The field of the invention relates to signal processing, and, more particularly, to processing of digital data signals.
Disk-based storage devices such as hard disk drives (HDDs) are used to provide non-volatile data storage in a wide variety of different types of data processing systems. A typical HDD comprises a spindle which holds one or more flat circular storage disks, also referred to as platters. Each storage disk comprises a substrate made from a non-magnetic material, such as aluminum or glass, which is coated with one or more thin layers of magnetic material. In operation, data is read from and written to tracks of the storage disk via a read/write head that is moved precisely across the disk surface by a positioning arm as the disk spins at high speed.
In one embodiment, an apparatus comprises read channel circuitry and signal processing circuitry associated with the read channel circuitry. The signal processing circuitry comprises: an equalizer having an input coupled to an output of an analog-to-digital converter, the equalizer being configured to determine an equalized digital data signal from an oversampled digital data signal; a filter having an input coupled to an output of the equalizer, the filter being configured to filter the equalized digital data signal; a detector having an input coupled to an output of the filter, the detector being configured to determine a hard decision and reliability of the filtered digital data signal; and a decoder with an input coupled to an output of the detector, the decoder being configured to decode the filtered digital data signal based at least in part on the hard decision and reliability. The oversampled digital data signal comprises a first set of sampled digital data and a corresponding second set of sampled digital data, each of the samples in the first set of sampled digital data being offset from a corresponding one of the samples in the second set of sampled digital data by a phase difference.
Other embodiments of the invention include, by way of example and without limitation, methods, storage devices, virtual storage systems, integrated circuits and computer-readable storage media having computer program code embodied therein.
Embodiments of the invention will be illustrated herein in conjunction with exemplary disk-based storage devices, read channel circuitry and associated signal processing circuitry for processing read channel data signals. It should be understood, however, that these and other embodiments of the invention are more generally applicable to any storage device in which improved signal processing is desired. Additional embodiments may be implemented using components other than those specifically shown and described in conjunction with the illustrative embodiments.
Read/write head assembly 180 is positioned by voice coil motor 190 over a desired data track on disk platter 170. Motor controller 150 controls the voice coil motor 190. Motor controller 150 controls the voice coil motor 190 to position read/write head assembly 180 in relation to disk platter 170 and drives spindle motor 160 by moving read/write head assembly 180 to the proper data track on disk platter 170 under direction of hard disk controller 140. Spindle motor 160 spins disk platter 170 at a determined spin rate in revolutions per minute (RPM).
Once read/write head assembly 180 is positioned adjacent the proper data track, magnetic signals representing data on disk platter 170 are sensed by read/write head assembly 180 as disk platter 170 is rotated by spindle motor 160. The sensed magnetic signals are provided as an analog signal representative of the magnetic data on disk platter 170. This analog signal is transferred from read/write head assembly 180 to read channel circuitry 110 via preamplifier 120. Preamplifier 120 is operable to amplify the analog signals accessed from disk platter 170. In turn, read channel circuitry 110 decodes and digitizes the received analog signal to recreate the information originally written to disk platter 170. This data is provided as read data.
Various elements of the storage device 100 may be implemented at least in part within a processing device. A processing device includes a processor and a memory, and may be implemented at least in part within an associated host computer or server in which the storage device 100 is installed. Portions of the processing device may be viewed as comprising “control circuitry” as that term is broadly defined herein.
It is important to note that storage device 100 may include other elements in addition to or in place of those specifically shown, including one or more elements of a type commonly found in a conventional implementation of such a storage device. These and other conventional elements, being well understood by those skilled in the art, are not described in detail herein. It should also be understood that the particular arrangement of elements shown in
In order to increase detection performance, embodiments of the invention utilize a multiple input, single output equalizer scheme which effectively improves detection performance while reducing the signal path from two to one.
Referring now to
Embodiments of the invention provide several advantages relative to conventional approaches. For example, in some arrangements there may be a different optimal sampling phase for timing and gain loop performance than the optimal sampling phase for backed detection and decoding error rate. Thus, embodiments of the invention can intentionally let the front-end processing be locked into one optimal sampling phase for stable timing and gain loops. For example, although not shown in
The equalizer 202 may thus receive a first set of sampled digital data and a second set of sampled digital data from the analog-to-digital converter. Respective ones of the samples in the first set of sampled digital data and corresponding ones of the samples in the second set of sampled digital data are offset by a phase difference. Each of the first set of sampled digital data and the second set of sampled digital data may comprise N samples. The equalized digital data signal comprises a third set of N equalized samples. As described above, each sample in the third set of N equalized samples may be a combination of corresponding samples in the first and second sets of samples.
The equalizer 202 may comprise a set of discrete finite impulse response (DFIR) filters, or DFIRs. Each DFIR has a set of coefficients, aj. The equalized samples y[k] may be determined according to the following equation:
where s is a delay term and J is the order of the DFIRs. The oversampled equalizer 202 thus reduces misequalization at the equalizer output by using the two sampling phases k and k +0.5 jointly. The equalized samples y[k] are input to a noise predictive filter 204. The noise predictive filter may comprise one or more noise predictive finite impulse response (NPFIR) filters or NPFIRs. The noise predictive filter 204 filters the equalized samples y[k].
The detector 206 determines a hard decision and reliability of the equalized samples y[k]. The detector 206 may comprise a variety of detector types, including a soft-output Viterbi algorithm (SOYA) detector or a maximum a posteriori probability (MAP) detector, or some combination of SOVA and MAP detectors. The hard decision, ŷ[k], may be used as feedback for the equalizer 202 and the noise predictive filter 204. In some embodiments, the reliability of the equalized samples may also be used as feedback for the equalizer 202 and noise predictive filter 204. The decoder 208 will decode the read signal based at least in part on the hard decision and reliability of the equalized signal. In some embodiments, the detector 206 and the decoder 208 will exchange information and perform an iterative decoding process. The decoder 208 will output a decoded digital data signal. The decoder 208 may be a variety of different decoder types. For example, in some embodiments the decoder 208 may be a low-density parity check (LDPC) decoder. In other embodiments, the decoder 208 may be a Reed Solomon (RS) decoder.
The set of coefficients {a} associated with the DFIRs of the equalizer 202 may be optimized by minimizing the mean squared error between the equalized signal y[k] and the hard decision ŷ[k] according to the following equation
where N is a number of samples. The coefficients associated with NPFIRs of the noise predictive filter 204 may be similarly optimized.
As mentioned previously, the storage device configuration can be varied in other embodiments of the invention. For example, the storage device may comprise a hybrid HDD which includes a flash memory in addition to one or more storage disks.
In addition, storage device 100 may be coupled to or incorporated within a host processing device, which may be a computer, server, communication device, etc.
Multiple storage devices 100-1 through 100-N possibly of various different types may be incorporated into a virtual storage system 500 as illustrated in
It should again be emphasized that the above-described embodiments of the invention are intended to be illustrative only. For example, other embodiments can use different types and arrangements of storage disks, read/write heads, read channel circuitry, signal processing circuitry, decoders, filters, calibrators, detectors, and other storage device elements for implementing the described signal processing functionality. Also, the particular manner in which certain steps are performed in the signal processing may vary. These and numerous other alternative embodiments within the scope of the following claims will be apparent to those skilled in the art.
Number | Name | Date | Kind |
---|---|---|---|
6377529 | Lee et al. | Apr 2002 | B1 |
6594094 | Rae et al. | Jul 2003 | B2 |
7564388 | Lerdworatawee et al. | Jul 2009 | B2 |
20050068650 | Annampedu et al. | Mar 2005 | A1 |
20050264922 | Erden et al. | Dec 2005 | A1 |
20080279316 | Chen et al. | Nov 2008 | A1 |
20110075718 | Liu et al. | Mar 2011 | A1 |
Entry |
---|
K. Yamaguchi et al., “12 Gb/s Duobinary Signaling with x2 Oversampled Edge Equalization,” IEEE International Solid-State Circuits Conference, Session 3, Backplane Transceivers, 2005, pp. 70-71. |
A. Tkacenko et al., “A New Eigenfilter Based Method for Optimal Design of Channel Shortening Equalizers,” IEEE International Circuits and Systems (ISCAS), 2002, 4 pages. |
U.S. Appl. No. 13/628,513, filed in the name of J. Lu et al. Sep. 27, 2012 and entitled “Data-Dependent Equalizer Circuit.”. |
U.S. Appl. No. 13/628,579, filed in the name of S. Yang et al. Sep. 27, 2012 and entitled “Branch Metric Computation and Noise Predictive Calibration/Adaptation for Over-Sampled Y Samples.” |
Number | Date | Country | |
---|---|---|---|
20140177082 A1 | Jun 2014 | US |