This invention relates to a method for producing a polymer sleeve for use with a blanket cylinder in an electrophotographic process wherein the polymer sleeve requires no metal core and includes a closely controlled external coating.
In electrophotographic processes requiring an image cylinder and a blanket cylinder to produce electrophotographic copies, the image cylinder typically receives a charge, an image and a toner coating on the image area and then transfers the toner image to a blanket cylinder. The blanket cylinder transfers the toner image to a substrate, such as paper or the like, which passes via a web between the blanket cylinder and a back pressure roller to transfer the toner image to the substrate with the substrate thereafter being fused, as well known to the art.
In such processes, the blanket cylinder is a cylinder that typically includes a mandrel, which may be of aluminum, steel or any other suitably durable metal or conductive polymer of a suitable thickness to produce a noncompliant member that may be about 10 millimeters (mm) in thickness. The mandrel may include reinforcing structure internally and includes a very smooth, low out-of-round tolerance exterior. The blanket cylinder includes a mandrel and a sleeve positioned over the outside of the mandrel and is used for transfer of the images from the blanket cylinder to a substrate. The mandrel also includes fittings connected to each of its ends for positioning it in an electrophotographic copying machine and has an air inlet into an interior of the mandrel for an air discharge through a plurality of holes placed around one end of the mandrel near a tapered end of the mandrel.
The sleeves have been produced by use of a metal core, which is typically a noncompliant metal member, such as nickel or the like, which is produced by plating. The core must be seamless and must provide a very low variation surface outer diameter. The polymer layer has been positioned around the outside of the metal core, the metal core is mounted on a mandrel or the like, and the polymer layer is machined to a desired thickness. Additional exterior coatings have been applied by techniques such as ring coating and the like. The completed sleeve will have an internal diameter slightly less (typically about 100 microns) than the outer diameter of the mandrel upon which it is to be placed. This interference fit allows the sleeve to be firmly positioned on the outside of the mandrel after it is installed. The sleeve must have a smooth exterior and a closely controlled wall thickness.
The sleeve is typically installed by urging it toward and onto the tapered end section of the mandrel while air is ejected through the holes at the end of the mandrel near the tapered section. The air injection permits the positioning of the sleeve on the mandrel by an air bearing technique as known to those skilled in the art. The interference fit between the sleeve and the mandrel is accomplished and the sleeve is retained snugly and firmly in position on the outside of the mandrel. The outside of the mandrel, including the sleeve, must have an outside diameter variation within a range of about ±12.5 microns. This close tolerance is necessary to ensure accurate receipt of images from the image cylinder and accurate transmission of the images to the substrate by the blanket cylinder.
There are various other specific requirements for the blanket cylinder and it has been previously considered necessary to meet these other requirements as well as those discussed above by the use of a metal core in the sleeve. This is a relatively expensive, time-consuming step and the cores are relatively expensive. As a result, a continued effort has been directed to the development of methods for producing sleeves more economically that will meet the demanding requirements for the blanket cylinder sleeves.
According to the present invention, a method is provided for producing a sleeve for mounting on a mandrel to form a blanket cylinder for use in an electrophotographic process, the method provides producing a sleeve having a sidewall of a polymer selected from the group consisting of thermoplastic, thermoset and elastomeric polymers and rigid polyurethanes, the sleeve having an inner diameter from about 1 to about 20 percent less than the outer diameter of the mandrel and, coating the sleeve with an outer coating comprising a ceramer containing a polyurethane and tetraethoxyorthosilicate, the polyurethane having a molecular weight from about 20,000 to about 80,000 with the polyurethane and the tetraethoxyorthosilicate being present in a weight ratio from about 1.8 to about 2.3.
The invention further provides an improvement in a method for producing a sleeve for use on a mandrel to produce a blanket cylinder for use in an electrophotographic process, the sleeve consisting essentially of a sleeve of a polymer selected from the group consisting of thermoplastic, thermoset, and elastomeric polymers and rigid polyurethanes blends thereof and a ceramer coating comprising a polyurethane and tetraethoxyorthosilicate, the sleeve having an inner diameter from about 1 to about 20 percent less than the outer diameter of the mandrel, the improvement comprising adjusting the molecular weight of the polyurethane to from about 20,000 to about 80,000 and adjusting the weight ratio of the polyurethane and the tetraethoxyorthosilicate to from about 1.8 to about 2.3.
The invention also provides a sleeve adapted to fit over a mandrel to form a blanket cylinder for use in an electrophotographic process, the sleeve having a sidewall of a polymer selected from the group consisting of thermoplastic, thermoset and elastomeric polymers, polyurethanes and blends thereof, the sleeve having an inner diameter from about 1 to about 20 percent less than the outer diameter of the mandrel and, an outer coating comprising a ceramer containing a polyurethane and tetraethoxyorthosilicate, the polyurethane having a molecular weight from about 20,000 to about 80,000 with the polyurethane and the tetraethoxyorthosilicate being present in a weight ratio from about 1.8 to about 2.3.
In the description of the figures, the same numbers will be used to refer to the same or similar components throughout in the discussion of the figures.
In
In the operation of the process, image cylinder 12 rotates in a direction shown by arrow 36 and blanket cylinder 14 rotates in a direction shown by arrow 42. Back pressure roller 18 turns in a direction as shown by arrow 19. A nip 38 is formed between image cylinder 12 and blanket cylinder 14. The nip is typically about 4.5±1 mm in width. Similarly, a nip 44 is formed between blanket cylinder 14 and back pressure roller 18. This nip is about 4 to about 10 mm in width. A cleaning station 28 is positioned to contact the surface of image cylinder 12 after it passes nip 38. The clean image cylinder surface then passes a charger station 30, a writer station 32 where an electrostatic image is placed on the surface of cylinder 12 and a toner section 34 that applies toner to the electrostatic image, which is then transferred at nip 38 to blanket cylinder 14. Blanket cylinder 14 transfers the image to substrate 20 and is thereafter cleaned by a cleaner 40 to ensure that a clean surface is provided on blanket cylinder 14 for transfer of an additional image from image cylinder 12.
As shown in
Tube 60 is adapted for the injection of air into mandrel 50, which includes near one of its ends, a taper 56, and a plurality of air holes 58. These air holes are used for the ejection of air during the installation of a sleeve over mandrel 50. Mandrel 50 has an outside diameter 68, which is somewhat larger than the inner diameter 72 of a sleeve 70. Sleeve 70 as shown, is a polymer sleeve according to the present invention. Its end 74 is urged into engagement with tapered section 56 of mandrel 50 and the sleeve is placed over an outside diameter 68 of mandrel 50 by an air step process using the ejection of air through holes 58.
In
The blanket cylinder may have an outer diameter from about 40 mm to about 600 mm. While the diameter may vary widely, the variations in diameter or the out of round run out must be limited to ±12.5 microns. This is necessary to ensure that the proper nip is achieved between the blanket cylinder and the pressure roller and that good image transfer from the image cylinder to the blanket cylinder and from the blanket cylinder to the substrate is accomplished.
Desirably the outside of blanket cylinder sleeve 70 has a Shore A hardness of about 65±5. The hardness is readily varied by changing the formulation of the polymer, as well known to those skilled in the art. The thickness of the sleeve wall may be from about 1 to about 20 mm. The sleeve wall is polymer and is rigid enough to handle. Further the polymer desirably has a conductivity of at least 107 to 1014 ohms·cm. Generally the conductivity of the blanket cylinder sleeve is less than for the image cylinder sleeve, although the charge on the blanket cylinder is typically higher than that on the image cylinder. To produce an acceptable exterior surface on blanket cylinder 14, it is necessary that the wall thickness of the sleeve be held to a thickness variation of ±12 microns. Generally the blanket cylinder sleeve exterior is more compliant than the exterior of the image cylinder sleeve.
Sleeves have been formed in the past by positioning the sleeves on a seamless metal core typically formed by plating. The metal core provided support for the positioning of the polymer around the metal core and then the polymer was machined to the required size. Both the requirement for the metal core and the requirement for machining represent expensive and time consuming operations that have been required to achieve the precision necessary to produce the sleeves for the blanket cylinder.
As well known to those skilled in the art, a thin hard release layer such as a sol-gel, a ceramer or a fluoropolymer may be placed on the outside of the sleeve for the blanket cylinder. This layer has been applied by processes such as ring coating, dipping and the like. It is also known that inorganic or organic layers may be applied over the outside of the sleeve to modify surface properties such as surface energy. The use and application of such outer layers is not considered to constitute part of the present invention, which is directed to the production of a sleeve for a blanket cylinder meeting the exacting requirements for such a sleeve.
According to the present invention, such sleeves are readily produced by a method providing positioning a quantity of polymer precursors, a suitable liquid polymer, or a liquefiable polymer in a mold with the mold then being heated by a heater 90 to a suitable temperature to result in the presence of the polymer in the mold in a liquid form. A suitable mold is shown schematically in
Suitable polymers comprise thermoplastic, thermoset and elastomeric polymers and particularly polyurethanes are preferred. With polyurethanes, polymer precursors may be placed into the mold and allowed to polymerize, cross-link and otherwise react to form the desired polymers as the mold spins. In any event, it has been found that when the inside of the mold is formed to have a surface within the required variations for the outside of the sleeve, that the inside of the sleeve and the sleeve wall thickness can be produced to sufficiently close tolerances by this method to enable its positioning over a mandrel and use on the blanket cylinder. Blends of the polymers may be used.
Typically the wall of the sleeve is at least partially comprised of thermoplastic, thermoset and elastomeric polymers or combinations thereof and particularly polyurethanes are preferred. Polysiloxanes and fluorocarbon polymers and copolymers may also be used. The properties of the polymer may be varied as known to those skilled in the art to produce the desired properties in the sleeve. The polymer may contain additives, fillers and the like as known to the art and may be used a blends of a plurality of polymers.
The heating and cooling of the mold may be at rates deemed suitable for the particular polymer used and desirably the rotation of the mold is continued until the polymer has reached a temperature of about 100° C. and thereafter until the polymer is cooled to a temperature selected for convenience in handling and the like. After cooling the sleeve typically releases from the inside of the mold by contraction of the polymer so that the sleeve is readily removed from the mold by simply removing one of ends 82 and removing the sleeve. The sleeve is then ready for use or for coating with additional materials that may be desired on its exterior. A heater 90 is shown but it will be understood that any suitable type of heater can be used.
While sleeves can be produced by the molding process described above, the sleeves can also be produced by use of a production mandrel with the sleeve being formed of a suitable polymer material positioned on the production mandrel with the production mandrel them being rotated to machine the polymer material to a desired configuration and thickness on the production mandrel. The sleeve is then removed from the production mandrel and can be used without a core. The polymer material can be placed on the production mandrel by any of a variety of known methods such as extrusion casting, injection casting, ribbon casting and the like, but in all instances the production mandrel must have an outer diameter smaller than the outer diameter of the mandrel. The sleeve has an inner diameter equal to the outer diameter of the production mandrel.
In either case, the use of the sleeve without the nickel core achieves certain advantages. Particularly, the nickel cores used in the sleeves for the blanket cylinder must be formed very precisely at a high cost. In addition, the handling of the nickel sleeve during the manufacturing process is high due to the intensive cleaning and priming steps required. Elimination of the use of a nickel core represents a substantial cost savings.
While the sleeve of the present invention may be formed by either process, they still require the positioning of an outer coating such as a ceramer, a sol-gel or a fluorocarbon polymer or copolymer on the exterior of the sleeve. As indicated previously, such coatings can be applied readily by ring coating, dipping and the like. If the molding process is used, the exterior coating may be applied as a layer either inside the mold prior to positioning the polymer body of the sleeve or as one constituent of the mixture placed in the mold prior to rotation.
By the process of the present invention, sleeves for the blanket cylinder can be produced much more economically and more efficiently than with previously used methods. The sleeves produced are a polymer sleeve for use by positioning it over an outer diameter of a mandrel. The polymer sleeve has a wall thickness from about 1 to about 20 mm, an inner diameter smaller than the outer diameter of the mandrel, a Shore A hardness of about 65±5 and a wall thickness variation of no more than about ±12 microns from the average wall thickness. These sleeves are highly desirable as replacement sleeves around the outside of mandrels in blanket cylinders. These sleeves are also much more economically produced while providing sleeves of an equivalent or superior quality to those produced by prior art methods.
While the sleeves produced by the method described are beneficial because they are more economical and provide adequately controlled wall thicknesses and surface properties, they must be produced at a size somewhat less than the outer diameter of the mandrel upon which they are to be placed. The undersizing is greater than that typically used with sleeves that contain a nickel core. As a result there is a tendency for the exterior coating on the sleeves to crack, wrinkle, or otherwise deform as a result of the positioning of the sleeve over the mandrel. This cracking, wrinkling or deformation creates undesirable and unacceptable irregularities in the surface of the sleeve. Accordingly, considerable effort has been directed to developing sleeves and exterior coatings that do not suffer these shortcomings.
According to the present invention, such shortcomings are avoided in sleeves that have an inner diameter from about 1 to about 20 and preferably from about 4 to about 12 percent less than the outer diameter of the mandrel. These sleeves are typically coated with an outer coating that may include a ceramer containing a polyurethane and a tetraethoxyorthosilicate. A suitable tetraethoxyorthosilicate (TEOS) is available from Huls America, Inc.
These materials are typically used to produce a ceramer coating that is placed on the outside of the sleeve. The ceramer coating desirably contains polyurethane having a molecular weight from about 20,000 to about 80,000 with the polyurethane and the tetraethoxyorthosilicate being present in the ceramer in a weight ratio from about 1.8 to about 2.3.
Preferably, the molecular weight is from about 30,000 to about 50,000 and with a diameter difference of from about 4 to about 12 percent, the molecular weight is preferably from about 30,000 to about 50,000.
The ratio is desirably from about 2.0 to about 2.3 and with the diameter difference being from about 4 to about 12, the ratio is preferably from about 2.0 to about 2.3.
This formulation has been found to be effective to permit the expansion of the sleeve as necessary to place the sleeve over the mandrel without cracking, wrinkling or contracting during the positioning of the sleeve over the mandrel. This results in a sleeve that provides a suitable exterior surface for the blanket cylinder and is dependably installable on the blanket cylinder. The very high stress on the exterior coating due to the mounting and demounting activities during the manufacturing, testing and usage of such sleeves is readily accomplished without undesirable cracking, wrinkling, deformation or other damage to the exterior coating with the ceramer coating of the present invention.
While the present invention has been described by reference to certain of its preferred embodiments, it is pointed out that the embodiments described are illustrative rather than limiting in nature and that many variations and modifications are possible within the scope of the present invention. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments.
Number | Date | Country | |
---|---|---|---|
60532195 | Dec 2003 | US |