This application claims the filing benefit of International Patent Application No. PCT/EP2009/000497, filed Jan. 27, 2009, which claims the filing benefit of Germany Patent Application No. 10 2008 010 400.0 filed Feb. 21, 2008, the contents of which are incorporated herein by reference.
The invention relates to an overhead conveyor system for transporting objects, in particular for transporting vehicle bodies, in a surface treatment plant, having:
In addition, the invention relates to a dip treatment plant, having:
In commercially known systems, as used in dip coating plant for vehicle bodies and as known for example from DE 196 41 048 C2, the securing device can be rotated about an axis of rotation which extends horizontally and perpendicular to the direction of movement. In order to dip the vehicle body to be treated in a dip bath filled with liquid paint, the vehicle body to be treated is moved with the superposition of a purely translational movement and a purely rotary movement about the horizontal axis of rotation. Here, the basic alignment of the vehicle body in relation to the direction of movement of the translational motion does not change, other than being rotated about the horizontal axis; typically, the longitudinal axis of the vehicle body always forms the same angle with the direction of movement as projected in a horizontal plane.
In another system, which is known from DE 101 03 837 B4 and is used to transport vehicle bodies in a dip treatment plant, the vehicle body may additionally be lowered or raised in a vertical movement. In this case, for the vehicle body it is possible to achieve a sequence of movements which is a superposition of a horizontal linear movement, a vertical linear movement and a rotation about the horizontal axis of rotation. In this case, the vehicle body may additionally be rotated about the horizontal axis of rotation after it has been lowered into the dip bath by the vertical movement. In this case too, the basic alignment of the vehicle body in relation to the direction of movement of the translational motion remains unchanged.
Once the vehicle body has been guided through the dip bath and removed from the transport carriage, the transport carriages of systems of this kind have to be returned to the entry of the dip treatment plant. On the return path of the transport carriage from the exit of the dip treatment plant to the entry thereof, during which it is not laden with a vehicle body, it occupies the same amount of space as it needs to pass through the dip treatment plant with the vehicle body. The overall space for the return of the transport carriages must be made correspondingly generous in size.
Moreover, in the case of commercially known objects the kinematic movement, in terms of rotary or pivotal movement of the vehicle body, is restricted to rotation or pivoting about the horizontal axis. To achieve better treatment results, in particular better coating results, it is desirable to increase the degrees of freedom of movement of the vehicle bodies in the dip bath.
The present invention is directed to resolving these and other matters.
It is an object of the present invention to construct an overhead conveyor system of the type mentioned at the outset such that on the one hand the degrees of freedom of movement of the object to be treated and hence the variability in the kinematic movement are increased, and on the other the space required for the transport carriage when there is no object secured thereto can be reduced.
This object may be achieved according to the invention in that
This object is achieved according to the invention in that
According to the invention, it is possible for the object to be treated to undergo a vertical rotary movement, which opens up new possibilities for the entire sequence of movements of the object, for example as it passes through a dip bath. At the same time, the vertical axis of rotation offers the possibility of putting the securing device in a position which is better adapted to the local conditions when no object is secured thereto.
It is in particular advantageous if it is possible for the at least one object to achieve a sequence of movements which is a superposition of a horizontal linear movement and a rotation about the vertical axis of rotation.
This concept does not mean that if there is a horizontal linear movement of the object there is always also a rotation about the vertical axis of rotation. Nor must the object necessarily be moved in the horizontal direction if there is a rotation about the vertical axis of rotation. It is sufficient if the overhead conveyor system makes it possible to utilise the degrees of freedom of movement at the same time. Nor is the possibility that the securing device can be moved with other degrees of freedom of movement ruled out. This may be useful in particular with regard to the saving of space when guiding the unladen transport carriage.
Advantageously, the transport carriage includes a vertically movable slide which is entrained by the securing device. In this way, an additional degree of freedom of movement for the securing device and where appropriate the object secured thereto is added.
This may be brought about in advantageous manner if the transport carriage includes a telescopic device which may be retracted or extended in the vertical direction and which guides the slide.
It is advantageous if the transport carriage includes as the drive means a drive carriage which may be moved by motor on the rail. This construction makes it possible to use drive carriages and drive rails that are already known from other areas of application. This means that all the technologies and control methods that are already used and which have been tried and tested may be utilised.
In this case, the telescopic device may be mounted on the drive carriage of the transport carriage such that it is rotatable about the vertical axis of rotation.
Particularly great variability of the sequence of movements of the object is achieved if the securing device is moreover mounted such that it is rotatable about a horizontal axis of rotation. It is thus possible, in connection with the vertically movable slide, for the object to achieve a sequence of movements which is a superposition of a horizontal linear movement, a vertical linear movement, a rotation about the vertical axis of rotation. If the horizontal axis of rotation is also provided, then in connection with the vertically movable slide it is possible for the object to achieve a sequence of movements which is a superposition of a horizontal linear movement, a vertical linear movement, a rotation about the vertical axis of rotation and a rotation about the horizontal axis of rotation. Here too, this does not mean that the sequence of movements is always a superposition of this kind; it is sufficient if the degrees of freedom of movement are utilised at the same time. The horizontal axis of rotation preferably extends approximately perpendicular to the direction of movement of the transport carriage.
It is moreover an object of the invention to provide a dip treatment plant of the type mentioned at the outset which takes account of the requirements mentioned in the preceding text.
This object is achieved in the case of a dip treatment plant of the type mentioned at the outset in that
The advantages of a dip treatment plant of this construction correspond accordingly to the advantages mentioned in the preceding text for the overhead conveyor system.
It is to be understood that the aspects and objects of the present invention described above may be combinable and that other advantages and aspects of the present invention will become apparent upon reading the following description of the drawings and detailed description of the invention.
While this invention is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail one or more embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated.
The vehicle bodies 204 are guided through the plant, and in particular through the dip bath 202 and the paint therein, with the aid of a conveyor system 206. The conveyor system 206 includes a plurality of transport carriages 208 which for their part have a drive carriage 210 and a holding carriage 212, which are coupled to one another by way of a telescopic device 214 which will be explained in detail below.
A drive rail 216 having an I-shaped profile, as used in conventional electric overhead conveyors, runs over the dip bath 202. Below the drive rail 216 and above the dip bath 202 there extends, parallel to the drive rail 216, a guide rail 218 having an upwardly open U-shaped profile.
The direction of movement in which the vehicle bodies 204 are conveyed by means of the conveyor system 206 is illustrated by an arrow 220 in
The drive carriages 210 are basically of a construction that is known from conventional electric overhead conveyors. Each of these drive carriages 210 has a travelling gear 222 which leads in the direction of movement 220, called the “leader” in the language of the art, and a further travelling gear 224 which follows in the direction of movement 220 and is called the “trailer” in the language of the art. The leader 222 and trailer 224 are equipped in known manner with guide and support rollers, which are not designated by their own reference numeral here and which roll on different surfaces of the I-shaped profile of the drive rail 216. At least one of the rollers of the leader 222 or trailer 224 serves as a drive roller and for this purpose may be rotated by an electric motor 226 or 228. Where appropriate, it may be sufficient if only the leader 222 is driven. The transport carriage 208, which is driven by way of the drive carriage 210, may where appropriate also pass over inclines if the drive rail 216 has to extend at an angle in certain regions to adapt the path of conveying to local conditions.
The leader 222 and trailer 224 of each drive carriage 210 are connected to one another by a connection frame 230 which is particularly readily visible in
The connection frame 230, for its part, in known manner carries a control device 232 which can communicate with the central control of the dip coating plant 200 and where appropriate with the control devices 232 of the other drive carriages 210 in the dip coating plant 200. In this way, it is possible to move the different transport carriages 208 largely independently.
The telescopic device 214 which couples the drive carriage 210 to the holding carriage 212 includes a three-part, vertically extending telescopic arm 234 which is variable in length. This is connected at its upper end to the end face of a toothed wheel 236 having an external toothing 238 in such a manner that it cannot rotate in relation thereto, such that the longitudinal axis of the telescopic arm 234 and the axis of rotation 240 of the toothed wheel 236 (cf.
The toothed wheel 236 can be driven by means of a servo motor 242 which communicates with the control device 232 of the drive carriage 210 and which for this purpose drives a toothed wheel 244 engaging in the external toothing 238 of the toothed wheel 236. In this way, the telescopic arm 234 can be turned about the axis of rotation 240 in either the clockwise or the anticlockwise direction, depending on the direction of rotation of the pinion 244.
The servo motor 242 and the pinion 244 are shown only in
The telescopic arm 234 includes an upper telescopic part 246. This carries, at its end remote from the toothed wheel 236, and on a transverse crosspiece 248, a guide roller 250 which can turn freely about a vertical axis of rotation 252 and which runs in the U-shaped profile of the guide rail 218, as is in particular visible from
Besides the upper telescopic part 246, the telescopic arm 234 includes a central telescopic part 254 and a lower telescopic part 256. The telescopic parts 246, 254 and 256 are displaceable in relation to one another, whereof more details will be given in the text that follows.
The lower telescopic part 256 serves as a slide 256 which is movable inside the central telescopic part 254, and will be designated as such in the text that follows. In the lower free end region 258 of the slide 256 there is mounted a rotary peg 260. The latter defines a horizontal axis of rotation 262 shown in
As can in particular readily be seen from
Thus, the slide 256 carries the holding carriage 212 by way of the rotary peg 260 only on one side, such that the transport carriage 208 as a whole takes the form of an L-shaped bracket. The transport carriage 208 may be aligned during its movement along the drive rail 216 such that the holding carriage 212, with the securing means 272, is arranged laterally offset from the drive rail 216. This makes it possible to ensure that none of the components of the conveyor system 206, for example the drive rail 216 or the drive carriage 210, among others, is arranged in the space vertically over the holding carriage 212 with the securing means 272. The risk of the vehicle body 204 becoming soiled by dirt such as dust, oil or similar falling off components of the conveyor system 206 is thus reduced.
As mentioned in the preceding text, the telescopic parts 246, 254 and 256 of the telescopic arm 234 may be moved relative to one another. For this purpose, the cross-sections of the individual telescopic parts 246, 254 and 256 are constructed to complement one another such that the central telescopic part 254 can be displaced in a manner guided inside the upper telescopic part 246 and the slide 256 can be displaced in a manner guided inside the central telescopic part 254.
In a first exemplary embodiment of the telescopic arm 234, shown in
When the servo motor 274 is controlled by the control device 232 of the transport carriage 208 such that the drive pinion 276 turns clockwise as seen in
An alternative embodiment of the telescopic arm 234 is shown in
When the servo motor 274 is controlled by the control device 232 of the transport carriage 208 such that the drive pinion 276 turns anticlockwise as seen in
If the chain pinion 276 is turned clockwise, the slide 256 is retracted into the central telescopic part 254 and at the same time the latter is retracted into the upper telescopic part 246.
In the case of modifications which are not shown here, the raising and lowering movement of the telescopic parts 246 and 254 and the slide 256 may also be brought about by a sliding chain or similar devices.
Operation of the cataphoretic dip coating plant 200 described in the preceding text is as follows:
The vehicle bodies 204 to be coated are fed in a substantially horizontal alignment in
For this the slide 256 is moved to its topmost position, in which the telescopic parts 256, 254 and 256 of the telescopic arm 234 are retracted inside one another, such that the latter adopts its smallest possible length. The corresponding position can be seen in perspective in
When the transport carriage 208 approaches the end wall of the dip bath 202 that is on the entry side, the slide 256 carrying the vehicle body 204 by way of the transport carriage 208 is progressively lowered, by the telescopic arm 234 being extended in the manner described in the preceding text, with the aid of the servo motor 274. As soon as the front end of the vehicle body 204 projects beyond the end wall of the dip bath 202 into the interior of the dip bath 202, the rotary peg 260 and hence the holding carriage 212 with the securing means 272 and the vehicle body 204 secured thereto are simultaneously turned with the aid of the geared motor 264 about the axis of rotation 262. Thus, in this region the overall movement of the vehicle body 204 can be regarded as the superposition of three movements, namely a horizontal linear movement (arrow 220) along the drive rail 216, a vertical linear movement along the axis of rotation 240 and hence also along the longitudinal axis of the telescopic arm 234, and a rotary movement, clockwise as seen in
As the slide 256 continues to be lowered and the vehicle body 204 continues to be rotated about the axis of rotation 262 of the rotary peg 260, a position is finally reached in which the vehicle body 204 is substantially vertical, as illustrated in
At the latest at the point at which the vehicle body 204 is completely on its “back” and hence lies horizontal again, as illustrated in
Then, the procedure of removing the vehicle body 204 from the bath begins. This procedure can once again be regarded as the superposition of three movements, namely the horizontal linear movement in the direction of conveying 220, the vertical movement along the axis of rotation 240 and hence also along the longitudinal axis of the telescopic arm 234, and the rotary movement about the axis of rotation 262 of the rotary peg 260. First the vehicle body 204, as illustrated in
The dip coating plant 200 described may also be used to dip coat relatively small objects (small articles). For this, holding baskets for example (not themselves shown) containing objects to be coated, which are small parts (not illustrated), loosely piled together for example, may be secured to the holding carriage 212. It will be appreciated that holding baskets of this kind are not guided through the dip bath 202 in a position in which their loading opening points downwards and objects to be coated could fall out.
As mentioned above, the telescopic arm 234 may be turned about the vertical axis of rotation 240 by way of the servo motor 242. In the kinematic arrangement shown in
The fact that the telescopic arm 234 can be turned about the vertical axis of rotation 240 only becomes relevant, in the kinematic arrangement shown in
It is also possible for the transport carriage 208 to be transferred from the drive rail 216 to the drive rail 216′ by means of a transverse displacement without the need for a curved rail part connecting the drive rails 216, 216′.
As a result of rotating the holding carriage 212, and as a result of its vertical position in relation to the drive carriage 210, the space required for the transport carriage 208 on the return path from the exit of the dip coating plant 200 to the entry thereof is reduced.
The sequence of movements of the vehicle body 204, described in the preceding text with reference to
As an alternative, it is possible for the axis of rotation 262 of the holding carriage 212 to be guided just above the liquid level of the liquid in the dip bath 202. In this case, the vehicle body will be guided through the dip bath 202 “roof downwards”. Here, it is possible to prevent either the holding carriage 212 or the slide 256 from coming into contact with liquid in the bath, as a result of which the risk that liquid in the bath will be transferred from one dip bath to the next, or that lubricant will be introduced into the dip baths, is reduced.
It is for example also possible to make use of the further degree of freedom which is provided by the vertical axis of rotation 240 as the vehicle body 204 is guided through the dip bath 202. In this case, with appropriate dimensions of the dip bath 202, a vehicle body 204 may also be guided through this transversely and not in the longitudinal direction as illustrated in
It is thus possible for the vehicle body 204 to perform a sequence of movements which can be regarded as the superposition of four movements, namely a horizontal linear movement (corresponding to the direction of movement 220), a vertical linear movement along the axis of rotation 240 and hence along the longitudinal axis of the telescopic arm 234, a rotary movement about the horizontal axis of rotation 262 of the rotary peg 260, and a rotary movement about the vertical axis of rotation 240 of the telescopic arm 234.
The conveyor system 206, which takes the form of an overhead conveyor system, requires no further structures to the right and/or left of the dip bath 202, as are required in plant of different design. This means that the dip coating plant 200 can be kept relatively narrow overall.
Moreover, as a result of the lateral mounting of the holding carriage 212, no shadows are cast on the vehicle body 204 by further components of the transport carriage 208 which would have to be compensated for in the dip bath in a correspondingly complex manner by a suitable kinematic arrangement and/or a relatively long dwell time in the dip bath.
When the vehicle body 204 is guided through the dip bath, the lower end region 258 of the slide 256 carrying the horizontal rotary peg 262 is lowered into the liquid in the bath. This means that the horizontal axis of rotation 260 may be arranged close to the centre of gravity of the vehicle body 204 supported by the holding carriage 212. This results in a more favourable distribution of forces during the sequence of movements for the vehicle body than is the case in known systems in which the axis of rotation lies relatively far away from the centre of gravity of the vehicle body.
It is to be understood that additional embodiments of the present invention described herein may be contemplated by one of ordinary skill in the art and that the scope of the present invention is not limited to the embodiments disclosed. While specific embodiments of the present invention have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 010 400 | Feb 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/000497 | 1/27/2009 | WO | 00 | 8/18/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/103401 | 8/27/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3658197 | DiDonato | Apr 1972 | A |
3861352 | Hammer | Jan 1975 | A |
3952699 | Durr et al. | Apr 1976 | A |
4772374 | Urquhart et al. | Sep 1988 | A |
5364469 | Wakabayashi | Nov 1994 | A |
5972112 | Wood et al. | Oct 1999 | A |
6419983 | Kreuzer | Jul 2002 | B1 |
7081164 | Kyotani | Jul 2006 | B2 |
20030056723 | Ehrenleitner | Mar 2003 | A1 |
20030140952 | Muller et al. | Jul 2003 | A1 |
20040149542 | Kyotani | Aug 2004 | A1 |
20050139451 | Kreuzer et al. | Jun 2005 | A1 |
20060226011 | Hartung et al. | Oct 2006 | A1 |
20070000758 | Matsubara et al. | Jan 2007 | A1 |
20100326832 | Albeck et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
29 02 352 | Jul 1980 | DE |
88 10 999 | Jul 1989 | DE |
94 08 846 | Sep 1994 | DE |
43 26 563 | Feb 1995 | DE |
103 06 826 | Apr 2004 | DE |
10306826 | Apr 2004 | DE |
102 61 337 | Jul 2004 | DE |
0 015 848 | Sep 1980 | EP |
0 110 525 | Jun 1984 | EP |
2 400 966 | Mar 1979 | FR |
1 343 019 | Jan 1974 | GB |
10-008292 | Jan 1998 | JP |
03059793 | Jul 2003 | WO |
2008025498 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100319617 A1 | Dec 2010 | US |