The subject disclosure relates generally to cooking appliances, and more particularly, to microwave ovens, such as Over-the Range (OTR) microwave ovens having a safety door that prevents glass in case of breakage from falling outside.
An Over-the-Range (OTR) microwave oven is a home appliance that is installed on a wall surface, often in an upper space portion of a range installed in the kitchen and is used to cook using microwave radiation in a heating cavity while also exhausting cooking fumes and pollution from the cooktop below (i.e., performing a ventilation function). Because of the exhaust function of an OTR oven, the location is generally around eye level of a person cooking in a kitchen in order to ventilate any gas or fumes generated. While OTR's can be made and function very safely, some problems regarding safety can arise.
For example, OTR ovens are typically like most microwaves in that the door has a window within for viewing an item that is being cooked. The window on the oven is helpful for many reasons, such as viewing food to see if it is done and prevent overcooking. However, for different reasons, the glass window in the door can break, shatter or customer perceive to “explode,” which can be detrimental to health for such an event to occur at eye level and above cooking food. In particular, the door glass pieces can fall out of the door and into the food being cooked on the cooktop, user's eyes, or floor where it can be stepped on by user or a pet. Breaks in the glass can occur for multiple reasons. For example, door glass can be broken from something or someone striking it, a door design defect, or what is sometime referred to as a “spontaneous” breakage which has been sometimes attributed to impurities in the glass. In at least one case of spontaneous breakage, the door glass can fracture as a result of NiS contaminates in the glass. As homes cool at night, the glass may contract at different rates in areas having non-uniformities in composition. When the non-uniformities within the glass composition respond differently to temperature differentials, then glass within the door can unexpectedly shatter due to the created stress concentration.
As a result, incentives are needed for manufacturers to provide safer OTR microwave ovens with the same benefits that users continue to demand. For example, safety glass designs are needed. Therefore, the present disclosure provides apparatus and methods for improving the safety of a microwave oven.
Apparatus and methods are disclosed to dispose a layer of plastic in between or on one side of one or more pieces of glass within an oven door for safety. The glass is adhered to a plastic layer to prevent a cut hazard to a consumer or user of the oven. Door glass can be broken from something striking the glass, a door design defect, or spontaneous breakage, such as with NiS contaminates residing within the glass.
In one embodiment, an apparatus includes a magnetron that provides radiation energy, and a heating cavity comprises a cavity wall with an opening that exposes the heating cavity to the radiation from the magnetron for cooking an item therein. A safety door provides access to the heating cavity for placing the item therein and has a glass window that is at least partially transparent to see within the heating cavity. The glass window includes a first glass layer, a second glass layer and a plastic laminate bonding to at least one side of at least one of the first glass layer and the second glass layer. In certain embodiments, the plastic laminate includes biaxially-oriented polyethylene terephthalate. The door is configured to retain substantially all glass of the glass window within the door and/or within the heating cavity at all times and during any break in the glass window.
In another embodiment, a method is disclosed for an over-the-range (OTR) oven. A door is provided to the OTR oven that seals radiation generated from a magnetron within a heating cavity upon closing. A first glass layer is provided within the door that is at least partially transparent. A second glass layer is provided that is laterally adjacent the first glass layer within the door and closer to the heating cavity. A plastic laminate is disposed to the first glass layer in order to retain glass within the door or within the heating cavity from the first glass layer upon a break therein occurring.
Still other features and benefits of the present disclosure will become apparent from reading and understanding the following detailed description.
Reference is now made briefly to the accompanying drawings, in which:
Like reference characters designate identical or corresponding components and units throughout the several views, which are not to scale unless otherwise indicated.
An apparatus having a safety door with a safety glass window therein is disclosed, such as an Over-the-Range (OTR) microwave. The disclosure is not limited to any one particular appliance or device, but particular reference is made to OTR microwave ovens having a safety door. The door of the OTR includes a safety glass having an added layer of plastic therein. The glass of the window is adhered to the plastic with an adhesion layer so that the glass within the door sticks to the plastic at all times. Under the stress of a fracture or break, the glass remains within the door or in the microwave cavity resulting in no harm to anything outside of the oven from the glass.
The heated cavity 118 also includes a cavity wall 126 that serves to separate the interior cabinet 114 into a component compartment 128 and a cooking compartment 130, the latter is provided to subject food to radiation from the magnetron 124. The cavity wall 126 in this example includes a top cavity wall 132, a bottom cavity wall 134, a rear cavity wall 136, and a pair of opposed side cavity walls 138.
The oven 100 has a controller 142 that is operatively associated with power consuming feature/functions of the oven 100. The controller 142 can include a micro computer on a printed circuit board, which is programmed to selectively control energizing of the power consuming feature/functions. The oven 100 has a control panel 144 for receiving and operating control instructions for cooking.
In one embodiment, the door 116 is mounted within a door frame and has a glass window 140 located in the door 116 for viewing food in the oven cooking cavity 126. The door 116 is adapted to retain glass within the door 116 in the event of a fracture or break occurring. For example, when a fracture occurs the glass sticks to a plastic layer that is within the door and bonded to the glass window 140.
As shown in
A wire mesh sheet 219 made of stainless steel or other like material is disposed on the inner side of the front window glass 213, and on the outer peripheral rim of the wire mesh sheet 219 is attached another adhesive 220, such as a copper tape that contacts the aluminum tape 217. The wire mesh sheet 219 is therefore conductively connected via the copper tape with the aluminum tape, for example.
A ferrite sheet 221 coming into contact with the copper tape 220 on the outer peripheral rim of the wire mesh sheet 219 is disposed in the inner rim of a window hole 209 on the outer side of a front wall of a door panel 207 of a groove in a door panel 207 on the door 116′ of the oven. In addition, a ferrite sheet 224 is disposed on the outside of the door panel 207 that functions as a wave absorber for absorbing electric waves of the door case 208. Other sheets may also be implemented, but are not shown.
In one embodiment, a plastic layer 230, such as a biaxially-oriented polyethylene terephthalate or other durable plastic is disposed between the door case 208 and the front window glass 213. The plastic 230 is adhered to the glass 213 with an adhesion layer 232 that is an epoxy, glue, tape or other adherent material for bonding the plastic laminate material of the plastic 230 to a front surface of the glass 213 facing the door case 208. The plastic layer 230 is partially transparent and enables a user to at least partially see through the safety door and into the heating cavity 118 of
Similar to the safety door 116′ of
A plastic laminate layer 330 is disposed on the inner portion of the first window glass 313 and the outer portion of the window glass 323. Additional plastic layer are also envisioned and the present disclosure is not limited to only one, which is used for illustrative purposes in the figures herein. The plastic laminate 330 comprises a biaxially-oriented polyethylene terephthalate or other durable polyester film, which is used for high tensile strength, dimensional stability, transparency, gas and aroma barrier properties, electrical and mechanical insulation.
The first glass layer 313 has a first side 340 with a surface exposed to and facing outside the window hole 340 of the safety door 305. The layer 313 also has a second side 342 that is adjacent and opposite the first surface of the first side 340. At least one adhesion layer 332 is disposed to the second side 342 of the first window glass 313 in order to the plastic laminate 330. The adhesion layer 342 alternatively is disposed on the first side 313 of the first window glass 313 in order to bond the plastic layer to the first side 313 in addition to or instead of to the second side 342 as shown in
The first window glass 313 and the second window glass 323 are each partially translucent or partially transparent so that a user of the oven having the safety door 305 is able to view through into a heating cavity. The first window glass 313 and the second window glass 323 may also be transparent, or partially opaque. The glass of each window may be heat strengthened or tempered so that the glass shatters in small pieces, rather than in large sharp jagged spears. However, the disclosure is not limited to any one particular type of glass within the safety door 305. The first window glass 313 and the second window glass 323 may refract different colors and combine to provide one type of look for the oven by having a nuanced color of one type or multiple types depending upon consumer preferences. For example, the first window glass 313 may have a blue tint and the second window glass 327 may also have a blue tint or some other shade of color to provide a different nuanced color that emanates from the microwave for an aesthetic appeal.
Example methodology 400 for an oven having a controller and a memory for executing the method is illustrated in
At 402 a safety door is provided to the OTR oven that seals radiation generated from a magnetron within a heating cavity upon closing.
At 404, a first glass layer is provided within the door that is at least partially transparent.
At 406, a second glass layer is provided that is laterally adjacent the first glass layer within the door and closer to the heating cavity of the oven.
At 408, a plastic laminate is disposed to the first glass layer to retain glass within the door or within the heating cavity from the first glass layer upon a break therein occurring.
At 410 upon a break occurring at the first glass layer, the glass of the layer is held in place within the door without having pieces fall into the microwave and/or outside of the microwave separately. At 412, upon a break occurring at the second glass layer the glass is held or retained within the door also.
In one embodiment, the plastic laminate is adhered to an outside surface of the first glass layer with an adhesion layer to retain glass from falling outside the door upon a break occurring. Alternatively, the plastic laminate is adhered to the first glass layer and between the first glass layer and the second glass layer.
In view of the forgoing discussion, while the concepts of a safety door have been presented in connection with ovens (e.g., the oven 100 and 100′), implementation of these concepts can extend to other appliances. Stoves, ranges, ovens, and other devices, which may not be outfitted with radiative elements such as magnetrons to facilitate cooking and preparation of food under safe conditions.
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.
Number | Name | Date | Kind |
---|---|---|---|
2818606 | White | Jan 1958 | A |
2958754 | Hahn | Nov 1960 | A |
3304401 | Long | Feb 1967 | A |
3334008 | Park et al. | Aug 1967 | A |
3509015 | Ammons et al. | Apr 1970 | A |
3654417 | Javes et al. | Apr 1972 | A |
3731035 | Jarvis et al. | May 1973 | A |
3808077 | Rieser et al. | Apr 1974 | A |
3864204 | Shorr et al. | Feb 1975 | A |
4008383 | Tanaka et al. | Feb 1977 | A |
4125669 | Triebel et al. | Nov 1978 | A |
4215258 | Nelson et al. | Jul 1980 | A |
4234533 | Langlands | Nov 1980 | A |
4264681 | Girard et al. | Apr 1981 | A |
4264800 | Jahnke et al. | Apr 1981 | A |
4513879 | Reiss | Apr 1985 | A |
4739690 | Moskowitz | Apr 1988 | A |
5264286 | Ando et al. | Nov 1993 | A |
5346770 | Osada et al. | Sep 1994 | A |
5462805 | Sakamoto et al. | Oct 1995 | A |
5645940 | Teddington et al. | Jul 1997 | A |
5981927 | Osepchuk et al. | Nov 1999 | A |
6528772 | Graves et al. | Mar 2003 | B1 |
6987252 | Graves et al. | Jan 2006 | B2 |
7022957 | Bakanowski et al. | Apr 2006 | B2 |
7030349 | Graves et al. | Apr 2006 | B1 |
7053348 | Terada et al. | May 2006 | B1 |
7121380 | Garnier et al. | Oct 2006 | B2 |
7135217 | Lansberry | Nov 2006 | B2 |
7332216 | Hashimoto et al. | Feb 2008 | B2 |
7348527 | Braunisch et al. | Mar 2008 | B2 |
7470401 | Morales | Dec 2008 | B2 |
7817328 | Millett et al. | Oct 2010 | B2 |
7838115 | Lewno | Nov 2010 | B2 |
7854990 | Komori | Dec 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20120279957 A1 | Nov 2012 | US |