This application claims the benefit of Chinese Patent Application No. 201410557470.8, filed on Oct. 20, 2014, which is incorporated herein by reference in its entirety.
The present disclosure generally relates to the field of power electronics, and more particularly to over-temperature protection circuits, linear driving circuits, and associated methods.
A switched-mode power supply (SMPS), or a “switching” power supply, can include a power stage circuit and a control circuit. When there is an input voltage, the control circuit can consider internal parameters and external load changes, and may regulate the on/off times of the switch system in the power stage circuit. Switching power supplies have a wide variety of applications in modern electronics. For example, switching power supplies can be used to drive light-emitting diode (LED) loads.
In one embodiment, a method of over-temperature protection for a power switch, can include: (i) generating a sensing signal by sensing a temperature of the power switch; (ii) determining a temperature threshold signal based on a conduction voltage between first and second terminals of the power switch, where a value of the temperature threshold signal is reduced as the conduction voltage increases; and (iii) turning off the power switch when the sensing signal is greater than or equal to the temperature threshold signal.
In one embodiment, an over-temperature protection circuit for a power switch, can include: (i) a temperature sensing circuit configured to output a sensing signal by sensing a temperature of the power switch; (ii) a temperature threshold signal generating circuit configured to generate a temperature threshold signal based on a conduction voltage between first and second terminals of the power switch, where a value of the temperature threshold signal is reduced as the conduction voltage increases; and (iii) a protection signal generating circuit configured to generate an over-temperature protection signal according to the sensing signal and the temperature threshold signal, where the over-temperature protection signal is activated to turn off the power switch when the sensing signal is greater than or equal to the temperature threshold signal.
Reference may now be made in detail to particular embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention may be described in conjunction with the preferred embodiments, it may be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents that may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it may be readily apparent to one skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, processes, components, structures, and circuits have not been described in detail so as not to unnecessarily obscure aspects of the present invention.
A power supply circuit can generate an output voltage for a load by controlling a power switch that is coupled between a power supply terminal and the load. When the load is reduced, a voltage may increase at a power switch that may be coupled in series with the load between the power supply terminal and ground. In this case, the power switch may suffer from power being too high, possibly resulting in a temperature increase of the power switch. The temperature may increase when the power increases, so the power switch may break down or otherwise be damaged when the temperature of the power switch increases to a threshold temperature.
Referring now to
In some cases, the temperature sensing unit can be placed as close as possible to the center of power switch Mo, and thus the sensed temperature can better represent center temperature To of power switch Mo. However, this approach may be relatively difficult to implement in practical applications. Another approach can include detection of the conduction voltage of the power switch, and when the conduction voltage reaches a certain threshold value, the power switch can be latched off in order to protect the power switch from being damaged. Though inaccurate sensed temperature can be avoided in this case, the power switch may not be self-started, so the operation can be relatively complicated as the power switch may need to be started again after every such “latch-off.”
In one embodiment, a method of over-temperature protection for a power switch, can include: (i) generating a sensing signal by sensing a temperature of the power switch; (ii) determining a temperature threshold signal based on a conduction voltage between first and second terminals of the power switch, where a value of the temperature threshold signal is reduced as the conduction voltage increases; and (iii) turning off the power switch when the sensing signal is greater than or equal to the temperature threshold signal.
Referring now to
For example, the temperature of the power switch can be obtained by a temperature sensing unit, and sense signal Stemp that represents sensed temperature Tsens may be a voltage signal. Thus, the sensed temperature generated by the sensor in the sensing unit can be converted to a voltage signal. At 202, a temperature threshold signal can be determined according to a conduction voltage between first and second terminals (e.g., the source and drain) of the power switch. For example, the temperature threshold signal (e.g., Sth) can decrease when the conduction voltage (e.g., Vds) increases. Also, conduction voltage Vds between the first and second terminals of the power switch may be detected at the same, or substantially the same, time as the sensing of the temperature at 201.
In particular embodiments, a group of reference voltages that increase from reference voltage Vds1 to nth reference voltage Vdsn in a range determined by the minimum and maximum values of conduction voltage Vds between the first and second terminals of the power switch can be established. The n reference voltages can be selected in the range of conduction voltage Vds such that n reference voltages (Vds1 . . . Vdsn) form a group of voltages between the minimum and maximum values of conduction voltage Vds. For example, each of reference voltages can be set according to specific circuit parameters of the power switch.
After setting reference voltage Vds1 through nth reference voltage Vdsn, a group of (n+1) threshold reference signals that gradually decrease from threshold reference signal Vth1 to (n+1)th reference signal Vth(n+1) can be set. For example, reference voltage Vdst to nth reference voltage Vdsn, and threshold reference signal Vth1 to (n+1)th threshold reference signal Vth(n+1) can be set according to reference voltage Vds1 to nth reference voltage Vdsn. Various factors, such as thermal resistance, thermal capacitance, maximum withstand power of the power switch, as well as the heat conduction speed from the center temperature to the sensing unit, are among the factors to be taken into consideration when setting reference voltage Vds1 through nth reference voltage Vds1, and threshold reference signal Vth1 through (n+1) threshold reference signal Vth(n+1).
In this way, a lower threshold reference signal can be set as the reference voltage is higher. When conduction voltage Vds of the power switch reaches a reference voltage, the power switch can be turned off when sense signal Stemp equals a level of the reference voltage, in order to protect the main power switch from being broken down, or otherwise damaged. For example, when sense signal Stemp that represents sensed temperature Tsens of the power switch is a voltage signal, a group of voltage signals from threshold reference signal Vth1 through (n+1) threshold reference signal Vth(n+1) can be output as temperature threshold signal Vth to be compared against sense signal Stemp. In this case, temperature threshold signal Sth can use temperature threshold signal Sth.
Temperature threshold signal Sth can be determined according to conduction voltage Vds of the power switch. For example, conduction voltage Vds can be determined by respectively comparing conduction voltage Vds against reference voltage Vds1 through nth reference voltage Vdsn, and obtaining a sensing result. One of (n+1) threshold reference signals (Vth1, . . . Vth(n30 1)) can be selected as temperature threshold signal Sth according to conduction voltage Vds. For example, threshold reference signal Vth1 can be selected as temperature threshold signal Sth when conduction voltage Vds is less than threshold voltage Vds1. The (i+1)th threshold reference signal Vth(i+1) can be taken as temperature threshold signal Sth when conduction voltage Vds is greater than ith reference voltage Vdsi, and less than or equal to (i+1)th reference voltage Vds(i+1), where n and i are positive integers. The (n+1)th threshold reference signal Vth(n+1) can be taken as temperature threshold signal Sth when conduction voltage Vds is greater than nth threshold voltage Vdsn.
At 203, the power switch can be controlled to be turned off when the sensing signal is greater than or equal to the temperature threshold signal. Sense signal Stemp can be compared against temperature threshold signal Sth. When sense signal Stemp is greater than or equal to temperature threshold signal Sth, the power switch can be turned off to achieve over-temperature protection. For example, the power switch can be a transistor (e.g., a MOS transistor) with the first and second terminals being the source/drain electrodes (e.g., the first terminal being the drain, and the second terminal being the source).
When over-temperature protection is provided to the power switch according to sensed temperature Tsens, a temperature threshold signal Sth matching with conduction voltage Vds can be determined according to conduction voltage Vds of the power switch. For example, temperature threshold signal Sth can decrease as conduction voltage Vds increases. Thus, over-temperature protection of the power switch can be achieved according to a comparison result of sense signal Stemp and temperature threshold signal Sth. In this way, over-temperature protection of the power switch can be relatively timely and reliable considering the inherent error between sensed temperature Tsens and the center temperature To of the power switch.
As discussed above, whether the power switch will be broken in a particular case can be determined by the center temperature of the power switch. However, the edge temperature can be detected instead of the center temperature of the power switch, and the sensed temperature may be less than the center temperature, but not equal to the center temperature. Also, the power switch may suffer from higher power as the conduction voltage thereof becomes higher, so the center temperature of the power switch may also become higher. However, because of the limited heat conduction speed, the difference between the sensed temperature and the center temperature of the power switch may increase as the center temperature increases. Also, the power switch may suffer from higher power Po as the conduction voltage Vds thereof becomes higher, so the center temperature To of the power Po switch may also increase. Due to the limited heat conduction speed from the center of the power switch to the temperature conduction unit (e.g., the unit for sensing the temperature of the power switch), the sensed temperature may differ greatly from center temperature To of the power switch in some cases.
In this particular example, when conduction voltage Vds of the power switch increases, by selecting a lower temperature threshold signal Sth to compare against sense signal Stemp, the power switch can be timely protected because sensed temperature Tsens may be far less than the actual center temperature To. In this way, the power switch can be timely protected with more reliable over-temperature protection, as compared to conventional approaches.
In one embodiment, an over-temperature protection circuit for a power switch, can include: (i) a temperature sensing circuit configured to output a sensing signal by sensing a temperature of the power switch; (ii) a temperature threshold signal generating circuit configured to generate a temperature threshold signal based on a conduction voltage between first and second terminals of the power switch, where a value of the temperature threshold signal is reduced as the conduction voltage increases; and (iii) a protection signal generating circuit configured to generate an over-temperature protection signal according to the sensing signal and the temperature threshold signal, where the over-temperature protection signal is activated to turn off the power switch when the sensing signal is greater than or equal to the temperature threshold signal.
Referring now to
Temperature threshold signal generating circuit 302 can generate temperature threshold signal Sth according to conduction voltage Vds between first and second terminals of the power switch. The temperature threshold signal can become smaller as conduction voltage of power switch becomes larger. The two input terminals of protection signal generating circuit 303 can respectively connect to an output of temperature sensing circuit 301 and an output of temperature threshold signal generating circuit 302. Protection signal generating circuit 303 can generate over-temperature protection signal TSD according to sense signal Stemp and temperature threshold signal Sth. For example, when sense signal Stemp is greater than or equal to temperature threshold signal Sth, over-temperature protection signal TSD can go active to turn off the power switch.
In the example of
In
Threshold selection circuit 3022 can include (n+1) reference power supplies for setting a group of (n+1) threshold reference signals that decrease from threshold reference signal Vth1 to (n+1) threshold reference signal Vth(n+1). For example, (n+1) reference power supplies can be (n+1) reference voltage sources for generating a group of voltage signals that increase from threshold reference signal Vth1 to (n+1) threshold reference signal Vth(n+1). Alternatively, (n+1) reference threshold signals can be provided by an external power supply rather than threshold value selection circuit 302. Further, the threshold reference signal in this example may employ a voltage signal as temperature threshold signal Sth.
Reference voltage Vds1 through nth reference voltage Vdsn, and threshold reference signal Vth1 through (n+1) threshold reference signal Vth(n+1), can be set according to reference voltage Vds1 through nth reference voltage Vdsn. Various factors, such as the thermal resistance, thermal capacitance, maximum withstand power of the power switch, as well as the heat conduction speed from the center temperature to the sensing unit can be taken into consideration when setting reference voltage Vds1 through nth reference voltage Vthn, and threshold reference signal Vth1 through (n+1) threshold reference signal Vth(n+1). Therefore, a smaller threshold reference signal Vth can be set as the reference voltage increases such that when conduction voltage Vds of the power switch reaches a level of a reference voltage, the power switch can be turned off when sense signal Tsens equals the reference voltage, in order to protect the main power switch from being broken down.
Conduction voltage sensing circuit 3021 can respectively compare conduction voltage Vds against reference voltage Vds1 through nth reference voltage Vdsn, and may output a sensing result that represents conduction voltage Vds. Threshold value selection circuit 3022 can select one of threshold reference signal Vth1 to (n+1) threshold reference signal Vth(n+1) as temperature threshold signal Sth according to the sensing result. Threshold reference signal Vth1 generated by threshold value selection circuit 3022 can be taken as temperature threshold signal Vth when conduction voltage Vds is less than threshold voltage Vds1. Also, (i+1)th threshold reference signal Vth(i+1) generated by threshold value selection circuit 3022 can be taken as temperature threshold signal Sth when conduction voltage Vds is greater than ith reference voltage Vdsi and less than or equal to (i+1)th reference voltage Vds(i+1). In addition, (n+1) threshold reference signal Vth(n+1) generated by threshold value selection circuit 3022 can be taken as temperature threshold signal Sth when conduction voltage Vds is less than threshold voltage Vth1.
Temperature threshold signal Sth for comparing against sense signal Stemp may be lowered as conduction voltage Vds increases, so as to reduce the inherent error between sensed temperature Tsens and center temperature To of the power switch, in order to timely protect the power switch with more reliable protection. In the example of
Conduction voltage sensing circuit 3021 can also include priority encoder 30212 having n input terminals respectively connected to comparator CP1 through nth comparator CPn for receiving comparison signals generated by comparator CP1 through nth comparator CPn. In this way, an encoded digital signal that represents the sensing result can be generated, where the encoded digital signal includes the comparison signals generated by comparator CP1 through nth comparator CPn. Thus, threshold value selection circuit 3022 can generate appropriate temperature threshold signal Sth according to the threshold reference signal.
For example, the encoded digital signal in
Referring now to
For example, the first terminal of power switch M5 can either be the source or drain electrode of power switch M5, and the second terminal can be the remaining source/drain electrode. Over-temperature protection circuit 300 can connect to the control terminal of power switch M5, and temperature threshold signal Sth can be obtained according to conduction voltage Vds between the first and second terminals of power switch M5. Sense signal Stemp may represent the temperature of power switch M5, and when sense signal Stemp is greater than or equal to temperature threshold signal Sth, power switch M5 can be turned off. Also, temperature threshold signal Sth can become smaller as conduction voltage Vds of power switch M5 increases. When sense signal Stemp that represents sensed temperature Tsens of power switch M5 is greater than or equal to temperature threshold signal Sth, over-temperature protection circuit 300 outputs an active over-temperature protection signal TSD. This can be used to turn power switch M5 off to timely protect power switch M5.
For example, the linear driving circuit can include constant current control circuit 501 and sampling resistor Rs. Power switch M5 can connect between the negative pole of the load and a first terminal of sampling resistor Rs. The first terminal (e.g., drain) of power switch M5 can connect to the negative pole of the load, and the second terminal (e.g., source) of power switch M5 can connect to sampling resistor Rs. The positive pole of the load can connect to the voltage input terminal, and a second terminal of sampling resistor Rs can connect to ground. When power switch M5 is turned on, the output voltage of the power supply may be provided to the load, and sampling voltage Vcs5 that represents the output current can be obtained at the first terminal of sampling resistor Rs.
The input terminal of constant current controller 501 can connect to the first terminal of sampling resistor Rs for providing driving voltage Vg to the control terminal (e.g., gate) of power switch M5 to control power switch M5. Also, sampling voltage Vcs5 can be clamped to reference voltage Vref such that the current flowing through the load substantially equals a constant value Io=Vref/Rs. Here, the output of protection signal generating circuit 303 within over-temperature protection circuit 300 can connect to constant current controlling circuit 501. When sense signal Stemp is greater than temperature threshold signal Sth, protection signal generating circuit 303 can activate over-temperature protection signal TSD such that constant current controlling circuit 501 can turn off power switch M5.
For example, constant current controlling circuit 501 can employ operational amplifier GM1. The inverting input terminal of operational amplifier GM1 can connect to the first terminal of sampling resistor Rs, and the non-inverting input terminal can receive reference voltage Vref. Sampling voltage Vcs5 may be substantially equal to reference voltage Vref when in a stable state. Also, compensation capacitor C5 can connect between the output of operational amplifier GM1 and ground, and the voltage across compensation capacitor C5 may be the driving voltage of power switch M5. When driving voltage is greater than the conduction threshold voltage of power switch M5, power switch M5 can be turned on, and the linear driving circuit may operate normally.
The output terminal of operational amplifier GM1 can connect to switching circuit S5 in parallel with compensation capacitor C5. Also, the control terminal of switching circuit S5 can connect to the output terminal of protection signal generating circuit 303 within over-temperature protection circuit 300. When sense signal Stemp is greater than temperature threshold signal Sth, protection signal generating circuit 303 can activate over-temperature protection signal TSD to turn on switching circuit S5. In this case, the energy stored in compensation capacitor C5 may be released by switching circuit S5, and the voltage across compensation capacitor C5 may decrease. Then, power switch M5 may be turned off when the voltage across compensation capacitor C5 is reduced to a conduction threshold voltage of power switch M5.
Rectifier bridge circuit 502 and filter circuit 503 can be coupled ahead of the power stage circuit of the linear driving circuit. Rectifier bridge circuit 502 can include a plurality of rectifier diodes configured to convert an AC signal to a DC signal. Output voltage Vout provided to the load can be obtained by filtering the DC signal by filter circuit 503 connected between the output of rectifier bridge circuit 502 and the positive pole of the load. For example, a supply voltage of constant current controlling circuit 501 can be obtained by a bleed circuit including series-connected resistors R1 and R2 from the output terminal of filter circuit 503 such that a normal operating voltage can be provided to constant current control circuit 501. In this way, over-temperature protection for power switch M5 can be achieved by via the over-temperature protection circuit within the linear driving circuit.
In the linear driving circuit of
Referring now to
Over-temperature protection circuit 300 can connect to the control terminal of power switch M6. Temperature threshold signal Sth may be obtained according to a conduction voltage between the first terminal (e.g., drain) and the second terminal (e.g., source) of the power switch M6, so as to obtain sense signal Stemp that represents the temperature of power switch M6. When sense signal Stemp is greater than or equal to temperature threshold signal Sth, power switch M6 may be turned off. Temperature threshold signal Sth may become smaller as conduction voltage Vds of main power switch M6 increases.
The linear driving circuit can include operational amplification circuit 601 and output feedback circuit 602. Operational amplification circuit 601 can be implemented by operational amplifier GM2, and output feedback circuit 602 can include series-connected resistors R1 and R2. The first terminal (e.g., drain) of power switch M6 can connect to the voltage input terminal, and the second terminal (e.g., source) can connect to ground through series-connected resistors R1 and R2. When power switch M6 is turned on, input voltage Vin may provided to the load via the source of power switch M6. A common node of resistors R1 and R2 can be configured as a feedback output terminal of output feedback circuit 602, and sense/sampling voltage Vcs6 that represents the output voltage may be obtained at the common node.
The non-inverting input terminal of operational amplifier GM2 can connect to a common node of resistors R1 and R2 for receiving sense voltage Vcs6. The inverting input terminal of operational amplifier GM2 can receive a predetermined reference voltage Vref. The output terminal of operational amplifier GM2 can connect to the control terminal of power switch M6 through a grounded compensation capacitor C6. By applying operational amplifier
GM2, sense voltage Vcs6=Vref when the circuit enters a stable state, so as to clamp output voltage Vout at a stable voltage to generate a substantially constant output. Also, the driving voltage of power switch M6 can be obtained across compensation capacitor C6 at the output terminal of the operational amplifier.
The output terminal of operational amplifier GM can connect to switching circuit S6 in parallel with compensation capacitor C6. The control terminal of switching circuit S6 can connect to the output terminal of protection signal generating circuit 303 within over-temperature protection circuit 300. When sense signal Stemp is greater than temperature threshold signal Sth, protection signal generating circuit 303 may activate over-temperature protection signal TSD such that switching circuit S6 may be turned on. The energy stored in compensation capacitor C6 can be released by switching circuit S6, and voltage Vg across compensation capacitor C6 may decrease. Power switch M6 may be turned off when voltage Vg across compensation capacitor C5 is reduced to be lower than conduction threshold voltage of power switch M6.
For example, output filter circuit 603 can connect between the source of power switch M6 and ground, in order to filter output voltage Vout for the load. An RC output filter circuit can include filter capacitor Co and filter resistor Ro in this particular example of output filter circuit 603. Output filter circuit 603 provided at the output terminal can be helpful in improving the stability of the output voltage supplied to the load, in order to improve the output stability of the linear driving circuit. Over-temperature protection for power switch M6 may be achieved by applying over-temperature protection circuit 300 within the linear driving circuit as shown. In the linear driving circuit of this particular example, when the load is shortened or reduced, conduction voltage Vds between the first and second terminals of power switch M6 can be at a maximum, and conduction voltage Vds may be equal to the input voltage. Thus, the maximum value of conduction voltage Vds of power switch M6 can be Vin, and as such n reference voltages for power switch M6 can be increasingly set from 0 to Vin.
The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilise the invention and various embodiments with modifications as are suited to particular use(s) contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
201410557470.8 | Oct 2014 | CN | national |