 25 formed as a third protrusion 30 extending downwardly from the closed surface of the second protrusion 20 and having the access opening 25 at the end of the third protrusion 30 positioned at approximately the same level as the opening 18 in the first protrusion 16. The underside 14 of the peripheral flange 15 presents a flat surface around the periphery of the cover member 10 that is intended to engage the exterior surface 3 of the pre-cast concrete structural member 1 around the pocket 2. Accordingly, the peripheral flange 15 of the cover member 10 can be sealed against the exterior surface 3 of the structural member 1 by an optional elastomeric gasket S, depicted in
Referring now to
One skilled in the art will recognize that the size of the access opening 25 at the end of the third protrusion 30 must be smaller than the size of the fastening head 42 of the cable tie 40. This size relationship prevents the fastening head 42 from being pulled into the third protrusion 30, which would result is a loose connection between the cover member 10 and the anchor 5. As noted above, the size of the opening 18 in the first protrusion 16 requires that the installer of the cover member 10 be able to grasp the loose end of the elongated body 44 of the cable tie 40 so that the elongated body 44 can be directed into engagement with the fastening head 42. The elongated body 44 of the cable tie 40 will preferably have sufficient length to encircle the valley 19 by first passing into the third protrusion 30, then out of the first protrusion 10, through the opening 6 at the top of the anchor 5, then through the fastening head 42 and be extended past the peripheral flange 15 to be operatively accessed along the exterior surface 3 of the pre-cast concrete structural member 1.
In operation, the cover member 10 is installed over the pocket 2 after the pre-cast structural member 1 has been properly installed at the job site. From this point in time, but before the completion of the project for which the pre-cast concrete structural member has been installed, the cover member 10 can be installed over the pocket 2 exposing the anchor 5 for engagement with a lifting mechanism, such as a crane. To affect the installation, the cover member 10 is fitted with the fastening device 40, preferably a large cable tie 40, by passing the elongated body 44 of the cable tie 40 through the access opening 25 at the bottom of the third protrusion 30. The installer will then reach into the opening 18 at the end of the first protrusion 16 to redirect the end of the elongated body 44 out of the first protrusion 16 and then back through the hole 6 at the top of the exposed anchor 5.
The installer then inserts the end of the elongated body 44 through the fastening head 42 and pulls the elongated body 44 far enough through the fastening head 42 that the distal end of the body 44 can be positioned past the peripheral flange 15 of the cover member 10. At this point, the cover member 10 is loosely fitted to the anchor 5. In the situation where the installer desires to install an elastomeric seal S, the seal S can be installed within a small peripheral channel 13 around the circumference of the cover member 10 on the inside of the peripheral flange 15, as is shown in phantom in
Optionally, the installer may want to place adhesive on the underside of the peripheral flange 15, whether or not an elastomeric seal (not shown) is installed on the cover member 10, as noted above. In this event, the installer will apply the adhesive to the underside of the peripheral flange 15 and/or on the corresponding exterior surface 3 of the pre-cast concrete structural member 1 before completing the manipulating of the cable tie 40. Once the installer is ready to complete the affixation of the cover member 10 over the pocket 2, the installer grasps the distal end of the elongated body 44 extending past the underside of the peripheral flange 15, and pulls the distal end of the elongated body 44 until the cable tie 40 is tight. The pulling of the distal end of the elongated body 44 draws the fastening head 42 into a tight engagement with the lower end of the third protrusion 30 as the elongated body 44 advances through the fastening head 42. The end result is best seen in
One skilled in the art will recognize that once the cover member 10 is installed and secured to the anchor 5, as described above, the cover member 10 cannot be conveniently removed. Removal of the cover member 10 would best be accomplished by cutting the top surface dome 12 of the cover member 10 along the minor axis of the oval shape, e.g. above the position of the valley 19. An appropriate cut through the top surface dome 12 will expose the cable tie 40 passing over the valley 19 whereupon the cable tie 40 can be severed and the connection of the cover member 10 to the anchor 5 disrupted. Unless adhesive was used on the underside of the peripheral flange 15, the cover member 10 should then be easily removed. If adhesive had been applied at the time of installation, then the connection between the peripheral flange 15 and the corresponding exterior surface 3 of the structural member would have to be broken, which would likely result in further destruction of the cover member 10.
It will be understood that changes in the details, materials, steps and arrangements of parts which have been described and illustrated to explain the nature of the invention will occur to and may be made by those skilled in the art upon a reading of this disclosure within the principles and scope of the invention. The foregoing description illustrates the preferred embodiment of the invention; however, concepts, as based upon the description, may be employed in other embodiments without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5528867 | Thompson | Jun 1996 | A |
7222460 | Francies, III et al. | May 2007 | B2 |
D558365 | Thompson | Dec 2007 | S |
7836645 | Zierer | Nov 2010 | B1 |
20020195537 | Kelly | Dec 2002 | A1 |
20030140576 | Sanftleben | Jul 2003 | A1 |
20190284815 | Schlipper | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
103958802 | Jul 2014 | CN |
202007010509 | Jan 2009 | DE |
102020203116 | Sep 2021 | DE |
2224075 | Sep 2010 | EP |
WO-2014037624 | Mar 2014 | WO |
WO-2014088913 | Jun 2014 | WO |
WO-2018157212 | Sep 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20220034111 A1 | Feb 2022 | US |