The present invention relates to an oven door for a microwave oven or for an oven with microwave heating function comprising a wave choke system according to the preamble of claim 1. Further, the present invention relates to a corresponding microwave oven or an oven with microwave heating function, respectively, comprising an oven door with a wave choke system.
The strong electro-magnetic fields generated by microwave ovens are dangerous for the health of the user. Several safety means are provided to keep the electro-magnetic fields inside the microwave oven. Special attention is paid to the front of the oven door and the gap between the oven door and front frame. The front of the oven door is usually shielded by perforated sheet metal, expanded metal or another type of metallic surfaces with periodic openings allowing the view through the oven door. A big see-through area within the oven door would be advantageous. The dimensions of the see-through area in the oven door are limited, since an outer portion of the oven door is required for a wave choke. Said wave choke blocks the circumferential gap between the oven door and front frame against the electro-magnetic fields inside the microwave oven. Said gap has a defined width. However, fat and other pollution deposited therein may alter the width of the gap. This may impair the function of the wave choke. For a maximum attenuation of the electro-magnetic fields, the width of the gap is about 1 mm or smaller. The small gap makes it difficult to arrange a silicone gasket therein. The silicone gasket would effectively keep heat, moist, vapour and other products of the food treatment inside the oven cavity.
Therefore it would desirable to have a mechanically robust and compact wave choke system with high microwave leakage suppression and maximum visual area of the oven door. The market trend of enlarging the oven cavity, while the outer dimensions remains constant, requires a compact wave choke system. Also the front frame becomes smaller. The metallic surface of the front frame acts as a counterpart to the wave choke system. The larger the surface of the front frame with respect to the wave choke system, the more effective is the microwave leakage suppression with respect to conventional wave choke concepts.
DE 28 53 616 A1 discloses an oven door with a wave choke system for a microwave oven. The wave choke system comprises a frame part and a wavelike metal band. The wavelike metal band is attacked at the frame part. The frame part and the wavelike metal band enclose at least partially the oven door.
It is an object of the present invention to provide an oven door for a microwave oven with an improved wave choke system, which is mechanically robust and compact and allows a relative large visual area within the oven door.
According to the present invention a notch is formed in the central portion of the wave choke element, so that the central portion of the wave choke element is smaller than the open end portion of said wave choke element, wherein the notches of the wave choke elements are provided for receiving an inner glass panel of the oven door, and wherein at least two neighboured wave choke elements arranged along the same side of the oven door include aligned notches for receiving the same edge of the inner glass panel.
The core of the present invention is the geometric structure of the wave choke system on the one hand and the arrangements of the wave choke elements on the base plate on the other hand. The wave choke elements allow a very high accuracy. The notches allow a relative large inner glass panel resulting in a large see-through area of the oven door. The wave choke system may be produced by low costs. The notches of the wave choke elements provided for receiving the inner glass panel of the oven door contribute to a compact structure of the oven door. At least two neighboured wave choke elements arranged along the same side of the oven door include aligned notches for receiving the same edge of the inner glass panel.
Further, the oven door may comprise a door cover extending over an outer portion of the inner side of said oven door.
For example, the door cover of the oven door is formed as an L-shaped profile part and extends further over at least partially the circumferential sides of the oven door.
Additionally, the present invention relates to a corresponding microwave oven or an oven with microwave heating function comprising an oven door with a wave choke system mentioned above.
In particular, the microwave oven or the oven with microwave heating function, respectively, comprises a front frame enclosing a front opening of an oven cavity, wherein said front frame is made of metal and forms a counterpart of the wave choke system.
Preferably, the door cover and an outer portion of the inner glass panel of the oven door are arranged in front of the front frame in a closed state of said oven door.
In particular, a gap is formed between the front frame on the one hand and the door cover and the outer portion of the inner glass panel on the other hand in said closed state of the oven door.
Moreover, the width of a gap between the microwave oven and the oven door is suitable for receiving an elastic gasket being thick enough for acting as a steam-tight seal. In particular the width of said gap is between 2 mm and 4 mm, preferably about 3 mm, in the closed state of the oven door. This width of the gap allows further cooking function, e.g. steam cooking and/or pyrolytic cleaning.
Further, the front frame may form the counterpart of the wave choke system of the oven door, so that microwaves penetrating between the front frame and the oven door are conducted to the wave choke system.
In particular, the wave choke elements extend from the base plate in the direction of the inner side of the oven door.
For example, the wave choke element includes two open end portions and the base plate includes a series of slots, wherein each open end portion of the wave choke element penetrates one slot of the base plate.
In this case, the open end of the wave choke element includes at least one tab, preferably at least two tabs, penetrating through the corresponding slot in the base plate.
The wave choke element may be fastened at the base plate by deformation of the at least one tab and/or by twisting the at least one tab and/or by welding the open end portions at said base plate.
At last, the microwave oven or the oven with microwave heating function, respectively, comprises at least one gasket, wherein said gasket is clamped between the front frame and the outer portion of the inner glass panel in a closed state of the oven door, wherein preferably the gasket is made of silicone. This structure restricts the pollution of the gap.
Novel and inventive features of the present invention are set forth in the appended claims.
The present invention will be described in further detail with reference to the drawing, in which
The wave choke system 20 includes a frame part 22 and a plurality of wave choke elements 26. In this example, the frame part 22 is a Z-shaped profile part. The frame part 22 includes a base plate 24, on which the wave choke elements 26 are fastened. Each wave choke element 26 is a U-shaped metal stripe. The wave choke elements 26 are serially arranged along the frame part 22, so that the series of the wave choke elements 26 forms a wavelike structure. The base plate 24 of the frame part 22 includes a series of slots. Each slot is provided for receiving an open end portion of the U-shaped wave choke element 26. Each wave choke element 26 includes two end portions penetrating one slot in each case.
Further, a notch 46 is formed in the central portion of each wave choke element 26. Surprisingly, it has been discovered that the wave choke element 26 may be notched without any noticeable reduction of the microwave leakage suppression of the wave choke system 20.
The microwave oven 10 comprises an oven cavity 14 and a front frame 16. Said front frame 16 encloses a front opening of the oven cavity 14. The front opening of the oven cavity 14 is closable by the oven door 12.
The oven door 12 comprises a choke section 30, a door cover 32 and an inner glass panel 34. The choke section 30 and the door cover 32 form a rectangular frame of the oven door 12. The door cover 32 is an L-shaped profile part. On the one hand the door cover 32 forms the circumferential side of the oven door 12. On the other hand the door cover 32 forms an outer portion of the inner side of the oven door 12. A glue joint 36 connects the door cover 32 to the inner glass panel 34.
A gap between the front frame 16 of the microwave oven 10 and the oven door 12 is sealed by a gasket 18. Said gasket 18 is clamped between the inner glass panel 34 of the oven door 12 and the front frame 16 of the microwave oven 10. For example, the gasket 18 is made of silicone.
The choke section 30 is formed by the wave choke system 20 or is provided for receiving said wave choke system 20. The choke section 30 and/or the wave choke system 20 form a rectangular frame enclosing the oven door 12. The base plate 24 of the frame part 22 extends parallel to the main plane of the oven door 12. The wave choke elements 26 extend from the base plate 24 in the direction of the inner side of the oven door 12.
The notches 26 formed in each wave choke element 26 allow a larger area of the inner glass panel 34, since the inner glass panel may extend into the notches 26. Thus, the gasket 18 can touch the inner glass panel 34 instead of the door cover 32. This improves the cleanability of the oven door 12, since the door cover 32 and its edges cannot be polluted. Further, the glue joint 36 between the door cover 32 and the inner glass panel 34 is arranged out of the high temperature region enclosed the by gasket 18. Thus, the glue joint 36 is in a relative cool region reducing heat stress onto the glue. The gasket 18 protects the glue joint 36 and the door cover 32 against excess of heat. Thus, the glue joint 36 and the door cover 32 may be made of materials with a relative low heat resistance, which are less expensive.
The notches 26 of the wave choke elements 26 allow a bigger distance between the front frame 16 and the surface sealed by the gasket 18. For example, the gap sealed by the gasket 18 may be about 3 mm. This relative large distance allows a more flexible design of the gasket 18. Moreover, the relative large gap allows further cooking functions, for example steam cooking or pyrolytic cleaning.
Each open end portion of the wave choke element 26 includes two tabs 28 penetrating through the slot in the base plate 24. The wave choke elements 26 are fastened on the base plate 24 by deforming the tabs 28. In the pre-assembled state shown in
Further, the base plate 24 includes reinforcements 38. Preferably, the reinforcements 38 are elongated and extend parallel to the slots penetrated by the tabs 28. In this example, two reinforcements 38 are arranged beside each slot, so that the slot is between two parallel reinforcements 38.
The oven door 12 comprises the door cover 32, the inner glass panel 34 and the wave choke element 20. Further, the oven door 12 comprises two door columns 40 and two intermediate glass panels 42. In
Optionally, the frame part 24 of the wave choke system 20 may include a flange around the perimeter of the frame part 24 in order to obtain sufficient structural integrity. The curvature and the height of said flange may be used to fine-tune the frequency of highest microwave leakage suppression. The notches 26 in the wave choke elements 26 may suit said flange and enable an even more compact design.
The compact structure of the wave choke system 20 and the wave choke elements 26 allows the enlarged inner glass panel 34, so that the oven door 12 gets a larger see-through area. This may be optimized by either expanded mesh or perforated holes of arbitrary shape which may part of a blank for the frame part 22.
Number | Date | Country | Kind |
---|---|---|---|
15154584 | Feb 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/079052 | 12/9/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/128088 | 8/18/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4794218 | Nakano | Dec 1988 | A |
5942144 | Lee | Aug 1999 | A |
Number | Date | Country |
---|---|---|
2853616 | Jul 1979 | DE |
0184069 | Jun 1986 | EP |
2271177 | Jan 2011 | EP |
Entry |
---|
International Search Report and Written Opinion in PCT/EP2015/079052 dated Feb. 19, 2016, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20180020511 A1 | Jan 2018 | US |