The present subject matter relates generally to oven appliances and more particularly to oven appliances having improved convection cooking performance.
Oven appliances generally include a cabinet with a cooking chamber positioned therein. The cooking chamber is configured for receipt of food articles for cooking. The oven appliance also includes a heating element for generating heat energy for cooking. The heating element can be, e.g., an electric resistance element or a gas burner. Certain oven appliances also include features for forcing movement of heated air within the cooking chamber. Such oven appliances are generally referred to as convection ovens.
In typical conventional ovens, heated air within the cooking chamber can be circulated with a fan when in a convection mode. The fan initiates a flow of heated air through a plurality of slots in a top wall of the oven's cabinet. The heated air exiting the slots in the top wall generally flows in a vertical direction. Such a configuration distributes heat energy evenly to food articles cooking on a top rack within the cooking chamber. However, food articles cooking on a lower rack disposed below the top rack generally do not receive the benefits of the flow of heated air because the top rack or items disposed on the top racks prevent the flow of heated air from continuing to the lower rack. Thus, when cooking food items on both the top and lower racks the benefits of convection oven may be limited to the food items disposed on the top rack.
In certain other convection ovens, the fan initiates a flow of heated air through a plurality of slots in a sidewall or a back wall of the oven's cabinet. The heated air exiting the slots in the sidewall or back wall generally flows in a horizontal direction. Such a configuration may distribute heat energy more evenly to both the top rack and the lower rack disposed below the top rack compared to the configuration described above. However, variations within the flow of heated air exiting the slots, e.g., due to slot size, slot configuration, or fan speed, can lead to uneven cooking. Also, heated air flowing from a back to a front of a food article may cause the back of the food article to cook more quickly than the front of the food article. Similarly, heated air impacting edges of a food article may cause the edges to cook more quickly than a center of the food article.
Accordingly, for better performance of convection cooking, hot air from the convection heater should be transferred efficiently to the food in the cavity. In particular, in instances in which the product is equipped with a microwave heating system, convection air holes are very small, thereby causing increased air resistance. To reduce the air resistance through the convection air holes, the air holes need to be larger. However, if the air holes are too large, the microwave energy impact can damage components of the oven appliance (e.g., the convection fan, the convection motor shaft, etc.). Moreover, in cases where the motor shaft of the convection motor is metal and large convection holes are present, microwave energy may leak toward the outside of the product, which can impact critical issues, such as noise, etc.
Accordingly, an oven appliance with features for improved convection cooking would be welcomed in the art.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect, the present disclosure is directed to an oven appliance for providing convection and microwave heating. The oven appliance includes a cabinet having a chamber positioned within the cabinet. The chamber is configured for receipt of food items for cooking and has a plurality of walls including a top wall, a bottom wall, a back wall, and opposing sidewalls defining the chamber. At least one of the plurality of walls defines a plurality of apertures and a first duct in fluid communication with the chamber through the plurality of apertures. The oven appliance also includes at least one convection heating element for heating the chamber. Further, the oven appliance includes a convection fan in fluid communication with the first duct. The convection fan is operable to cause air to flow out of the plurality of apertures. Moreover, the oven appliance includes a convection motor having a motor shaft. The convection motor is operably coupled to the convection fan for rotating the convection fan about the motor shaft. In addition, the convection fan is electrically separated from the convection motor to prevent microwave energy from leaking from the plurality of apertures.
In another aspect, the present disclosure is directed to an oven appliance for providing convection and microwave heating. The oven appliance includes a cabinet having a chamber positioned within the cabinet. The chamber is configured for receipt of food items for cooking and has a plurality of walls including a top wall, a bottom wall, a back wall, and opposing sidewalls defining the chamber. At least one of the plurality of walls defines a plurality of apertures and a first duct in fluid communication with the chamber through the plurality of apertures. The oven appliance also includes at least one convection heating element for heating the chamber. Further, the oven appliance includes a convection fan in fluid communication with the first duct. The convection fan is operable to cause air to flow out of the plurality of apertures. Moreover, the oven appliance includes a convection motor having a motor shaft. The convection motor is operably coupled to the convection fan for rotating the convection fan about the motor shaft. In addition, the oven appliance includes a coupler secured to the convection fan and an oven-side end of the motor shaft. Further, the coupler is constructed of a non-conductive material. As such, the non-conductive material of the coupler prevents microwave energy from leaking from the plurality of apertures.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Reference now will be made in detail to exemplary embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring to
The cabinet 101 extends between a first side 140 (
Moreover, the chamber 101 has interior walls including opposing sidewalls 118, bottom wall 119, back wall 120, and top wall 121 that define cooking chamber 116. Bottom wall 119 and top wall 121 are spaced apart along the vertical direction V, and sidewalls 118 extend along the vertical direction V between top wall 121 and bottom wall 119. Back wall 120 extends between sidewalls 118 along the horizontal direction and also extends between top wall 121 and bottom wall 119 along the vertical direction V.
Sidewalls 118 include supports 122 (
The oven appliance 100 also includes a door 104 with handle 106 that provides for opening and closing access to a cooking chamber 116. A user of the oven appliance 100 can place a variety of different items to be cooked in chamber 116 onto racks 132. Heating elements 117 may be positioned at the top and the bottom of chamber 116 to provide heat for cooking and cleaning. Such heating element(s) can be e.g., gas, electric, microwave, or a combination thereof. Other heating elements (not shown) could be located at other locations as well. A window 110 on door 104 allows the user to view e.g., food items during the cooking process.
Referring to
For example, in response to user manipulation of the user interface panel 102, the controller 160 can operate heating element(s). The controller 160 can receive measurements from a temperature sensor 113 (
The controller 160 may be positioned in a variety of locations throughout appliance 100. Thus, the controller 160 may be located under or next to the user interface 102 or otherwise within top panel 114. In an exemplary embodiment, input/output (“I/O”) signals are routed between the controller 160 and various operational components of appliance 100 such as heating element(s), controls 112, display 103, sensor(s), alarms, and/or other components as may be provided. In one exemplary embodiment, the user interface panel 102 may represent a general purpose I/O (“GPIO”) device or functional block.
Although shown with touch type controls 112, it should be understood that controls 112 and the configuration of the oven appliance 100 shown in
In another embodiment, the oven appliance 100 may be equipped with features for selectively generating a forced flow of heated air within the cooking chamber 116 (e.g., using a fan(s) as discussed in greater detail below). Thus, the oven appliance 100 is generally referred to as a convection oven. Such a flow of heated air can, e.g., decrease the required cooking temperature for food items, decrease the amount of time needed to cook food items, or assist in cooking food items more evenly.
Referring now to
Moreover, the plurality of apertures 150 may have any suitable geometry and/or size. For example, as shown in
In alternative exemplary embodiments, as will be understood by those skilled in the art, louvers, or slats (not shown) may be mounted adjacent the plurality of apertures 150. The louvers are configured for redirecting airflow, e.g., flow AH/T. For example, the louvers can more evenly direct flow AH/T throughout cooking chamber 116.
Referring now to
Further, as shown, the convection fan 201 is in fluid communication with at least one first duct 210 defined by the cabinet 101, one of the walls (such as the back wall 120 or the top wall 121), a convection heating element or heater 205, and the convection cover 125. Accordingly, the convection fan 201 is operable to cause air to flow through the first duct 210 and out of the plurality of apertures 150. Moreover, in an embodiment, as shown in
As will be understood by those skilled in the art, other suitable configurations for the first duct 210 may be provided. For example, additional boundary walls may be provided spaced apart from the cabinet 101 and the walls of chamber 116. Also, the first duct 210 may be constructed of piping or other similar conduits for air disposed between the cabinet 101 and the walls of chamber 116 or outside of cabinet 101. As may be seen in
Still referring to
For example, as shown in
In one embodiment, as shown in
Referring now to
In alternative embodiments, as shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Number | Name | Date | Kind |
---|---|---|---|
4304974 | Ikeda | Dec 1981 | A |
5371343 | Yoshimura | Dec 1994 | A |
20010004069 | Kim | Jun 2001 | A1 |
20040134908 | Jeong | Jul 2004 | A1 |
20180119961 | Yamashita | May 2018 | A1 |
20180152996 | Carcano | May 2018 | A1 |
Number | Date | Country |
---|---|---|
3117171 | Nov 1982 | DE |
3118463 | Nov 1982 | DE |
3118463 | Jun 1988 | DE |
102014114292 | Apr 2016 | DE |
0429822 | Jul 1994 | EP |
2136605 | Feb 2015 | EP |
2010276191 | Dec 2010 | JP |
200225558 | Feb 1999 | KR |
20040061136 | Jul 2004 | KR |
20060097994 | Sep 2006 | KR |
Number | Date | Country | |
---|---|---|---|
20220264710 A1 | Aug 2022 | US |