The device is in the field of cooking appliances, specifically, a system for powering a series of accessory trays through a cavity connector disposed within the cooking cavity of the appliance.
In at least one aspect, a cooking appliance includes a plurality of sidewalls and a rear wall defining a heating cavity. At least one heat source is in thermal communication with the heating cavity. An oven cavity connector is disposed within an interior surface of the heating cavity. The oven cavity connector is in communication with the heating cavity. A first tray sliding structure is disposed proximate opposing vertical sidewalls of the plurality of sidewalls. A second tray sliding structure is disposed proximate the opposing vertical sidewalls. The second tray sliding structure is vertically offset relative to the first tray sliding structure. A powered accessory tray has a connecting plug, the powered accessory tray being alternatively and selectively engaged with one of the first and second sliding tray structures, and the connecting plug is in selective communication with the oven cavity connector when the powered accessory tray is engaged with any one of the first and second tray sliding structures.
In at least another aspect, a cooking appliance includes a plurality of sidewalls and an operable door. The plurality of sidewalls defines an interior surface of a heating cavity. At least one heat source is disposed in thermal communication with the heating cavity. An oven cavity connector is positioned within at least one of the plurality of sidewalls, and the oven cavity connector includes a plurality of electrical contacts disposed within a connector interior, the connector interior being in communication with the heating cavity. At least one operable door selectively encloses the connector interior when the at least one operable door is in an idle state. The at least one operable door is biased toward the idle state, and the at least one operable door is adapted to be biased into the connector interior and toward an engaged state when a connecting plug of a powered accessory tray is engaged with the oven cavity connector.
In at least another aspect, a powered accessory tray system for use in a cooking appliance includes a plurality of powered accessory trays, each powered accessory tray comprising a base tray that alternatively and selectively engages a tray sliding structure of a plurality of tray sliding structures defined within a heating cavity of the cooking appliance, the base tray being slidably engaged with the tray sliding structure. A powered portion is supported by the base tray, wherein the powered portion receives electrical power from the cooking appliance. A connecting plug is in communication with the cooking appliance and the powered portion of the powered accessory tray, wherein selective engagement of the connecting plug with an oven cavity connector disposed within the heating cavity of the cooking appliance places the powered portion in communication with the cooking appliance.
These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in
As illustrated in
According to the various embodiments, as exemplified in
According to the various embodiments, it is contemplated that the interior surface 24 of the heating cavity 20 can include tray sliding structures 34 that are vertically offset, such that multiple vertically positioned tray sliding structures 34 can be included within the heating cavity 20. In this manner, the powered accessory tray 14 can be engaged with any one of the tray sliding structures 34 to set the vertical aspect 38 of a tray position 40 of the powered accessory tray 14 for use in connection with the oven cavity connector 12 within the heating cavity 20 of the cooking appliance 10. By way of example,
Referring again to
Referring again to
Referring again to
Referring again to
Referring again to
According to the various embodiments, as exemplified in
Referring again to
It is also contemplated that the electrical contacts 80 and electrical tabs 100 of the electric oven cavity connector 12 and connecting plug 32, respectively, can be a male/female connection and can be configured to be switched so that the electrical tabs 100 are within the oven cavity connector 12 and the electrical contacts 80 are disposed within the connecting plug 32. It is contemplated that the electrical terminals, including the electrical contacts 80 and electrical tabs 100 can be made of solid metal in the form of pins or blades and female terminal sockets having a high temperature resistive material wrapped around the female terminal to prevent relaxation from the high temperatures. It is contemplated that the electric terminals can be capable of handling electrical current in the approximate range of approximately 5 amps to approximately 15 amps that can correspond to ambient temperature ranges of approximately 0° F. to approximately 500° F.
According to the various embodiments, it is contemplated that the oven cavity connector 12 and connecting plug 32 can have a course and a fine lead-in feature to guide and align the two connectors as they are placed into the engaged position. The course lead-in feature on the accessory will also provide a protective shroud to further prevent contaminants from reaching the electrical contacts 80. The shroud can also include a detent feature that provides the user with a sensorial perception that the connecting plug 32 is fully engaged with the oven cavity connector 12. It is also contemplated that the extension cable 60 can also include materials that are substantially thermally resistive or thermally resistive to prevent damage that may be experienced by the extension cable 60 during use of the cooking appliance 10, or under such circumstances when the extension cable 60 is left within the oven cavity during a pyrolytic clean cycle of the cooking appliance 10.
Referring now to
Referring again to
According to the various embodiments, it is contemplated that each of the accessory inserts 140 can be used in conjunction with a dedicated powered accessory tray 14, such that each of the at least one powered accessory tray 14 can have a dedicated insert used only for that powered accessory tray 14, or the plurality of powered accessory trays 14 can include a set of powered accessory trays 14 that each include a corresponding set of dedicated accessory trays that are interchangeable with respect to a particular powered accessory tray 14. It is contemplated that each of the powered accessory trays 14 used in conjunction with the oven cavity connector 12 can have a particular set of functions that is used in conjunction with the particular powered accessory tray 14.
By way of example, and not limitation, as exemplified in
According to the various embodiments, as exemplified in
According to the various embodiments, as exemplified in
Referring again to
It is contemplated that in various embodiments, the cavity connector 12 can be installed within the cooking appliance 10 either during or after manufacture. When installed after manufacture, it is contemplated that a spacer or plug can be installed within the heating cavity 20 of the appliance 10. When the cavity connector 12 is installed, the spacer or plug can be removed and the cavity connector 12 inserted to be engaged, attached or otherwise placed in communication with the various electrical, communications and/or user interface systems of the appliance 10.
Referring again to
By way of example, and not limitation, the identifier portion 210 of a connecting plug 32 can be the predetermined pattern 102 of electrical tabs 100 disposed within the connecting plug 32 of the powered accessory tray 14. As discussed above, the predetermined pattern 102 of electrical tabs 100 can engage the electrical contacts 80 disposed within the oven cavity connector 12 to transfer the indicative data 212 of the predetermined pattern 102 of electrical tabs 100. This predetermined pattern 102 of electrical tabs 100 engaging only those electrical contacts 80 corresponding to the predetermined pattern 102 can activate a predetermined operational parameter 214 of the cooking appliance 10 corresponding to the powered accessory tray 14. The pattern of electrical tabs 100 can also communicate the indicative data 212 of the corresponding powered accessory tray 14 to the cooking appliance 10. This indicative data 212 can be used to set the operational parameters 214 of the heat source 22 of the cooking appliance 10, such that the heat source 22 can be configured to operate in conjunction with the corresponding powered accessory tray 14 through the engagement of the powered accessory tray 14 with the oven cavity connector 12.
According to the various embodiments, as exemplified in
According to the various embodiments, it is contemplated that the accessory detection mechanism 104 can be communicated through the extension cable 60 such that when one end of the extension cable 60 is connected with the connecting plug 32 of the powered accessory tray 14, the identifier portion 210 of the connecting plug 32 can be exemplified through the extension cable 60 in the opposing end of the extension cable 60 that engages the oven cavity connector 12. Accordingly, the identifier portion 210 can engage the accessory detection mechanism 104 of the oven cavity connector 12 via the extension cable 60.
According to the various embodiments, where the identifier portion 210 of the connecting plug 32 includes the predetermined pattern 102 of electrical tabs 100, the pattern of electrical tabs 100 of the connecting plug 32 can be biased through the extension cable 60 to extend certain electrical tabs 100 of the extension cable 60 corresponding to the predetermined pattern 102 of electrical tabs 100. The predetermined pattern 102 of electrical tabs 100 can be exemplified in the opposing end of the extension cable 60 such that the same electrical tabs 100 within the extension cable 60 are protruded so that the end of the extension cable 60 corresponds to the same identifier portion 210 as that of the powered accessory tray 14. A similar mechanism can be utilized for transferring a geometric pattern or surface condition through the extension cable 60.
According to the various embodiments, as exemplified in
According to the various embodiments, as exemplified in
It is contemplated that the operational parameters 214 of the cooking appliance 10 and/or the operational instructions 230 of the powered accessory tray 14 can be predetermined or preset within the control unit 240, or can be manually operated by the user through use of the user interface 242 of the cooking appliance 10. By way of example, and not limitation, where the powered accessory tray 14 having a grilling insert 142 is used within the heating cavity 20, the user can operate the grilling insert 142 by manipulating the user interface 242 for the cooking appliance 10 by setting a dedicated temperature for the powered accessory tray 14 that may be the same or separate from the level of heat provided by the heat source 22 for the cooking appliance 10.
Referring to the aspect of the device as exemplified in
Referring now to the various aspects of the device as exemplified in
Referring to
Referring again to
Referring again to
Referring again to
According to the various embodiments, the grilling insert 142 can be made of various metallic materials that are substantially thermally conductive to allow for transfer of heat from the resistive heating element 132 to the grates 270 of the grilling insert 142. Such materials can include, but are not limited to, aluminum, cast iron, steel, ceramic, and other similar thermally conductive materials that can be used to transfer heat from the resistive heating element 132 to the top surface 314 of the grates 270 to heat the accessory heating region 170 of the powered accessory tray 14. It is also contemplated that the grill insert can include a non-stick coating that can be used in conjunction with metal utensils, such that the non-stick coating does not scrape away when metal utensils are used in conjunction with the grilling insert 142.
According to the various embodiments, the grilling insert 142 can include a receptacle region 320 that can engage a portion of the connecting plug 32 to position the connecting plug 32 in a position relative to the base pan 130 that is designed to directly engage the oven cavity connector 12 when the base pan 130 is engaged with a particular tray sliding structure 34 of the heating cavity 20. It is also contemplated that the resistive heating element 132 can include spacing members 322 that are configured to support the resistive heating element 132 from below, wherein the spacing members 322 are configured to engage the bottom plate 324 of the base pan 130 and support the resistive heating element 132 from below such that the load exerted upon the grilling insert 142 by the food item 276 can be transferred through the spacing members 322, rather than through the resistive heating element 132. It is also contemplated that the grilling insert 142 can include spacer receptacles 326 between the grates 270 to receive the spacing members 322 and to provide consistent support throughout the grilling insert 142.
According to the various embodiments, it is contemplated that the grilling insert 142 can be used in conjunction with a ventilation system 340 exemplified schematically in
Referring now to an aspect of the device as illustrated in
Referring again to
Referring again to
According to the various embodiments, it is contemplated that the resistive heating element 132 of the powered accessory tray 14 can be used in conjunction with the heat source 22 for the cooking appliance 10 to provide more efficient preheating and cooking functions for the powered accessory tray 14 and the heating cavity 20 of the cooking appliance 10. In this manner, depending upon the powered accessory tray 14 being implemented, electrical power can be split between the resistive heating element 132 of the powered accessory tray 14 and the heat source 22 of the cooking appliance 10, to direct and apportion heating to specific portions of the primary heating region 172 of the heating cavity 20 and the accessory heating region 170 proximate the powered accessory tray 14. This cooperation can be set by the indicative data 212 provided to the control unit 240 when the identifier portion 210 of the connecting plug 32 engages the accessory protection mechanism of the oven cavity connector 12. This data can also be provided through the positioning of the powered accessory tray 14 within the oven cavity both vertically and laterally within the heating cavity 20 for providing a predetermined level of heating through the use of the resistive heating element 132 of the powered accessory tray 14 and/or the heat source 22 of the cooking appliance 10.
Referring now to aspects of the device as exemplified in
According to the various embodiments, the steaming insert 146 can include a single steaming compartment 364 or can include a plurality of steaming compartments 364. Such steaming compartments 364 can include a removable container 366 that can be selectively disposed within and removed from the steaming insert 146 for the positioning of various food items 276 such that while the steaming insert 146 can be maintained within the heating cavity 20, the removable container 366 can be placed within and removed from the steaming insert 146 as necessary. It is also contemplated that the steaming insert 146 can include a steaming tray 368 upon which various food items 276 can be placed and through which steam can emanate for heating various food items 276 within the steaming insert 146. The steaming tray 368 can also include container apertures 370 for receiving the various removable containers 366 that can be removed from and disposed within the steaming insert 146. Various steaming lids 372 can be disposed upon the removable container 366 or steaming tray 368, or both, to contain or substantially contain steam within the steaming insert 146.
It is contemplated that steam that does escape from the steaming insert 146 can be recirculated for reuse in the steaming insert 146, for use in other portions of the heating cavity 20, recirculated by a ventilation system 340, for use in other portions of the cooking appliance 10 or other portions of the areas surrounding the cooking appliance 10. Alternatively, the steam emanating from the steaming insert 146 can be evacuated from the cooking appliance 10 by the ventilation system 340 and moved through various steam conduits for disposal outside of at least the immediate area of the cooking appliance 10. The ventilation system 340 can be incorporated as part of the cooking appliance 10, as part of the powered accessory tray 14, or both.
Referring again to
It is contemplated, in various embodiments, that the fluid pan 360 can also be used to store various flavoring materials to provide a flavor infusing and/or smoking functionality within the steaming insert 146 as a smoker attachment 388 of the steaming insert 146, or a separate smoker insert 390. In such an embodiment, it is contemplated that wood chips and other flavor-producing materials commonly used in smoking functions can be disposed within the fluid pan 360 or tray or above the fluid pan 360 or tray or in a separate smoker attachment or insert 388, 390, such that flavor from the wood chips or other flavoring material can be infused into the food item 276 being cooked within the heating cavity 20.
Referring again to
According to the various embodiments, as exemplified in
According to various embodiments, the cooking appliance 10 and/or the powered accessory tray 14 having a steaming insert 146 or smoker insert 390 can include steam/smoke capturing mechanism 420 that includes a blower or suction device. Such capturing mechanism 420 can be activated when the appliance door 190 of the cooking appliance 10 is opened to prevent or substantially prevent steam and/or smoke emanating from the heating cavity 20 and possibly tripping a household smoke/fire alarm. The capturing mechanism 420 can be configured to recirculate the steam/smoke for later use, or can evacuate the steam/smoke to an area outside the household or the atmosphere. The capturing mechanism 420 an also utilize the ventilation system 340 of the cooking appliance 10, the powered accessory tray 14, or both.
It is contemplated that when the steaming insert 146 is used within the heating cavity 20, the indicative data 212 provided to the control unit 240 when the powered accessory tray 14 having the steaming insert 146 is engaged with the oven cavity connector 12, certain functions of the cooking appliance 10 can be locked out that may either interfere with the steaming functions of the steaming insert 146 or that may be interfered with by the use of the steaming insert 146. Alternatively, it is contemplated that the thermal partitions 180 can be installed within the heating cavity 20, such that the steaming function can be used in conjunction with other cooking functions of the cooking appliance 10 that may not be cooperative with steaming functions. Such thermal partition or partitions 180 can include a moisture barrier that prevents transfer of steam from the use of the powered accessory tray 14 to other portions of the heating cavity 20 that may interfere with alternate cooking functions within the heating cavity 20. The thermal partitions 180 can also prevent substantially dry air or dry air from other portions of the heating cavity 20 from infiltrating the accessory heating region 170 proximate the powered accessory tray 14 during use of the steaming insert 146.
According to the various embodiments, it is contemplated that the resistive heating element 132 for the powered accessory tray 14 can include multiple heating elements that can be used to produce varying levels of heating within the accessory heating region 170 immediately above the resistive heating element 132. By way of example, and not limitation, one side of the resistive heating element 132 may be dedicated for use in conjunction with a smaller grill insert or baking stone insert 144. A separate portion of the resistive heating element 132 or a separate resistive heating element 132 altogether can be used in conjunction with a smaller steaming insert 146 for simultaneous use of steaming and baking or grilling functions within a single powered accessory tray 14. According to various embodiments, it is contemplated that the resistive heating element 132 can be used to create multiple heating zones such as a left, center and right heating zone, or can be split into four or more quadrants for producing smaller, dedicated heating zones within the accessory heating region 170. Thermal partitions 180 can be placed upon the various inserts for providing additional thermal division between the various sub-heating areas of the accessory heating region 170.
According to the various embodiments, it is contemplated that the steaming insert 146 can include a steam assist mechanism that utilizes steam from the fluid pan 360 but also utilizes steam produced by the cooking appliance 10. It is also contemplated that the fluid pan 360 can be heated by the resistive heating element 132 and also heated by the heat source 22 for the cooking appliance 10 to provide a superheated steam that can be delivered through the accessory heating region 170 proximate the powered accessory tray 14.
Referring again to
Referring again to
Referring again to
Referring again to
Referring now to
Referring again to
Once in position, and the food item 276 secured on the linear member 482 of the spit 160, the spit 160 can be placed into the rotisserie tool notch 460 and secondary notch 466 of the motor assembly 158 and idler arm 464 to secure the spit 160 over the base pan 130 for cooking the food item 276 within the rotisserie insert 148. Once the rotisserie insert 148 for the powered accessory tray 14 is engaged with the oven cavity connector 12, the motor assembly 158 is placed in communication with an electrical system of the cooking appliance 10 and the motor assembly 158 operates to rotate the spit 160 and the food item 276 to be cooked over the base pan 130, such that the food item 276 can be evenly cooked during operation of the cooking appliance 10 and the powered accessory tray 14. It is contemplated that food items 276 (exemplified in
According to the various embodiments, it is contemplated that the motor assembly 158 of the rotisserie insert 148 can be inserted into the heating cavity 20 of the cooking appliance 10 during operation of the cooking appliance 10. In this manner, the cooking appliance 10 does not require an integral motor and can simply operate through the motor assembly 158 of the rotisserie insert 148. It is also contemplated that the rotisserie insert 148 can be integrated with the base pan 130 of the powered accessory tray 14 such that the motor arm 452, idler arm 464, and connecting plug 32 are directly attached to the base pan 130 to form an integral rotisserie powered accessory tray 14.
Referring now to
Referring again to
Referring again to
According to the various embodiments as exemplified in
According to the various embodiments, the motor arm 452 and the idler arm 464 can be manipulated relative to the base pan 130 to account for various heights of the rotisserie tool notch 460 of the motor assembly 158 and the secondary notch 466 of the idler arm 464. Greater heights may be necessary for the larger rotisserie cage 162 where lower heights of the motor assembly 158 may be desired for the spit 160. It is also contemplated that the rotisserie cage 162 and the spit 160 can be included within separate rotisserie inserts 148 or even separate rotisserie powered-accessory trays that can be used in conjunction with the oven cavity connector 12 and the heating cavity 20 of the cooking appliance 10. Where the motor arm 452 and idler arm 464 are operable, the movement of the motor assembly arm and idler arm 464 are configured such that the rotisserie tool notch 460 of the motor assembly 158 and the secondary notch 466 of the idler arm 464 are maintained in a substantially central position over the base pan 130 such that the rotisserie cage 162 and spit 160 do not substantially extend or do not extend outside of the boundary of the base pan 130 during cooking. In this manner, substantially all of the drippings and other matter that may fall away from a food item 276 being cooked can be captured by the base pan 130 for later use or disposal. It is also contemplated that vertical supports 530 can extend from the motor arm 452 of the motor assembly 158 and the idler arm 464 to portions of the base pan 130. These vertical supports 530 provide supplemental structure for supporting the weight of the rotisserie tool 450 and the food item 276 (exemplified in
Referring now to
According to various alternate embodiments, it is contemplated that the spit 160 can have a temperature sensor 550 disposed on a portion of a linear member 482, such that as the spit 160 is inserted into a food item 276, the temperature sensor 550 is positioned on the linear member 482 of the spit 160, such that the temperature sensor 550 is substantially centrally positioned within the food item 276 being cooked. In the case of food items 276 having body cavities such as game birds, whole animal roasts, and other similar food items 276, the spit 160 being disposed off-center from the rotating disk member 540 can extend through the body cavity while the temperature sensor 550, being centrally disposed in the disk member 540, can be positioned off-center of the food item 276 and into a meaty portion of the game bird or other animal-type food item 276 being cooked for performing accurate temperature measurements. Accordingly, the temperature sensor 550 can include various configurations to allow for placement of the temperature sensor 550 within an appropriate portion of the food item 276 to properly measure the internal temperature of the food item 276 being cooked. Alternate positions of the temperature sensor 550 can include one or more of the tines of the operable tines 480, a portion of the rotisserie cage 162, and other various locations of the rotisserie insert 148 and/or the rotisserie powered accessory tray 14. It is also contemplated that the temperature sensor 550 can be a remote device that communicates wirelessly or through some form of signal communication with the powered accessory tray 14 and/or the cooking appliance 10 to communicate the internal temperature of the food item 276 being cooked to the user.
According to the various embodiments, another powered accessory tray 14 can include a sous-vide heater for preparing pre-packaged sous-vide foods. The sous-vide heater can be configured to have multiple temperature sensors 550 and multiple heating elements to maintain the accessory heating region 170 of the sous-vide heater at substantially precise levels. Such precision of the temperature sensors 550 and heating elements can be within the range of less than about five degrees Fahrenheit of deviation relative to a desired temperature, or as accurate as one-two degrees Fahrenheit variation. The sous-vide heater can also include a motor assembly 158 for operating a stirring device for assisting in the preparation of the pre-packaged sous-vide foods.
According to various embodiments, another powered accessory tray 14 can include a pressure cooker/canning insert for preparing pressure cooked or canned foods. The pressure cooker/canning insert can include a robust lid and outer walls that provide sufficient support to resist the outward pressure forces experienced during pressure-cooking operations. Various pressure sensors can also be implemented to communicate to the user, via the user interface 242 of the cooking appliance 10, the internal pressure and/or temperature of the pressure cooker/canning insert.
Referring now to
Referring again to
According to the various embodiments, where the heating cavity 20 includes a single oven cavity connector 12, the extension cable 60 can be connected from the powered accessory tray 14 to the oven cavity connector 12 to allow for multiple vertical positions of the powered accessory tray 14 within the heating cavity 20 while simultaneously allowing for a single oven cavity connector 12 that can be engaged to the powered accessory tray 14 through use of the extension cable 60 that is flexible and long enough to extend from the oven cavity connector 12 to any of the vertical positions within the heating cavity 20 that are defined by the tray sliding structures 34.
Referring again to
According to the various embodiments, where multiple oven cavity connectors 12 or multiple connecting ports 70 are disposed within the cooking appliance 10, a plurality of powered accessory trays 14 can be used simultaneously within the heating cavity 20 for use at the same time. It is also contemplated that where a single oven cavity connector 12 or connecting port 70 is present, an extension cable 60 having a plurality of ends that can engage two or more powered accessory trays 14 can lead into a single second end that engages the single connecting port 70 of the oven cavity connector 12 of the cooking appliance 10. In such an embodiment, it is contemplated that, in certain embodiments, only electrical power may be provided between the cooking appliance 10 and the powered accessory tray 14. Alternatively, it is contemplated that the extension cable 60 having two first ends can include a differentiating mechanism that can separate the separate identifier portions 210 of the connecting plugs 32 of the respective powered accessory trays 14 that are engaged by the extension cable 60 having two first ends.
It will be understood by one having ordinary skill in the art that construction of the described device and other components is not limited to any specific material. Other exemplary embodiments of the device disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the device as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.
The present application is a continuation of U.S. patent application Ser. No. 14/863,990 filed Sep. 24, 2015, entitled OVEN CAVITY CONNECTOR FOR OPERATING POWER ACCESSORY TRAYS FOR COOKING APPLIANCE, the entire disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1141176 | Copeman | Jun 1915 | A |
1380656 | Lauth | Jun 1921 | A |
1405624 | Patterson | Feb 1922 | A |
1598996 | Wheelock | Sep 1926 | A |
1808550 | Harpman | Jun 1931 | A |
2024510 | Crisenberry | Dec 1935 | A |
2530991 | Reeves | Nov 1950 | A |
2536613 | Schulze et al. | Jan 1951 | A |
2699912 | Cushman | Jan 1955 | A |
2777407 | Schindler | Jan 1957 | A |
2781038 | Sherman | Feb 1957 | A |
2791366 | Geisler | May 1957 | A |
2815018 | Collins | Dec 1957 | A |
2828608 | Cowlin et al. | Apr 1958 | A |
2847932 | More | Aug 1958 | A |
2930194 | Perkins | May 1960 | A |
2934957 | Reinhart et al. | May 1960 | A |
D191085 | Kindl et al. | Aug 1961 | S |
3017924 | Jenson | Jan 1962 | A |
3051813 | Busch et al. | Aug 1962 | A |
3065342 | Worden | Nov 1962 | A |
3089407 | Kinkle | May 1963 | A |
3259120 | Keating | Jul 1966 | A |
3386431 | Branson | Jun 1968 | A |
3463138 | Lotter et al. | Aug 1969 | A |
3489135 | Astrella | Jan 1970 | A |
3548154 | Christiansson | Dec 1970 | A |
3602131 | Dadson | Aug 1971 | A |
3645249 | Henderson et al. | Feb 1972 | A |
3691937 | Meek et al. | Sep 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3777985 | Hughes et al. | Dec 1973 | A |
3780954 | Genbauffs | Dec 1973 | A |
3857254 | Lobel | Dec 1974 | A |
3877865 | Duperow | Apr 1975 | A |
3899655 | Skinner | Aug 1975 | A |
D245663 | Gordon | Sep 1977 | S |
4104952 | Brass | Aug 1978 | A |
4149518 | Schmidt et al. | Apr 1979 | A |
4363956 | Scheidler et al. | Dec 1982 | A |
4413610 | Berlik | Nov 1983 | A |
4418456 | Riehl | Dec 1983 | A |
4447711 | Fischer | May 1984 | A |
4466789 | Riehl | Aug 1984 | A |
4518346 | Pistien | May 1985 | A |
4587946 | Doyon et al. | May 1986 | A |
4646963 | Delotto et al. | Mar 1987 | A |
4654508 | Logel et al. | Mar 1987 | A |
4689961 | Stratton | Sep 1987 | A |
4743206 | Imhoff | May 1988 | A |
4812624 | Kern | Mar 1989 | A |
4818824 | Dixit et al. | Apr 1989 | A |
4846671 | Kwiatek | Jul 1989 | A |
4886043 | Homer | Dec 1989 | A |
4891936 | Shekleton et al. | Jan 1990 | A |
D309398 | Lund | Jul 1990 | S |
4981416 | Nevin et al. | Jan 1991 | A |
4989404 | Shekleton | Feb 1991 | A |
5021762 | Hetrick | Jun 1991 | A |
5136277 | Civanelli et al. | Aug 1992 | A |
5171951 | Chartrain et al. | Dec 1992 | A |
D332385 | Adams | Jan 1993 | S |
5190026 | Doty | Mar 1993 | A |
5215074 | Wilson et al. | Jun 1993 | A |
5243172 | Hazan et al. | Sep 1993 | A |
D340383 | Addison et al. | Oct 1993 | S |
5272317 | Ryu | Dec 1993 | A |
D342865 | Addison et al. | Jan 1994 | S |
5316423 | Kin | May 1994 | A |
5397234 | Kwiatek | Mar 1995 | A |
5448036 | Husslein et al. | Sep 1995 | A |
D364993 | Andrea | Dec 1995 | S |
5491423 | Turetta | Feb 1996 | A |
D369517 | Ferlin | May 1996 | S |
5546927 | Lancelot | Aug 1996 | A |
5571434 | Cavener et al. | Nov 1996 | A |
D378578 | Eberhardt | Mar 1997 | S |
5618458 | Thomas | Apr 1997 | A |
5640497 | Shute | Jun 1997 | A |
5649822 | Gertler et al. | Jul 1997 | A |
5735261 | Kieslinger | Apr 1998 | A |
5785047 | Bird et al. | Jul 1998 | A |
5842849 | Huang | Dec 1998 | A |
5913675 | Vago et al. | Jun 1999 | A |
5928540 | Antoine et al. | Jul 1999 | A |
5938959 | Wang | Aug 1999 | A |
D414377 | Huang | Sep 1999 | S |
5967021 | Yung | Oct 1999 | A |
6016096 | Barnes et al. | Jan 2000 | A |
6030207 | Saleri | Feb 2000 | A |
6049267 | Barnes et al. | Apr 2000 | A |
6050176 | Schultheis et al. | Apr 2000 | A |
6078243 | Barnes et al. | Jun 2000 | A |
6089219 | Kodera et al. | Jul 2000 | A |
6092518 | Dane | Jul 2000 | A |
6111229 | Schultheis | Aug 2000 | A |
6114665 | Garcia et al. | Sep 2000 | A |
6133816 | Barnes et al. | Oct 2000 | A |
6155820 | Döbbeling | Dec 2000 | A |
6188045 | Hansen et al. | Feb 2001 | B1 |
6192669 | Keller et al. | Feb 2001 | B1 |
6196113 | Yung | Mar 2001 | B1 |
6253759 | Giebel et al. | Jul 2001 | B1 |
6253761 | Shuler et al. | Jul 2001 | B1 |
6320169 | Clothier | Nov 2001 | B1 |
6322354 | Carbone et al. | Nov 2001 | B1 |
6362458 | Sargunam et al. | Mar 2002 | B1 |
6452136 | Berkcan et al. | Sep 2002 | B1 |
6452141 | Shon | Sep 2002 | B1 |
6545251 | Allera et al. | Apr 2003 | B2 |
6589046 | Harneit | Jul 2003 | B2 |
6614006 | Pastore et al. | Sep 2003 | B2 |
6619280 | Zhou et al. | Sep 2003 | B1 |
6655954 | Dane | Dec 2003 | B2 |
6663009 | Bedetti et al. | Dec 2003 | B1 |
6718965 | Rummel et al. | Apr 2004 | B2 |
6733146 | Vastano | May 2004 | B1 |
6806444 | Lerner | Oct 2004 | B2 |
6837151 | Chen | Jan 2005 | B2 |
6891133 | Shozo et al. | May 2005 | B2 |
6910342 | Berns et al. | Jun 2005 | B2 |
6930287 | Gerola et al. | Aug 2005 | B2 |
6953915 | Garris, III | Oct 2005 | B2 |
7005614 | Lee | Feb 2006 | B2 |
7017572 | Cadima | Mar 2006 | B2 |
D524105 | Poltronieri | Jul 2006 | S |
7083123 | Molla | Aug 2006 | B2 |
7220945 | Wang | May 2007 | B1 |
D544753 | Tseng | Jun 2007 | S |
7274008 | Arnal Valero et al. | Sep 2007 | B2 |
7281715 | Boswell | Oct 2007 | B2 |
7291009 | Kamal et al. | Nov 2007 | B2 |
7315247 | Jung et al. | Jan 2008 | B2 |
7325480 | Grühbaum et al. | Feb 2008 | B2 |
D564296 | Koch et al. | Mar 2008 | S |
7348520 | Wang | Mar 2008 | B2 |
7411160 | Duncan et al. | Aug 2008 | B2 |
7414203 | Winkler | Aug 2008 | B2 |
7417204 | Nam et al. | Aug 2008 | B2 |
7429021 | Sather et al. | Sep 2008 | B2 |
7368685 | Nam et al. | Nov 2008 | B2 |
D581736 | Besseas | Dec 2008 | S |
7468496 | Marchand | Dec 2008 | B2 |
D592445 | Sorenson et al. | May 2009 | S |
7527495 | Yam et al. | May 2009 | B2 |
D598959 | Kiddoo | Aug 2009 | S |
7589299 | Fisher et al. | Sep 2009 | B2 |
D604098 | Hamlin | Nov 2009 | S |
7614877 | McCrorey et al. | Nov 2009 | B2 |
7628609 | Pryor et al. | Dec 2009 | B2 |
7640930 | Little et al. | Jan 2010 | B2 |
7696454 | Nam et al. | Apr 2010 | B2 |
7708008 | Elkasevic et al. | May 2010 | B2 |
7721727 | Kobayashi | May 2010 | B2 |
7731493 | Starnini et al. | Jun 2010 | B2 |
7762250 | Elkasevic et al. | Jul 2010 | B2 |
7770985 | Davis et al. | Aug 2010 | B2 |
7781702 | Nam et al. | Aug 2010 | B2 |
7823502 | Hecker et al. | Nov 2010 | B2 |
7829825 | Kuhne | Nov 2010 | B2 |
7840740 | Minoo | Nov 2010 | B2 |
7841333 | Kobayashi | Nov 2010 | B2 |
7964823 | Armstrong et al. | Jun 2011 | B2 |
D642675 | Scribano et al. | Aug 2011 | S |
8006687 | Watkins et al. | Aug 2011 | B2 |
8015821 | Spytek | Sep 2011 | B2 |
8037689 | Oskin et al. | Oct 2011 | B2 |
8057223 | Pryor et al. | Nov 2011 | B2 |
8141549 | Armstrong et al. | Mar 2012 | B2 |
8217314 | Kim et al. | Jul 2012 | B2 |
8220450 | Luo et al. | Jul 2012 | B2 |
8222578 | Beier | Jul 2012 | B2 |
D665491 | Goel et al. | Aug 2012 | S |
8272321 | Kalsi et al. | Sep 2012 | B1 |
8288690 | Boubeddi et al. | Oct 2012 | B2 |
8302593 | Cadima | Nov 2012 | B2 |
8304695 | Bonuso et al. | Nov 2012 | B2 |
8342165 | Watkins | Jan 2013 | B2 |
8344292 | Franca et al. | Jan 2013 | B2 |
8356367 | Flynn | Jan 2013 | B2 |
8393317 | Sorenson et al. | Mar 2013 | B2 |
8398303 | Kuhn | Mar 2013 | B2 |
8430310 | Ho et al. | Apr 2013 | B1 |
8464703 | Ryu et al. | Jun 2013 | B2 |
D685225 | Santoyo et al. | Jul 2013 | S |
D687675 | Filho et al. | Aug 2013 | S |
8522675 | Veltrop | Sep 2013 | B2 |
8526935 | Besore et al. | Sep 2013 | B2 |
8535052 | Cadima | Sep 2013 | B2 |
D693175 | Saubert | Nov 2013 | S |
8584663 | Kim et al. | Nov 2013 | B2 |
8596259 | Padgett et al. | Dec 2013 | B2 |
8616193 | Padgett | Dec 2013 | B2 |
8660297 | Yoon et al. | Feb 2014 | B2 |
8687842 | Yoon et al. | Apr 2014 | B2 |
8689782 | Padgett | Apr 2014 | B2 |
8707945 | Hasslberger et al. | Apr 2014 | B2 |
8747108 | Lona Santoyo et al. | Jun 2014 | B2 |
8800543 | Simms et al. | Aug 2014 | B2 |
D718061 | Wu | Nov 2014 | S |
8887710 | Rossi et al. | Nov 2014 | B2 |
8930160 | Wall et al. | Jan 2015 | B2 |
8932049 | Ryu et al. | Jan 2015 | B2 |
8950389 | Horstkoetter et al. | Feb 2015 | B2 |
8978637 | Ryu et al. | Mar 2015 | B2 |
D727489 | Rohskopf et al. | Apr 2015 | S |
9021942 | Lee et al. | May 2015 | B2 |
9074765 | Armanni | Jul 2015 | B2 |
D735525 | Nguyen | Aug 2015 | S |
9113503 | Arnal Valero et al. | Aug 2015 | B2 |
9132302 | Luongo et al. | Sep 2015 | B2 |
D743203 | Filho et al. | Nov 2015 | S |
9175858 | Tisselli et al. | Nov 2015 | B2 |
D750314 | Hobson et al. | Feb 2016 | S |
9307888 | Baldwin et al. | Apr 2016 | B2 |
D758107 | Hamilton | Jun 2016 | S |
9400115 | Kuwamura | Jul 2016 | B2 |
D766036 | Koch et al. | Sep 2016 | S |
D766696 | Kemker | Sep 2016 | S |
9513015 | Estrella et al. | Dec 2016 | B2 |
9521708 | Adelmann et al. | Dec 2016 | B2 |
9557063 | Cadima | Jan 2017 | B2 |
9572475 | Gephart et al. | Feb 2017 | B2 |
9644847 | Bhogal et al. | May 2017 | B2 |
9696042 | Hasslberger et al. | Jul 2017 | B2 |
9879864 | Gutierrez et al. | Jan 2018 | B2 |
9927129 | Bhogal et al. | Mar 2018 | B2 |
20020065039 | Benezech et al. | May 2002 | A1 |
20040007566 | Staebler et al. | Jan 2004 | A1 |
20040031782 | Westfield | Feb 2004 | A1 |
20040182849 | Shozo et al. | Sep 2004 | A1 |
20040195399 | Molla | Oct 2004 | A1 |
20040224273 | Inomata | Nov 2004 | A1 |
20040224274 | Tomiura | Nov 2004 | A1 |
20050029245 | Gerola et al. | Feb 2005 | A1 |
20050112520 | Todoli et al. | May 2005 | A1 |
20050199232 | Gama et al. | Sep 2005 | A1 |
20050268000 | Carlson | Dec 2005 | A1 |
20050268794 | Nesterov | Dec 2005 | A1 |
20070049079 | Nalwad et al. | Mar 2007 | A1 |
20070124972 | Ratcliffe | Jun 2007 | A1 |
20070181410 | Baier | Aug 2007 | A1 |
20070251936 | Nam | Nov 2007 | A1 |
20070257020 | Nam | Nov 2007 | A1 |
20070281267 | Li | Dec 2007 | A1 |
20080029081 | Gagas | Feb 2008 | A1 |
20080050687 | Wu | Feb 2008 | A1 |
20080173632 | Jang et al. | Jul 2008 | A1 |
20080210685 | Beier | Sep 2008 | A1 |
20090173730 | Baier et al. | Jul 2009 | A1 |
20090320823 | Padgett | Dec 2009 | A1 |
20100035197 | Cadima | Feb 2010 | A1 |
20100114339 | Kaiser et al. | May 2010 | A1 |
20100126496 | Luo et al. | May 2010 | A1 |
20100154776 | Czajka et al. | Jun 2010 | A1 |
20100192939 | Parks | Aug 2010 | A1 |
20110027733 | Yamamoto et al. | Feb 2011 | A1 |
20110142998 | Johncock et al. | Jun 2011 | A1 |
20110163086 | Aldana Arjol et al. | Jul 2011 | A1 |
20110248021 | Gutierrez et al. | Oct 2011 | A1 |
20120017595 | Liu | Jan 2012 | A1 |
20120024835 | Artal Lahoz et al. | Feb 2012 | A1 |
20120036855 | Hull | Feb 2012 | A1 |
20120067334 | Kim et al. | Mar 2012 | A1 |
20120076351 | Yoon et al. | Mar 2012 | A1 |
20120099761 | Yoon et al. | Apr 2012 | A1 |
20120160228 | Kim et al. | Jun 2012 | A1 |
20120171343 | Cadima et al. | Jul 2012 | A1 |
20120261405 | Kurose et al. | Oct 2012 | A1 |
20130043239 | Anton Falcon et al. | Feb 2013 | A1 |
20130109207 | Bhosale | May 2013 | A1 |
20130252188 | Chen | Sep 2013 | A1 |
20130255663 | Cadima et al. | Oct 2013 | A1 |
20130260618 | Bally et al. | Oct 2013 | A1 |
20140048055 | Ruther | Feb 2014 | A1 |
20140071019 | Lim | Mar 2014 | A1 |
20140090636 | Bettinzoli | Apr 2014 | A1 |
20140097172 | Kang et al. | Apr 2014 | A1 |
20140116416 | Saubert | May 2014 | A1 |
20140137751 | Bellm | May 2014 | A1 |
20140139381 | Sippel | May 2014 | A1 |
20140318527 | Silva et al. | Oct 2014 | A1 |
20140352549 | Upston et al. | Dec 2014 | A1 |
20150096974 | Freeman et al. | Apr 2015 | A1 |
20150136760 | Lima et al. | May 2015 | A1 |
20150153041 | Neumeier | Jun 2015 | A1 |
20150241069 | Brant et al. | Aug 2015 | A1 |
20150330640 | Wersborg | Nov 2015 | A1 |
20150345800 | Cabrera Botello | Dec 2015 | A1 |
20150359045 | Neukamm et al. | Dec 2015 | A1 |
20160029439 | Kurose et al. | Jan 2016 | A1 |
20160061490 | Cho et al. | Mar 2016 | A1 |
20160091210 | Ceccoli | Mar 2016 | A1 |
20160095469 | Gregory et al. | Apr 2016 | A1 |
20160116160 | Takeuchi | Apr 2016 | A1 |
20160153666 | Tcaciuc | Jun 2016 | A1 |
20160174768 | Deverse | Jun 2016 | A1 |
20160178209 | Park et al. | Jun 2016 | A1 |
20160178212 | Park et al. | Jun 2016 | A1 |
20160187002 | Ryu et al. | Jun 2016 | A1 |
20160201902 | Cadima | Jul 2016 | A1 |
20160209044 | Cadima | Jul 2016 | A1 |
20160209045 | Millius | Jul 2016 | A1 |
20160295644 | Khokle et al. | Oct 2016 | A1 |
20160296067 | Laws | Oct 2016 | A1 |
20170003033 | Lona Santoyo et al. | Jan 2017 | A1 |
20170067651 | Khokle et al. | Mar 2017 | A1 |
20170074522 | Cheng | Mar 2017 | A1 |
20170082296 | Jeong et al. | Mar 2017 | A1 |
20170082299 | Rowley et al. | Mar 2017 | A1 |
20170108228 | Park et al. | Apr 2017 | A1 |
20170115008 | Erbe et al. | Apr 2017 | A1 |
20170261213 | Park et al. | Apr 2017 | A1 |
20170223774 | Cheng et al. | Aug 2017 | A1 |
20180058702 | Jang et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2365023 | Jul 2002 | CA |
2734926 | Oct 2011 | CA |
201680430 | Dec 2010 | CN |
203302847 | Nov 2013 | CN |
7242625 | Mar 1973 | DE |
2845869 | Apr 1980 | DE |
3014908 | Oct 1981 | DE |
3238441 | Apr 1984 | DE |
3446621 | Jun 1986 | DE |
3717728 | Dec 1988 | DE |
3150450 | Aug 1989 | DE |
3839657 | May 1990 | DE |
4103664 | Jan 1992 | DE |
4228076 | May 1993 | DE |
4445594 | Jun 1996 | DE |
10218294 | Nov 2003 | DE |
60004581 | Jun 2004 | DE |
102004002466 | Aug 2005 | DE |
1020040009606 | Sep 2005 | DE |
102005059505 | Jun 2007 | DE |
19912452 | Oct 2007 | DE |
102006034391 | Jan 2008 | DE |
102007021297 | Nov 2008 | DE |
102008027220 | Dec 2009 | DE |
102008042467 | Apr 2010 | DE |
102008051829 | Apr 2010 | DE |
102009002276 | Oct 2010 | DE |
102013218714 | Apr 2014 | DE |
0000908 | Mar 1979 | EP |
0122966 | Oct 1984 | EP |
0429120 | May 1991 | EP |
0620698 | Oct 1994 | EP |
0690659 | Jan 1996 | EP |
1030114 | Aug 2000 | EP |
1217306 | Jun 2002 | EP |
1344986 | Sep 2003 | EP |
1586822 | Oct 2005 | EP |
1617148 | Jan 2006 | EP |
1099905 | Feb 2006 | EP |
1201998 | Mar 2006 | EP |
1460342 | May 2006 | EP |
2063181 | May 2009 | EP |
2063444 | May 2009 | EP |
2070442 | Jun 2009 | EP |
2116775 | Nov 2009 | EP |
2116829 | Nov 2009 | EP |
2278227 | Jan 2011 | EP |
2299181 | Mar 2011 | EP |
2375170 | Oct 2011 | EP |
2144012 | Sep 2012 | EP |
2657615 | Oct 2013 | EP |
2816291 | Dec 2014 | EP |
2835580 | Feb 2015 | EP |
3006832 | Apr 2016 | EP |
2848867 | Sep 2017 | EP |
2712071 | May 1995 | FR |
2787556 | Jun 2000 | FR |
2789753 | Aug 2000 | FR |
3003338 | Sep 2014 | FR |
2158225 | Nov 1985 | GB |
2001141244 | May 2001 | JP |
2005009693 | Jan 2005 | JP |
2007147131 | Jun 2007 | JP |
2010038475 | Feb 2010 | JP |
2011144982 | Jul 2011 | JP |
2011257021 | Dec 2011 | JP |
1991013526 | Sep 1991 | WO |
9850736 | Nov 1998 | WO |
2006072388 | Jul 2006 | WO |
2006136363 | Dec 2006 | WO |
2012077050 | Jun 2012 | WO |
2013098330 | Jul 2013 | WO |
2013104521 | Jul 2013 | WO |
2013182410 | Dec 2013 | WO |
2014194176 | Dec 2014 | WO |
2015086420 | Jun 2015 | WO |
Entry |
---|
English translation CN-203302847-U (Year: 2013). |
Built-In Gas Cooktop, image post date Feb. 18, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 10 pages, <http://www.bestbuy.com/site/kitchenaid-36-built-in-gas-cooktop-stainless-steel/8636634.p?skuld=8636634>. |
True-Heat burner, image post date Jan. 30, 2015, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 2 pages, <http://ovens.reviewed.com/news/kitchenaid-has-a-new-flame>. |
Metal Cover Gas Hob, image post date 2012, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 13 pages, <http://inse.gmc.globalmarket.com/products/details/metal-cover-gas-hob-8516959.html>. |
Penny Stove, image post date 2004, originally cited by Examiner in U.S. Appl. No. 29/539,768 in Restriction Requirement dated Oct. 27, 2016, 30 pages, <http://www.jureystudio.com/pennystove/stoveinstruction.html>. |
Number | Date | Country | |
---|---|---|---|
20210025597 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14863990 | Sep 2015 | US |
Child | 17066952 | US |