The present specification generally relates to automated vehicle systems updating, and more particularly to over-the-air vehicle systems updating and associated security protocols.
Vehicles, such as cars and trucks, are becoming increasingly computer controlled. Many operating characteristics are generally based on computer algorithms that are pre-programmed into various electronic control units (ECUs). The ECUs control one or more of the electrical systems or subsystems in the vehicle. Managing the increasing complexity and number of ECUs in a vehicle has become a key challenge for vehicle manufacturers.
Currently, if there are any software or ECU issues with the vehicle or updates to the software or ECUs are available, the customer must drive or somehow transport the vehicle to a dealer for service. This can be inconvenient for the customer. Accordingly, a need exists for more convenient ways to update vehicle software and ECUs.
In one embodiment, a method of updating a vehicle ECU includes establishing communication between a data communications module of a vehicle and an update server via a cellular network; validating the vehicle using a key exchange protocol between the data communications module and the update server; and sending update information from the update server to the data communications module of the vehicle via the cellular network, the update information configured to be used to update the vehicle ECU.
In another embodiment, an over-the-air system for updating a vehicle includes an update server including update information for use in updating a vehicle ECU. A data communications module on a vehicle is configured to communicate with the update server via a cellular network for receiving the update information from the update server. A diagnostic ECU is configured to communicate with the data communications module for receiving the update information from the data communications module. A vehicle ECU is configured to communicate with the diagnostic ECU for receiving update information from the diagnostic ECU.
In another embodiment, a method of updating a vehicle ECU includes establishing communication between a data communications module of a vehicle and an update server via a cellular network; sending a security key from the data communications module of the vehicle to the update server; and sending update information from the update server to the data communications module of the vehicle via the cellular network if the security key is valid.
These and additional features provided by the embodiments described herein will be more fully understood in view of the following detailed description, in conjunction with the drawings.
The embodiments set forth in the drawings are illustrative and exemplary in nature and not intended to limit the subject matter defined by the claims. The following detailed description of the illustrative embodiments can be understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Embodiments described herein generally relate to over-the-air (OTA) updating of vehicle systems and associated security protocols that can be used to validate an update source, update destination and/or the update communications themselves. The OTA updating systems and methods may utilize a data communications module (DCM) that provides a connection to update servers, for example, through a cellular network. The DCM may receive various updates from the update servers OTA (e.g., without any need for visiting a dealership or physical connection to a diagnostic device) that can be used to reprogram the vehicle's ECUs. A security protocol may be provided that is used to validate the source and destination of the update communications. The DCM may be connected to a diagnostic ECU capable of communicating with the vehicle ECUs, for example, via a controller area network (CAN).
Referring to
Update information may be used to reprogram one or more of the vehicle ECUs 12 in order to modify one or more of the vehicle's systems. Some examples of modifications that can be made using the update information include fuel injection, ignition, water temperature correction, transient fueling, cam timing, gear control, and the like.
Referring to
The update information may be provided from the DCM 16 to a software buffer 32 for temporary storage of the update information. The diagnostic ECU 14 may control storage and delivery of the update information that is saved in the software buffer 32. In some embodiments, the update information may include data for use by the diagnostic ECU 14 in determining the type of update that is available. In
The OTA updating systems may also be used to calibrate or reconfigure various vehicle systems, such as the engine, brakes, lights, climate control, etc. Referring to
The configuration update information may be provided from the DCM 16 to the software buffer 32 for temporary storage of the configuration update information. The diagnostic ECU 14 may control storage and delivery of the configuration update information that is saved in the software buffer 32. In some embodiments, the configuration update information may include data for use by the diagnostic ECU 14 in determining the type of configuration update that is available. In
Referring to
Referring to
Referring to
Once the second security key is set to valid, the DCM 16 may again send a mathematically altered second security key for an updating procedure at step 100. At step 102, the update servers 18 may decrypt the second security key and send a confirmation and valid key message to the DCM. At step 104, the DCM 16 may request an update in a fashion similar to that described above. The update servers 18 may then send the update information at step 106 and the DCM 16 may send a confirmation that the download is complete at step 108. Thus, the second security key may be used to validate the vehicle to the update servers 18 and the update servers 18 (i.e., the update source) to the vehicle. If the update servers 18 do not receive a valid security key from the vehicle once the key status has been validated, the update servers 18 may sever the connection with the vehicle. Likewise, if the DCM 16 does not receive the appropriate confirmations from the update servers 18, the DCM 16 may sever the connection.
Referring to
The above-described OTA updating of vehicle systems and associated security protocols can be used to provide updates to the various ECUs (and other systems) without requiring a vehicle owner to transport the vehicle to a vehicle manufacturer, while also providing security protocols which can validate an update source, update destination and/or the update communications themselves. The OTA updating systems and methods may utilize the DCM that provides a connection to update servers, for example, through a cellular network.
While particular embodiments have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
This application is a continuation of U.S. patent application Ser. No. 12/823,301 filed Jun. 25, 2010.
Number | Name | Date | Kind |
---|---|---|---|
6130622 | Hussey et al. | Oct 2000 | A |
6493616 | Rossow et al. | Dec 2002 | B1 |
6728603 | Pruzan et al. | Apr 2004 | B2 |
7092803 | Kapolka et al. | Aug 2006 | B2 |
7149206 | Pruzan et al. | Dec 2006 | B2 |
7233814 | Wissinger et al. | Jun 2007 | B2 |
7283904 | Benjamin et al. | Oct 2007 | B2 |
7346370 | Spaur et al. | Mar 2008 | B2 |
7418596 | Carroll et al. | Aug 2008 | B1 |
20050065628 | Roose | Mar 2005 | A1 |
20050065678 | Smith et al. | Mar 2005 | A1 |
20050137796 | Gumpinger | Jun 2005 | A1 |
20060047381 | Nguyen | Mar 2006 | A1 |
20060074547 | Kaufman | Apr 2006 | A1 |
20070106430 | Goto | May 2007 | A1 |
20070287439 | Weyl | Dec 2007 | A1 |
20080140278 | Breed | Jun 2008 | A1 |
20080176510 | Yuhara et al. | Jul 2008 | A1 |
20090067449 | Tian | Mar 2009 | A1 |
20090119657 | Link, II | May 2009 | A1 |
20090296934 | Qing et al. | Dec 2009 | A1 |
20090300595 | Moran | Dec 2009 | A1 |
20100005280 | Wagner et al. | Jan 2010 | A1 |
20100048193 | Ortion et al. | Feb 2010 | A1 |
20110276218 | Dwan | Nov 2011 | A1 |
20110307336 | Smirnov | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
WO 2008014655 | Feb 2008 | WO |
WO-2008014655 | Feb 2008 | WO |
Entry |
---|
Non-Final Office Action mailed Apr. 30, 2012 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Amendment and Response filed on Jul. 24, 2012 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Final Office Action mailed on Oct. 4, 2012 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Response after Final filed on Dec. 4, 2012 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Advisory Action mailed on Dec. 13, 2012 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Pre-Appeal Brief Request For Review filed on Jan. 4, 2013 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Appeal Brief filed on May 1, 2013 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Examiner's Answer mailed on Aug. 1, 2013 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Reply Brief on Appeal filed on Sep. 30, 2013 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Decision on Appeal mailed on Feb. 22, 2016 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Notice of Allowance mailed on Jun. 10, 2016 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Corrected Notice of Allowability mailed on Jul. 27, 2016 for U.S. Appl. No. 12/823,301, filed Jun. 25, 2010. |
Number | Date | Country | |
---|---|---|---|
20160366247 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12823301 | Jun 2010 | US |
Child | 15247329 | US |