This application claims priority from Mexican Application Serial No. MX/a/2011-002230 filed Feb. 28, 2011, which is incorporated herein by reference in its entirety.
The present invention relates to a door for a stove's oven of the type which comprises an inner or back panel which is entirely made of panoramic ceramic glass. More specifically it relates to a panoramic oven door which has a counter door structure divided into two parts and with an isolating thermal seal interposed between the same to generate a thermal breaking.
Normally doors for a stove's oven are directly subjected on their inner parts to very high temperatures for long lengths of time, so that the heat generated can be easily transmitted to the outer part of the same or to the handle itself, thus resulting in grave danger to the user. Given the latter, several attempts have been made to try to isolate as best possible the inner part of said doors in relation to the outer part to avoid burning the user; however, this has resulted in considerably increasing the robustness of the same given the numerous layers and the large quantity of isolating material which is placed on the inner part, implying that the designs result in poor aesthetic quality, heavy, with higher costs, etc. Currently, attempts to reduce said undesirable robustness of said doors have been made, however, the state of the art has failed in finding a method to effectively isolate heat in the same, through which the safety of the user is guaranteed and additionally an attractive design is attained.
For example, U.S. Pat. No. 5,881,710 divulges a common design for a stove's oven which has a front glass panel, a counter door structure to retain an isolating layer, a package of windows and an inner metallic panel with an opening for window. As a person skilled in the art can appreciate, given that there is not a thermal breaking between the assembly of the different parts conforming the door, it is necessary that this has a considerable robustness given the width of the isolating layer to attain its objective of avoiding to the highest degree possible heat transmission from the inner part to the outer part of the door; thus resulting in a product that is neither aesthetic nor practical.
Furthermore, European publication No. 1 265 039 A2 exposes an oven door with quick assembled which comprises solely three glass panels fastened at a determined separation between each other by means of a peripheral metallic structure, without any type of thermal isolating means between said panels other than the air present there; through which a thin door for an oven is attained, which is both light and aesthetic. However, being that it deals solely with a structure formed by three crystal layers without an inner structure, without thermal isolation, much less an element of thermal breaking between them, it is not possible to achieve adequate temperature isolation of the inner panel regarding the outer part, resulting in a dangerous situation for the user, especially when dealing with a pyrolytic or self-cleaning oven where the temperature can reach temperatures near 500° C.; in addition to also attaining a structure which would be considerably fragile.
On the other hand, U.S. Pat. No. 3,736,916 exposes a structure for a self cleaning oven door which has a sealing strip for thermal breaking between the inner panel and the counter door structure. However, the panels which form the oven door are made of a metallic laminate thus allowing for a greater heat transfer and a more robust and less aesthetic design. Additionally, it is necessary to use an insulator with a great density, which results in an increase in said door's dimensions, and the thermal seal is exposed and in direct contact with the oven's walls, which can detract from the effectiveness through the use and deterioration of the same.
In the same way, several types of oven door construction exist; however, none of these allows having both an aesthetic design with inner and outer panoramic glass panels, light, with low robustness, and which additionally allows a counter door structure with an isolating seal for thermal breaking through which a high degree of heat isolation between the inner panel and the outer panel of the door is achieved.
The present invention is an efficient solution to the problems previously mentioned in the background. The present invention relates to the door for the oven of a stove of the type which comprises of an inner or back panel which is made completely of a panoramic ceramic glass. More specifically, it relates to a panoramic oven door which has a counter door structure divided into two parts and with an isolating thermal seal interposed between the same to generate a thermal breaking. Said oven door is mainly conformed by a structure of an outer or front panel, a counter door structure and an inner or back panel.
In the first place, the structure of the outer or front panel is built by at least one upper decorative appliqué and at least one lower decorative appliqué fastened on its back part by a support frame formed by a molding with an upper back support, a molding with lower fastening and lateral posts joined by fastening means. Said support frame is also responsible for supporting a panoramic glass pane between the same and the upper and lower appliqués, in such a way that from a front part view of the outer panel structure only the panoramic glass and the appliqués which can be made of non-oxidizing steel for example, or any other type of material with the preferred appearance, can be seen. At the same time, on the front part of the same structure of the outer panel, a handle is coupled by some type of fastening means which cross over the upper appliqué until a pair of fastening brackets coupled to the molding of the upper back support for its support.
On the other hand, the structure of the counter door comprises a first outer section having the shape of a substantially rectangular structural frame which has a support groove surrounding its inner perimeter border; a second inner section with a counter door in the shape of a substantially rectangular structural frame which has a coupling flange surrounding its outer perimeter border; said first and second sections of the counter door are coupled between themselves by means of a plurality of coinciding fastening brackets or supports which are formed over the same, and joined by fastening means in such a way that said coupling flange is made to coincide with the second inner counter door section within the support groove formed in the first outer section of the counter door. Similarly, an isolating thermal seal manufactured of fiberglass thread in the shape of a flat hose is placed interposed between said coupling flange and said support groove once they are coupled securely, in order to avoid direct contact between both sections of the counter door creating a thermal breaking between them; said thermal seal additionally has a seam found close to one of its borders and which is substantially parallel along the length of the same, forming a small tubular section along the length of the border of the seal, within which, a small additional cylindrical seal is introduced made of fiberglass having a smaller diameter and woven in the shape of a braid which serves as an obstruction element for the same seal and at the same time as cushioning and isolating for the inner or back ceramic glass panel which, once the door is assembled, rests on the counter door, thus avoiding in this way, direct contact with the same. Additionally, a pair of hinges are coupled by fastening means to the sides of the first outer section of the counter door in order to be able to assemble in a hinged manner said oven door unto a cavity of a stove's oven.
Lastly, the inner or back panel comprises a ceramic glass which is coupled unto the structure of the counter door by means of an upper catch and a lower catch, preferably in an “L” shape, fastened to said counter door by means of fastening elements. Both on the upper border as well as on the lower border of the inner panel of the panoramic ceramic glass, a silicon seal is placed which is preferably in a “U” shape, which prevents said ceramic glass from coming into direct contact with any metallic part either from the counter door or said upper and lower ratchets, thus avoiding to the maximum extent possible any heat transfer by conduction means between the same.
In this manner, the structure of the outer or front panels is assembled unto the structure of the counter door by means of fastening elements such as screws, rivets, bolts, soldering joints or any other type of adequate means known in the previous art. The fastening means are set solely on the first outer section of the counter door, being coupled to the fastening brackets of the upper back support molding structure and generally, to the support frame of the front panel structure, thus avoiding the possibility of any direct contact between the inner second section of the counter door and the outer or front panel structure, thus maximally avoiding through this heat transfer by means of conduction between both, given that said second inner section of the counter door, through its location and geometry, is the part which indirectly receives the largest portion of the heat emanating from the oven's cavity. Because of this is that given the isolating thermal seal placed between the first outer section of the counter door and the second inner section of the counter door a thermal breaking between both is caused, avoiding to a large degree the heat transfer absorbed by said second inner section of the counter door towards said first outer section of the counter door, and at the same time towards the structure of the outer or front panel of the door. In addition to the above, between said structure of the outer panel and said structure of the assembled counter door, there remains a space through which the air can circulate from the at least one first opening formed on the lower part of the structure of the outer or front panel (through both the lower appliqué as well as the fastening lower molding), through the at least second opening formed on the upper part of the structure of the outer or front panel (through both the upper appliqué as well as the upper back molding), with the purpose of helping to lower the temperature of the door when the oven is in functioning mode. Within said space between both structures a package of windows is placed formed by two sheets of tinned glass which are mounted substantially parallel on a metallic frame set around the same to fasten them and maintain them at a certain predetermined separation; said frame is joined to a second inner section of the counter door by means of fastening brackets and fastening means in such a way that the windows package is centrally placed on the inner perimeter border of the second inner section of the counter door in the shape of a substantially rectangular structural frame. Additionally, surrounding said windows package, the pieces of thermal isolating material are placed supported by an inner guard such as a metal sheet frame, which in turn is fastened unto the counter door structure by means of fastening elements itself.
In a complementary manner, the inner or back panel of the ceramic glass is assembled to the counter door structure by means of an upper ratchet and a lower ratchet preferably in an “L” shape, fastened to said counter door by means of fastening elements, such as those described previously. It is worth highlighting that between the lower part of the structure of the counter door and the ceramic glass panel, a supplementary thermal seal is found in a longitudinal direction made of fiberglass thread in tubular shape with a steel core, through which a greater separation is accomplished and as such, a better thermal isolation between both parts is attained, in addition to also providing better cushioning from the impacts and vibrations which could arise. Additionally, a lower decorative ratchet can be placed over the lower ratchet preferably in an “L” shape coupled to the structure of the counter door by means of fastening elements with the end purpose of granting better aesthetics to the inner panel by hiding the lower border of the ceramic glass and said lower ratchet being preferably in an “L” shape.
In this manner, according to what was previously described, the construction of the stove's oven door of the present invention is attained, which provides an efficient solution to the problems present in the current state of the art.
Other aspects and advantages of the present invention shall become apparent when the description is referenced in conjunction with the following drawings.
The particular characteristics and advantages of the invention, as well as other aspects of the invention, shall become apparent from the following description, when taken in conjunction with the accompanying drawings, in which:
Fastening Elements—A means for fastening different parts. The fastening means can be selected among others from the following group: screws, rivets, bolts, soldering joints, adhesives or any other type of adequate means known in the previous art or which may become disclosed.
Decorative Appliqué—A decorative piece mainly used for ornamental purposes on the door. It can be designed to have any type of shape and made of any preferred material.
Such as is shown in
The oven door (1) is mainly formed by an outer or front panel structure (10), a counter door structure (30) and an inner or back panel (50).
In the first place, as can be seen in
On the other hand, as can be seen in
Lastly, as can be seen in
In this manner, the structure of the outer or front panels (10) is assembled unto the structure of the counter door (30) by means of fastening elements such as screws, rivets, bolts, soldering joints or any other type of adequate means. It is important to highlight that said fastening means are set solely on the first outer section (31) of the counter door (30), being coupled to the fastening brackets (19) of the upper back support molding structure (14) and generally, to the support frame (13) of the front panel structure (10), avoiding the possibility of any direct contact between the inner second section (33) of the counter door (30) and the outer or front panel structure (10), thus maximally avoiding through this heat transfer by means of conduction between both, given that said second inner section (33) of the counter door (30), through its location and geometry, is the part which indirectly receives the largest portion of the heat emanating from the oven's cavity. Because of this is that given the isolating thermal seal (36) placed between the first outer section (31) of the counter door (30) and the second inner section (33) of the counter door (30), a thermal breaking between both is caused, avoiding to a large degree the heat transfer absorbed by said second inner section (33) of the counter door towards said first outer section (31) of the counter door, and at the same time towards the structure of the outer panel or front part (10) of the door (1).
Coupled to the above, between said structure of the outer panel (10) and said structure of the assembled counter door (30), there remains a space through which the air can circulate from the at least one opening (20) formed on the lower part of the structure of the outer or front panel (10) (through both the lower appliqué (12) as well as the fastening lower molding (15)), through the at least second opening (21) formed on the upper part of the structure of the outer or front panel (10) (through both the upper appliqué (11) as well as the upper back support molding (14)), with the end purpose of helping to reduce the temperature of the door (1) when the oven is found in functioning mode. Within said space between both structures (10,30) a package of windows (38) is placed formed by at least one and preferably at least two sheets of tinned glass (39) substantially parallel to each other, which are mounted on a metallic frame (40) set around the same to fasten them and to maintain them at a certain predetermined separation; said frame (40) is joined to a second inner section (33) of the counter door (30) by means of fastening brackets (41) and fastening means in such a way that the package of windows (38) is centrally placed on the inner perimeter border of the second inner section of the counter door (33). Additionally, surrounding said package of windows (38), pieces of thermal isolating material (42) are conveniently placed supported by an inner guard (43) such as could be a sheet frame, preferably metallic, which in turn is fastened unto the counter door structure (30) by means of fastening elements itself. In addition to the above, also coupled, preferably along the length of the upper part of said inner guard (43), is an air deflector (44) which has a chimney-style function to deviate and/or stop the air heated by convection which circulates from the lower part of the door (1) to make it colder, thus impeding that this collide directly unto the handle (18) once it exits through the upper part of the door (1), thus avoiding that said handle be heated through this means.
In a complementary manner, the sheet of ceramic glass (51) of the inner or back side panel (50) is assembled unto the counter door structure (30) by means of an upper ratchet (52) and a lower ratchet (53) preferably in an “L” shape, fastened to said counter door (30) by means of fastening elements, such as those described previously. It is worth highlighting that between the lower part of the second inner section (33) of the counter door and the ceramic glass sheet (51), a supplementary thermal seal (60) is placed in a longitudinal direction, made of fiberglass thread in tubular shape with the core being made of steel, through which a greater separation is accomplished and as such, a better thermal isolation between both parts (33, 51) is attained, in addition to also providing better cushioning from the impacts and vibrations which could arise. Additionally, a lower decorative ratchet (55) can be placed over the lower ratchet (53), preferably in an “L” shape coupled to the structure of the counter door (30) by means of fastening elements with the end purpose of granting better aesthetics to the inner panel (50) by hiding the lower border of the ceramic glass (51) and said lower ratchet (53), preferably in an “L” shape.
Finally, as a separate embodiment, other additional thermal isolating elements may be used such as double-sided tape or any other type of efficient and convenient covering, between the joints of all the different parts which conformed the oven door (1) of the present invention; this with the purpose of avoiding to the maximum degree possible, direct contact between said parts and, as a consequence, to considerably lower the transfer of heat and vibrations between the same.
Alterations to the structure described in the present, shall be foreseen by those persons skilled in the art. However, it should be understood that the present description is related with the preferred embodiments of the invention, which are solely for illustrative purposes, and should not be construed as a limitation of the invention. All modifications which do not depart from the scope of the invention, such as changes to the shape, materials and size dimensions of the pieces, shall be included within the body of the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
MX/a/2011/002230 | Feb 2011 | MX | national |
Number | Name | Date | Kind |
---|---|---|---|
2630605 | Hobson et al. | Mar 1953 | A |
3228388 | Mills | Jan 1966 | A |
3362396 | Bohdan | Jan 1968 | A |
3507266 | Vonasch | Apr 1970 | A |
3507267 | Lafforgue | Apr 1970 | A |
3578764 | Nunnally et al. | May 1971 | A |
3710776 | Frick | Jan 1973 | A |
3731035 | Jarvis et al. | May 1973 | A |
3736916 | White | Jun 1973 | A |
3828763 | Wilson | Aug 1974 | A |
3846608 | Valles | Nov 1974 | A |
3855994 | Evans et al. | Dec 1974 | A |
3889099 | Nuss | Jun 1975 | A |
3939817 | Nuss | Feb 1976 | A |
4048978 | Plumat et al. | Sep 1977 | A |
4081647 | Torrey | Mar 1978 | A |
4512331 | Levi | Apr 1985 | A |
4989381 | De Block et al. | Feb 1991 | A |
5095657 | Marsh | Mar 1992 | A |
5205075 | Moyer | Apr 1993 | A |
5289658 | Lusen et al. | Mar 1994 | A |
5341601 | Moyer | Aug 1994 | A |
5624760 | Collins et al. | Apr 1997 | A |
5644881 | Neilly | Jul 1997 | A |
5789724 | Lerssen et al. | Aug 1998 | A |
5881710 | Davis et al. | Mar 1999 | A |
6591829 | Simon | Jul 2003 | B1 |
20040107955 | Schnell et al. | Jun 2004 | A1 |
20060027230 | Jung | Feb 2006 | A1 |
20070240701 | Schnell et al. | Oct 2007 | A9 |
20070271847 | Chin | Nov 2007 | A1 |
20090255524 | Venezia et al. | Oct 2009 | A1 |
20090255918 | Venezia et al. | Oct 2009 | A1 |
20120031389 | McMaster et al. | Feb 2012 | A1 |
Number | Date | Country |
---|---|---|
1001370 | Oct 1989 | BE |
1891055 | Jan 2007 | CN |
1022517 | Jul 2000 | EP |
1265039 | Dec 2002 | EP |
2006021935 | Mar 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20120216789 A1 | Aug 2012 | US |