The present subject matter relates generally to oven appliances, and more particularly, to door and camera assemblies for oven appliances.
Conventional residential and commercial oven appliances generally include a cabinet that includes a cooking chamber for receipt of food items for cooking. Multiple heating elements are positioned within the cooking chamber to provide heat to food items located therein. The heating elements can include, for example, radiant heating elements, such as a bake heating assembly positioned at a bottom of the cooking chamber and/or a separate broiler heating assembly positioned at a top of the cooking chamber.
Notably, it is desirable to provide a camera for generating images of food during a cooking process, e.g., to facilitate monitoring of the cooking progress. However, conventional cameras are positioned at a fixed location within the cabinet or inside the door. While such cameras may provide good visibility of one particular rack location, visibility of food items being cooked at other locations in the cavity may have an impaired view. For example, food being cooked on the bottom rack or the top rack may have minimal visibility or no visibility at all. Alternatively, a fisheye lens could be used on the camera to obtain a wider field of view, but such a lens frequently results in image distortion. In addition, during certain high temperature cooking events, such as broiling or self-clean operating cycles, fixed cameras may be exposed to very large thermal loads that may result in camera degradation or failure.
Accordingly, an oven appliance that includes an improved camera assembly would be useful. More particularly, an oven appliance with a camera assembly that provides improved visibility at multiple cooking locations as well as enables safe high temperature operation would be particularly beneficial.
Aspects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In a first example embodiment, an oven appliance defining a vertical, a lateral, and a transverse direction is provided. The oven appliance includes a cooking chamber positioned within cabinet, a heating element positioned within cabinet for heating the cooking chamber, a door rotatably mounted to the cabinet for providing selective access to the cooking chamber and a camera assembly. The camera assembly includes a guide rail extending along the vertical direction, a camera movably mounted to the guide rail, a drive mechanism mechanically coupled to the camera for moving the camera along the guide rail, and a heat shield extending around the guide rail and defining a protective cavity for receiving the camera and providing a thermal break from the heating element in the cooking chamber.
In a second example embodiment, a camera assembly positioned within a door of an oven appliance is provided. The camera assembly includes a guide rail, a camera movably mounted to the guide rail, a drive mechanism mechanically coupled to the camera for moving the camera along the guide rail, and a heat shield extending around the guide rail and defining a protective cavity for receiving the camera and providing a thermal break from a heating element of the oven appliance.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Within cabinet 102 is a single cooking chamber 120 which is configured for the receipt of one or more food items to be cooked. However, it should be appreciated that oven appliance 100 is provided by way of example only, and aspects of the present subject matter may be used in any suitable cooking appliance, such as a gas or electric double oven range appliance. For example, although oven appliance 100 is illustrated as a wall oven installed within a bank of cabinets, it should be appreciated that aspects of the present subject matter may be used in free-standing oven appliances, double ovens, etc. Moreover, aspects of the present subject matter may be used in any other consumer or commercial appliance where it is desirable to use a camera within another suitable appliance. Thus, the example embodiment shown in
Oven appliance 100 includes a door 124 rotatably attached to cabinet 102 in order to permit selective access to cooking chamber 120. Handle 126 is mounted to door 124 to assist a user with opening and closing door 124 in order to access cooking chamber 120. As an example, a user can pull on handle 126 mounted to door 124 to open or close door 124 and access cooking chamber 120. One or more transparent viewing windows 128 (
In general, cooking chamber 120 is defined by a plurality of chamber walls 130 (
Oven appliance may further include one or more heating elements (identified generally by reference numeral 150) positioned within cabinet 102 or may otherwise be in thermal communication with cooking chamber 120 for regulating the temperature within cooking chamber 120. For example, heating elements 150 may be electric resistance heating elements, gas burners, microwave heating elements, halogen heating elements, or suitable combinations thereof. According to an exemplary embodiment, oven appliance 100 is a self-cleaning oven. In this regard, heating elements 150 may be configured for heating cooking chamber 120 to a very high temperature (e.g., 800° F. or higher) in order to burn off any food residue or otherwise clean cooking chamber 120.
Specifically, an upper gas heating element 154 (also referred to as a broil heating element or gas burner) may be positioned in cabinet 102, e.g., at a top portion of cooking chamber 120, and a lower gas heating element 156 (also referred to as a bake heating element or gas burner) may be positioned at a bottom portion of cooking chamber 120. Upper gas heating element 154 and lower gas heating element 156 may be used independently or simultaneously to heat cooking chamber 120, perform a baking or broil operation, perform a cleaning cycle, etc. The size and heat output of gas heating elements 154, 156 can be selected based on the, e.g., the size of oven appliance 100 or the desired heat output. Oven appliance 100 may include any other suitable number, type, and configuration of heating elements 150 within cabinet 102. For example, oven appliance 100 may further include electric heating elements, induction heating elements, or any other suitable heat generating device.
A user interface panel 160 is located within convenient reach of a user of the oven appliance 100. For this example embodiment, user interface panel 160 includes user inputs 162 that may generally be configured for regulating heating elements 150 or operation of oven appliance 100. In this manner, user inputs 162 allow the user to activate each heating element 150 and determine the amount of heat input provided by each heating element 150 to a cooking food items within cooking chamber 120. Although shown with user inputs 162, it should be understood that user inputs 162 and the configuration of oven appliance 100 shown in
Generally, oven appliance 100 may include a controller 166 in operative communication with user interface panel 160. User interface panel 160 of oven appliance 100 may be in communication with controller 166 via, for example, one or more signal lines or shared communication busses, and signals generated in controller 166 operate oven appliance 100 in response to user input via user inputs 162. Input/Output (“I/O”) signals may be routed between controller 166 and various operational components of oven appliance 100 such that operation of oven appliance 100 can be regulated by controller 166. In addition, controller 166 may also be communication with one or more sensors, such as temperature sensor 168 (
Controller 166 is a “processing device” or “controller” and may be embodied as described herein. Controller 166 may include a memory and one or more microprocessors, microcontrollers, application-specific integrated circuits (ASICS), CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of oven appliance 100, and controller 166 is not restricted necessarily to a single element. The memory may represent random access memory such as DRAM, or read only memory such as ROM, electrically erasable, programmable read only memory (EEPROM), or FLASH. In one embodiment, the processor executes programming instructions stored in memory. The memory may be a separate component from the processor or may be included onboard within the processor. Alternatively, controller 166 may be constructed without using a microprocessor, e.g., using a combination of discrete analog and/or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
Referring now to
Notably, installing a camera in a cooking appliance where it may be exposed to high temperatures can result in operability issues, poor image quality, and component failure. For example, conventional cameras are positioned outside of the cooking chamber to ensure a safe operating temperature. Alternatively, conventional cameras require complex and costly cooling system to maintain a safe operating temperature for the camera and its temperature sensitive electronic components. Therefore, aspects of the present subject matter are directed to features of door 124 and camera assembly 200 which permit safe operation of camera 202 while ensuring high quality images.
As best shown in
Specifically, according to the illustrated embodiment, inner door panel 210 includes an inner glass pane 214 (which is closest to or faces cooking chamber 120) and outer door panel 212 includes an outer glass pane 216. A spacer bracket 218 is positioned between inner glass pane 214 and outer glass pane 216 to maintain a gap between the two glass panes. Specifically, inner glass pane 214 and outer glass pane 216 are separated by an air gap 220 along the transverse direction T (e.g., when door 124 is closed). In general, air gap 220 defines helps insulate cooking chamber 120. Although inner door panel 210 and outer door panel 212 are illustrated herein as having single glass panes, it should be appreciated that each assembly may include multiple glass panes or any other suitable construction according to alternative embodiments. For example, door panels 210, 212 may include any suitable number of transparent windows formed from any suitable material may be used according to alternative embodiments.
As shown in
Although camera assembly 200 is described herein is being configured for moving camera 202 along the vertical direction V, it should be appreciated that according to alternative embodiments, aspects of the present subject matter may facilitate movement along the horizontal direction or any other suitable angle and/or direction. In addition, according to the illustrated embodiment, camera assembly 200 is positioned within the door 124, e.g., between inner door panel 210 and outer door panel 212. However, it should be appreciated that according to alternative embodiments, camera assembly 200 may be positioned elsewhere within cabinet 102, such as along a sidewall 130 of cooking chamber 120.
According to exemplary embodiments, camera assembly 200 may include any suitable number of guide rails 230 positioned in any suitable manner and having any suitable size or geometry. For example, the embodiment illustrated in
Referring now specifically to the embodiment illustrated in
As shown, lead screw 234 may be an elongated threaded shaft with screw threads 240 that are configured for engaging complementary threads (not shown) defined within a camera housing 242. In this regard, according to the illustrated embodiment, camera 202 may be mounted to guide rails 230 and lead screw 234 using camera housing 242, which may be formed using any suitable material and which extends along the lateral direction L for mechanically engaging lead screw 234 and slidably mounting to guide rail 230. Specifically, camera housing 242 defines a first end 244 and a second end 246 spaced apart along the lateral direction L. Guide rail 230 slidably couples to first end 244 and lead screw 234 mechanically engages second end 246.
Camera housing 242 may generally define any suitable features or geometries for receiving camera 202 and for engaging guide rails 230 and/or lead screw 234. In this regard, for example, camera assembly may define one or more bushings 250 for providing a low friction interface between camera housing 242 and guide rail 230. Specifically, according to the illustrated embodiment, camera housing defines two bushings 250 spaced vertically within first end 244 of camera housing 242 for facilitating proper alignment and smooth sliding of camera housing 242. In addition, as mentioned above, second end 246 of camera housing 242 may define complementary threads for engaging screw threads 240 of lead screw 234.
As used herein, “motor” may refer to any suitable drive motor and/or transmission assembly for rotating lead screw 234 or otherwise moving camera 202 along guide rail 230. For example, drive motor 236 may be a brushless DC electric motor, a stepper motor, or any other suitable type or configuration of motor. For example, drive motor 236 may be an AC motor, an induction motor, a permanent magnet synchronous motor, or any other suitable type of AC motor. In addition, drive motor 236 may include any suitable transmission assemblies, clutch mechanisms, or other components. According to exemplary embodiments, controller 166 may be in operative communication with drive motor 236 for regulating operation of drive motor 236 and movement of camera 202.
The embodiment of camera assembly 200 illustrated in
As shown in
Therefore, according to exemplary aspects of the present subject matter, controller 166 may be configured for operating drive motor 236 to selectively position camera housing 242 and camera 202 at any suitable vertical location within door 124 for taking photos or video of a particular rack location or food item positioned within cooking chamber 120. In addition, according to exemplary embodiments, camera assembly 200 or camera housing 242 may further include features for moving camera 202 along a lateral direction L, for angling camera 202 relative to a horizontal plane or the transverse direction T, or for regulating the position or operation of camera 202 any other suitable manner.
Referring still to
According to the illustrated embodiment, heat shield 260 is positioned proximate a bottom of door 124 within air gap 220. As shown, camera housing 242 may slide entirely within protective cavity 262. Specifically, as illustrated, heat shield 260 may be U-shaped and may include a front plate 264 positioned proximate inner door panel 210 and two side plates 266 that extend from the front plate 264 and inner door panel 210 toward outer panel 212 for substantially enclosing protective cavity 262. It should be appreciated that according to alternative embodiments, heat shield 260 may be constructed from any other suitable material and may have any other suitable size, geometry, and cooling features.
According to exemplary embodiments, controller 166 may be programmed for protecting camera 202 during high temperature operation of oven appliance 100. Specifically, for example, high-temperature operation may refer to broil cycles, cooking cycles that operate above is particular temperature threshold, such as 500° F. or 600° F., or a self-cleaning cycle when cooking chamber 120 may reach temperatures of 800° F. or greater. Thus, when a user initiates such a high temperature operating cycle using user interface panel 160, controller 166 may move camera 202 into protective cavity 262 to prevent damage. Alternatively, controller 166 may monitor the chamber temperature, e.g., using temperature sensor 168, and may move camera 202 into protective cavity 262 when the chamber temperature exceeds a predetermined temperature threshold, such as about 400° F., about 500° F., about 600° F., about 700° F., about 800° F., or greater.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.