Overflow assembly for bathtubs and the like

Information

  • Patent Grant
  • 8166584
  • Patent Number
    8,166,584
  • Date Filed
    Friday, March 28, 2008
    16 years ago
  • Date Issued
    Tuesday, May 1, 2012
    12 years ago
Abstract
An overflow system in the bathtub has an overflow port and has a drain pipe in connection with the overflow port. A threaded flange has a stub shoulder on one end which is fitted into a circular sleeve on the overflow port. The threaded flange has exterior threads on its outer surface and a thin diaphragm secured to the end thereof opposite to the stub shoulder. A large sealing washer embraces the outside of the circular flange on the overflow port and extends partially over the threads of the threaded flange. A large internally threaded nut is threadably mounted on the outer end of the threaded flange and compresses the sealing washer against a vertical flange on the port to seal the connection between the threaded flange and the port. A decorative cap is frictionally snapped into engagement with protrusions on the outer surface of the nut. The cap can be removed when needed to permit the plumber to gain access to the diaphragm to cut it open for fluid flow after the system has been tested for leaks, or put in place after the cut takes place.
Description
BACKGROUND OF THE INVENTION

In new building construction, plumbers prefer not to install finished closure valves in the bottom of bathtubs, or install finished decorative plate over an overflow outlet of the bathtub until the project is finished because these elements will be often damaged during construction. Further, the plumbing for all outlets needs to be checked for leaks which involves filling a vent for the drain until the water level in the plumbing rises above the bathtub so that the inspector can determine whether any of the plumbing leaks. The bottom drain of the bathtub is plugged and some sort of seal plate is used to block the outlet port during testing.


Existing overflow plates have a center opening. There are either two or four small screw holes in the plate adjacent the center opening wherein two of the holes are used to secure the plate to the plumbing fixture. In some cases, a fitting is used so that the screw hole is located directly in the middle of the access hole that becomes an obstacle during testing. The testing procedure usually involves placing a balloon through the large center opening into a drain pipe located in the wall. The pipe is sealed when the balloon is inflated.


A more recent version of an overflow assembly is shown in the U.S. Pat. No. 5,890,241 to Ball (“Ball”), which is incorporated by reference herein. Ball discloses a flexible diaphragm that is imposed over an overflow drain pipe. A cap is also provided that allows fluid to flow into the overflow pipe. The diaphragm seals the overflow pipe when the system is being tested for leaks. Following the test, the diaphragm is cut or slashed to open the overflow port to allow fluid flow. While this device serves the intended function, it is expensive to make and cumbersome to assemble.


It is, therefore, a principal object of the invention to provide a method and a means for an overflow assembly for bathtubs and the like that will safeguard the overflow system during construction, prepare the overflow system for testing, and facilitate the final installation of bathtub hardware.


A further object of the invention is to facilitate the testing procedure of the overflow system before final installation has taken place, and to permit the assembly of parts without the use of screws, screw holes, and the like.


A still further object of the invention is to provide an overflow fitting that allows a user to install the overflow fitting without using solvent cement.


These and other objects will be apparent to those skilled in the art.


SUMMARY OF THE INVENTION

An overflow system of a bathtub generally includes an overflow port that is associated with a drain pipe. The overflow port includes a threaded flange with a stub shoulder on one end that is fitted onto a circular sleeve. The threaded flange has threads on its outer surface and a thin diaphragm secured to the end thereof opposite the stub shoulder. A large sealing washer cooperates with the outside of the circular flange on the overflow port and extends partially over the threads of the flange. A large internally threaded nut is threadably mounted on the outer end of the threaded flange and compresses the sealing washer against a vertical flange on the overflow port to seal the connection between the threaded flange and the overflow port. A decorative cap is frictionally engaged onto protrusions located on the outer surfaces of the nut. The cap can be removed if needed to permit a plumber to gain access to the diaphragm to cut it open for fluid flow after the plumbing system has been tested for leaks, or put in place after the cut takes place.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a partial perspective view of a conventional bathtub environment utilizing the invention of this application;



FIG. 2 is a section view taken on line 2-2 of FIG. 1;



FIG. 3 is a perspective exploded view of an overflow assembly of one embodiment of the present invention;



FIG. 4 is a cross sectional view of the assembled components of FIG. 3;



FIG. 5 is a perspective view showing a pierced diaphragm;



FIG. 6 is a sectional view of a conventional bathtub environment utilizing the device of another embodiment of the invention;



FIG. 7 is a side view of the device of the embodiment of the invention shown in FIG. 6;



FIG. 8 is a front view of the device of the embodiment of the invention shown in FIG. 6;



FIG. 9 is an exploded perspective view of the device of the embodiment of the invention shown in FIG. 6;



FIG. 10 is a perspective view of the installation of the embodiment of the invention shown in FIG. 6;



FIG. 11 is a perspective view of an overflow plate according to one embodiment of the present invention;



FIG. 12 is a sectional top view of the assembly according to one embodiment of the present invention;



FIG. 13 is a sectional top view of the assembly according to another embodiment of the present invention;



FIG. 14
a is a sectional side view of the assembly according to yet another embodiment of the present invention;



FIG. 14
b is a partial front view of the assembly of FIG. 14a; and



FIG. 15 is a sectional side view of the assembly according to yet another embodiment of the present invention.





DETAILED DESCRIPTION

With reference to FIGS. 1 and 2, a conventional bathroom structure 10 has a floor 12 and a hollow wall 14 with a wall opening 16 therein. A conventional bathtub (“tub”) 18 has sidewalls that 22 extend upwardly from a base 20 as does an end wall 24. The end wall 24 extends upwardly from a bottom surface 26, perpendicular to the side walls 22.


A conventional drain port 28 is located in the bottom surface 26. A conventional overflow port 30 is located in the end wall 24 (FIG. 2). A vertical drain pipe 34 extends downwardly from drain port 28 and an overflow drain pipe 34 extends downwardly from overflow port 30. A horizontal pipe 36 connects pipes 32 and 34. A drain pipe 38 extends downwardly from the junction between pipes 34 and 36.


A conventional vent pipe 40 is located within the hollow wall 14. Pipe 42 interconnects the vent pipe 40 and the upper end of overflow drain pipe 34 (FIG. 2). Conventional water supply pipes 44 extend through hollow wall 14 and are connected to valve 46 which is interconnected to conventional control member 48 and faucet 50.



FIGS. 3 and 4 show a radial flange 52 formed on the upper end of overflow drain pipe 34 and has a center opening or port 54. Water can flow through center opening 54 into overflow drain pipe 34. A sleeve 56 extends longitudinally outwardly from the perimeter of opening 54 forming a surface on its inner diameter.


A hollow cylindrical fitting 58 has a hollow cylindrical shoulder 60 on its inner end, a threaded outer surface 62, and a thin plastic diaphragm 64 sealed across its outer end. The shoulder 60 has an outer diameter that can be manually frictionally inserted within the surface of the inner diameter of sleeve 56 to create sufficient frictional force to resist opposing force applied by fluid pressure.


A pliable sealing ring or washer 66 has a center bore 67 which frictionally receives the exterior surface of fitting 58 to engage the radial flange 52 of port 54 to seal the connection between sleeve 56 and shoulder 60. The longitudinal thickness of washer 66 is less than the longitudinal thickness of fitting 58 so that some of the threaded surface 62 adjacent the diaphragm 64 is exposed when the washer 66 is mounted on fitting 58 in the position described above. A nut element 68 has a threaded center bore 70 which is compatible with the threaded outer surface 62 of fitting 58. When the nut element 68 is tightened on threaded portion 62, the washer 66 is in tight engagement with flange 52 of port 54. The outer periphery 72 of nut element 68 has a series of radially extending lugs 74 which frictionally detachably engage the inner surface of flange 76 of cap 78. The nut element 68 can be tightened on washer 66 either as positioned within cap 78, or before cap 78 and the nut element 68 are engaged. A notch 80 is located in flange 76 and is adapted to receive overflow water from tub 18 when required to do so. Notch 80 is normally in a 6 o'clock position on flange 76. FIG. 4 depicts the apparatus described above in an assembled state.


It is important to note that diaphragm 64 is of plastic material, as is fitting 58, and is preferably integrally formed with fitting 58 wherein diaphragm 64 and fitting 58 are one unitary component. The diaphragm 64 is a thin circular plate disk that is joined to fitting 58 by its outer peripheral edge engaging the outer peripheral edge of the fitting 58. If the two components are not molded as one unitary structure, the diaphragm 64 could be connected by fusing, hermetically sealing, or by otherwise rigidly attaching by its outer peripheral edge to the rearward outer peripheral edges of the fitting 58 by a suitable adhesive. No screws or the like are either required or desired.


A second embodiment of the invention can be seen in FIG. 6. A one-piece overflow fitting 60A is shown attached to second vertical drain pipe 34A. A portion of the overflow fitting 60A passes through overflow port 30.


With reference to FIGS. 7-9, the overflow fitting 60A is shown that has an overflow pipe 62A with an inverted L-shape. The overflow pipe 62A has an elbow portion 65A which defines an upper end portion 66A and a lower end portion 67A. It will be understood that the overflow pipe 62A may be made of copper, plastic, or any other suitable material.


The upper end portion 66A has threads 68A on its outer surface and also has an outer end 70A. The outer end 70A defines an inlet 71A to the upper end portion 66A of the overflow pipe 62A. The inlet 71A is adapted to fit through the bathtub overflow port.


The overflow fitting 60A also has a lip 74A extending radially outwardly from an outer surface of the overflow pipe 62A between the elbow portion 65A and the upper end portion 66A. The lip 74A is spaced from the inlet 71A to engage an outer surface of the bathtub end wall 24 around the bathtub overflow port 30, thereby allowing only the upper end portion 66A to pass through the overflow port 30.


A thin diaphragm 80A is sealed to the outer end 70A of the end portion 66A. The diaphragm 80A is a circular membrane and has a diameter that is not less than the diameter of the outer end 70A of the overflow pipe 62A. In one embodiment, the diaphragm 80A is integral with the outer end 70A and is held to the outer end 70A only through having been integrally formed therewith. The diaphragm 80A may be hermetically sealed to the outer end 70A. The diaphragm 80A may be composed of plastic material, flexible rubber, or the like. The diaphragm 80A is composed of a material that is easily punctured or easily removable.


The overflow fitting 60A further includes a nut element 90A having threads compatible with the threads 68A on the upper end portion 66A of the overflow pipe 62A. The nut element 90A removably secures the overflow pipe 62A to the bathtub 20 by compressing the end wall 24 between the nut element 90A and the lip 74A. The nut element 90A may be a slip nut.


As shown in FIG. 9, the nut element 90A has a series of radially extending lugs 92A along the nut element 90A outer periphery. These lugs 92A detachably engage the inner surface of a cap 96A. The cap 96A serves to cover the overflow fitting 60A hardware.


During installation of the overflow fitting 60A, a washer 94A may be placed between the upper end portion 66A of the overflow pipe 62A and the nut element 90A. The washer 94A seals the overflow fitting 60A to the tub 18.


In operation, the drainage system comprising the ports 28 and 30, and pipes 34, 36, and 38 are installed as shown in FIG. 2. The vent pipe 40 and connecting pipe 42 are also installed.


In the conventional testing procedure, the port 28 is plugged in any convenient manner. The fitting 58 with diaphragm 64 is installed into drain pipe 34 as described above so there is no fluid access to the upper end of pipe 34 either inwardly or outwardly through overflow port 30. The vent pipe 40 is charged with water at some elevation above connecting pipe 42 so that the building inspectors can check to see if there are any leaks in the system. Having determined that there are no leaks, the water is purged from the system. The plumber can then approach overflow port 30, (because cap 78 is not yet installed) and by using knife 82 or the like, cuts can be made in diaphragm 64 leaving a cutout portion 84 as shown in FIG. 5.


Similarly, in operation the overflow fitting 60A is attached to the second vertical drain pipe 34A already plugged by the diaphragm 80A as described above, so there is no fluid access to the upper end of second vertical drain pipe 34A either inwardly or outwardly out of the overflow port 30. The vertical vent pipe 40 is charged with water at some elevation above connecting pipe 42 so that it can be determined if there are any leaks in the system.


With reference to FIG. 10, having determined that there are no leaks, the water is purged from the system. The plumber can then approach overflow port 30, and by using a cutting device 100A, such as a knife of any other sharp object, cuts 82A can be made in the diaphragm 80A. This can be quickly and easily done without disassembling any of the structure of overflow fitting 60A. Any valve linkage elements required may be installed through cuts 82A, and any cap (such as cap 96A shown in FIG. 9) or cover for the overflow port 30 may be placed over the overflow pipe 62A upper end portion 66A.


Referring now to FIGS. 11 and 12, an alternate embodiment of the invention is shown wherein an overflow plate 110 is modified to slide vertically into position between the surface of the tub 112 and the retainer nut 114. The overflow plate 110 has a first section, which comprises a rim 118 and a lip 120 extending inwardly therefrom, and a second section, which does not comprise a rim or a lip, thereby forming a recessed portion. The modified overflow plate 110 engages a notched surface 124 on at least a portion of the retainer nut 114 as shown in FIG. 12. The notch 124 may be incorporated along the entire circumference of the nut 114 as well. The overflow plate 110 according to this embodiment slides along an outward facing surface of the overflow plate 130 and engages the retainer nut 114 along the notched surface 124. The notched surface 124 is located along a lateral face of the retainer nut 114. The thickness of the lip 120 and the width of the notched surface 124 are such that the overflow plate 110 forms a near perfect fit once it engages the notched surface 124, thereby firmly holding the overflow plate 110 in place between the retainer nut 114 and the surface of the tub 112.


As shown in FIG. 13, the notched surface 124 of the retainer nut 114 may be located nearly concentrically about the thickness of the retainer nut 114. According to this embodiment, the overflow plate 110 may be engaged with the centrally located notched surface 124 of the retainer nut 114, by sliding the overflow plate 110 in a downward direction to engage the lip 120 of the overflow plate 110. According to this embodiment, the overflow plate 110 is held in place by engaging both sides of the retainer nut 114 surrounding the notched surface 124, thereby holding the overflow plate 110 firmly in place over the overflow port 130.


Further alternative embodiments are shown in FIGS. 14a, 14b and 15, that show a removable seal 142 that may be selectively inserted or removed from the overflow assembly to prevent or permit water to flow through the overflow assembly 130. The removable seal 142, according to this embodiment, is such that it may be inserted into a slot 144 formed in the threaded portion 134 of the overflow assembly 130, thereby sealing the overflow valve 130, or removed from the slot 144, thereby exposing the overflow port 130 without requiring a knife or other tool to cut out the seal 142 and potentially requiring the plumber to replace the seal 142 at a later time.


Referring now in detail to FIGS. 14a and 14b, according to one embodiment the seal 142 is inserted into a slot 144 formed within the threaded portion 134 of the overflow valve 130, such that the seal 142 resides in a vertical plane within the threaded portion 134 of the overflow assembly 130. The diameter seal 142 is substantially congruent with the diameter of the threaded portion 134 of the threaded portion 134 overflow valve 130, as best shown in FIG. 14b. The seal 142 may have a pull ring 148, which extends outside the slot 144 formed in the threaded portion 134 of the overflow assembly 130 so that the plumber may readily grasp the pull ring 148 and remove the seal 142 from the slot 144 in the threaded portion 134 of the overflow valve.


In yet another embodiment, the seal 142b is formed in a slot 144b that is formed in the retainer nut 150, which may be modified to extend outwardly from the outer most surface of the threaded portion 134 overflow assembly 130, as shown in FIG. 15. The seal 142b according to this embodiment operates in the same fashion is that described in relation between FIGS. 14a and 14b, in that the seal 142b may be removed or inserted at the discretion of the user.


It is therefore seen from the description above and accompanying drawing figures that this invention eliminates any need to seal the overflow pipe 34, 60A even after the overflow pipe 60A has been attached to the second vertical drain pipe 34A. The invention also eliminates any need to remove sealing components from the overflow port 30 after the testing procedure has taken place. In addition, the invention allows a user to install an overflow fitting 58, 62A without using solvent cement. This invention also facilitates the testing procedure and reduces the time needed to seal the overflow port 30, and then to open the diaphragm 64, 80A for possible fluid flow.


It is therefore seen this invention will achieve at least all of its stated objectives.

Claims
  • 1. An overflow assembly for a bathtub, which has a bottom and adjacent side and end walls, and an overflow port in an end wall, comprising: an overflow pipe with an elbow portion defining an upper end portion and a lower end portion, the upper end portion having an outer end defining an inlet;threads on an outer surface of the upper end portion and surrounding the inlet;a lip extending radially outwardly from an outer surface of the overflow pipe between the elbow portion and the upper end portion and being spaced from the inlet;a sealing element associated with said outer end that closes the inlet to fluid flow;a nut element compatible with the threads wherein the nut element has a threaded portion for threadably mounting to said upper end portion, said nut element having at least one lug extending radially therefrom; anda cap detachably associated to the lug and covering the nut.
  • 2. The assembly of claim 1, wherein the overflow pipe and sealing element is of one-piece construction.
  • 3. The assembly of claim 1, wherein said overflow pipe has an inverted L-shape.
  • 4. The assembly of claim 1, further including a washer that cooperates with said nut and said lip to interconnect to said overflow pipe to the bathtub.
  • 5. The assembly of claim 1, wherein said sealing element is a diaphragm that is adapted to be selectively cut to provide a flow path through said overflow pipe.
  • 6. The assembly of claim 1, wherein said sealing element is an overflow plate that is selectively interconnected to said nut.
  • 7. The assembly of claim 6, wherein said nut includes a notch that receives a lip of said overflow plate.
  • 8. The assembly of claim 1, wherein said sealing element is a diaphragm with a pull ring.
  • 9. The assembly of claim 8, wherein said diaphragm is slidingly interconnected to said overflow pipe.
  • 10. The assembly of claim 8, wherein said diaphragm is pealably interconnected to said overflow pipe.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 10/674,862, filed Sep. 30, 2003 now abandoned, which is a continuation-in-part of U.S. patent application Ser. No. 10/222,062, filed Aug. 16, 2002, now U.S. Pat. No. 6,637,050, and a continuation-in-part of U.S. patent application Ser. No. 10/229,533, filed Aug. 28, 2002, now U.S. Pat. No. 6,675,406, which is a continuation of abandoned U.S. patent application Ser. No. 09/593,724, filed Jun 13, 2000. This application is also a continuation-in-part of pending U.S. patent application Ser. No. 10/732,726, filed Dec. 10, 2003, which is a continuation-in-part of U.S. patent application Ser. No. 10/229,533, filed Aug. 28, 2002, now U.S. Pat. No. 6,675,406, which is a continuation of abandoned U.S. patent application Ser. No. 09/593,724, filed Jun. 13, 2000, U.S. patent application Ser. No. 10/732,726 also being a continuation-in-part of U.S. patent application Ser. No. 09/954,420, filed Sep. 17, 2001, now U.S. Pat. No. 6,691,411. The entire disclosures of the above-referenced patents and applications are incorporated by reference herein.

US Referenced Citations (98)
Number Name Date Kind
427478 McEvoy May 1890 A
843968 Sharp, Jr. Feb 1907 A
1213466 Delanoy et al. Jan 1917 A
1330909 Sharp, Jr. Feb 1920 A
1518599 Murray Dec 1924 A
1788083 Church Jan 1931 A
1925008 Schacht Aug 1933 A
1977177 De Flores Oct 1934 A
2044253 Morris Jun 1936 A
2062145 Pickop Nov 1936 A
2223365 Groeniger Dec 1940 A
2374815 Haas, Jr. May 1945 A
2444340 Donahue Jun 1948 A
2832081 Young Apr 1958 A
2915903 Digby et al. Dec 1959 A
2993655 O'Brien Jul 1961 A
3121879 Young Feb 1964 A
3493978 Hindman et al. Feb 1970 A
3937497 Studer Feb 1976 A
D248133 Shames et al. Jun 1978 S
4135258 Braga et al. Jan 1979 A
4146939 Izzi Apr 1979 A
4233697 Cornwall Nov 1980 A
4307901 Orberg et al. Dec 1981 A
4352213 Watts Oct 1982 A
4359790 Chalberg Nov 1982 A
4387914 Paulson et al. Jun 1983 A
4413384 Lassche Nov 1983 A
4553625 Tsuge et al. Nov 1985 A
4683597 Taylor et al. Aug 1987 A
4730855 Pelletier Mar 1988 A
D296816 Budzinski et al. Jul 1988 S
4813745 Woody Mar 1989 A
4825477 Aranda May 1989 A
4865353 Osborne Sep 1989 A
4890967 Rosenbaum Jan 1990 A
4920582 Alker May 1990 A
4953235 Cornwall Sep 1990 A
5025509 Holt et al. Jun 1991 A
5257648 Oropallo Nov 1993 A
5267474 Ten Hoven Dec 1993 A
5273077 Oropallo Dec 1993 A
5350266 Espey et al. Sep 1994 A
5351996 Martin Oct 1994 A
5377361 Piskula Jan 1995 A
5507501 Palmer Apr 1996 A
5590916 Liu Jan 1997 A
5692248 Ball Dec 1997 A
5745931 Ball May 1998 A
5786054 Platusich et al. Jul 1998 A
5799986 Corbett et al. Sep 1998 A
5815895 Carlson et al. Oct 1998 A
5890241 Ball Apr 1999 A
5957514 Brookshire Sep 1999 A
5971438 Johnson Oct 1999 A
6058526 Parisi et al. May 2000 A
6073278 Ball Jun 2000 A
D428133 Chen Jul 2000 S
6085363 Huber Jul 2000 A
6088843 Francisco Jul 2000 A
6126233 Gaetano et al. Oct 2000 A
6145136 Parisi et al. Nov 2000 A
6192531 Fritz et al. Feb 2001 B1
6193879 Bowman Feb 2001 B1
6216288 Bernau Apr 2001 B1
6263518 Magtanong Jul 2001 B1
6289532 Fritz et al. Sep 2001 B1
6295664 Fritz et al. Oct 2001 B2
6338168 Valentine Jan 2002 B1
6362734 McQuade et al. Mar 2002 B1
6448907 Naclerio Sep 2002 B1
6484331 Minnick Nov 2002 B2
6530722 Shaw et al. Mar 2003 B1
6546573 Ball Apr 2003 B1
6606753 Minnick Aug 2003 B2
6618875 Oropallo et al. Sep 2003 B1
6637050 Ball Oct 2003 B1
6675406 Ball Jan 2004 B2
6691411 Ball Feb 2004 B2
6696943 Elrod et al. Feb 2004 B1
6812844 Burgess Nov 2004 B1
6836911 Minnick Jan 2005 B2
6953049 Kowalke Oct 2005 B2
D517666 Wilk, Jr. et al. Mar 2006 S
D523123 Wilk, Jr. et al. Jun 2006 S
7127752 Ball Oct 2006 B2
7300074 Paulson Nov 2007 B1
D586433 Price et al. Feb 2009 S
20010002494 Fritz et al. Jun 2001 A1
20020032926 Lewis Mar 2002 A1
20020112285 Minnick Aug 2002 A1
20030151281 Williams Aug 2003 A1
20040068793 Ball Apr 2004 A1
20040111797 Ball Jun 2004 A1
20040117907 Ball Jun 2004 A1
20070007763 Deaton Jan 2007 A1
20080148477 Shafik Jun 2008 A1
20090261579 Spears Oct 2009 A1
Foreign Referenced Citations (3)
Number Date Country
346187 Apr 1960 CH
1163257 Feb 1964 DE
744099 Apr 1933 FR
Related Publications (1)
Number Date Country
20080235866 A1 Oct 2008 US
Continuations (2)
Number Date Country
Parent 09593724 Jun 2000 US
Child 10229533 US
Parent 12057660 US
Child 10229533 US
Continuation in Parts (5)
Number Date Country
Parent 10674862 Sep 2003 US
Child 12057660 US
Parent 10222062 Aug 2002 US
Child 10674862 US
Parent 10229533 Aug 2002 US
Child 10222062 US
Parent 10732726 Dec 2003 US
Child 12057660 US
Parent 09954420 Sep 2001 US
Child 10732726 US