The invention relates to counterbalancing lift systems for overhead doors such as overhead garage doors. More particularly, the invention relates to an overhead door lift system that substantially maintains the upward force required to lift an overhead door having a non-linear relationship between free door weight and door elevation.
Overhead doors provide convenient and effective closures for large entrance openings such as entranceways to residential garages. One conventional sectional overhead door assembly 13 is shown in
A typical sectional overhead door 13 is opened by raising the door sections 12 along the roller tracks 40, 42. As the door sections 12 are raised, the rollers 14 travel along the vertical track portions 44, 46, enter and travel along the curved track portions 52, 54, and finally enter and travel along the horizontal track portions 48, 50. Accordingly, the pivotally-connected door sections 12 are moved from a vertical, closed orientation, to a substantially horizontal, open orientation. When fully open, the door is positioned entirely within the garage space at or above the topmost elevation of the doorway 60. To close the door 13, the door sections 12 are guided by the tracks 40, 42 to a closed, vertical orientation.
As a sectional overhead door is lifted and the rollers enter the horizontal portion of the roller tracks, the weight of the door progressively is carried by the horizontal portions of the tracks. For example, for a five-panel sectional overhead door like that shown in
The externally applied upward force “F” required to incrementally lift a typical sectional overhead door is at or near a maximum force “Fmax” when the door is in a closed, fully downward position. In this fully downward position, the elevation “h” of the bottom edge of the door above the floor is at a minimum elevation “hmin.” Conversely, the applied force F required to incrementally lift a typical sectional overhead door is at a minimum force “Fmin” as the door approaches its open, fully upward position. In this fully upward position, the elevation “h” of the bottom edge of the door above floor level is at a maximum elevation “hmax.” Because conventional sectional overhead doors have substantially uniform cross-sections, the incremental applied lift force F required to lift such a door is substantially inversely linearly proportional to the elevation “h” of the bottom edge of the door above floor level. Accordingly, the applied lift force F required to incrementally lift a sectional overhead door having a maximum incremental lift force Fmax and minimum incremental lift force Fmin between a fully down position (h=hmin=0) and a fully up position (h=hmax) can be expressed as:
F=h[−(Fmax−Fmin)/hmax)]+Fmax
A typical inversely linear relationship between the required upward lift force F and the instantaneous door elevation “h” for a conventional sectional overhead door is graphically depicted in
Sectional overhead door panels typically are constructed of durable materials such as steel, wood, or the like. Accordingly, multi-panel overhead doors that include such panels are heavy to lift. For example, a typical sectional overhead door that is substantially constructed of steel sheet material may weigh 100 pounds or more. Without mechanical assistance, a single person may have difficulty or may be unable to manually lift such a door. Therefore, it is common to provide overhead door lifting systems that mechanically apply lifting forces to the doors such that the weights of the doors are substantially counterbalanced by the lifting systems. By applying counterbalancing lift forces that are slightly less than the free hanging weights of the doors (for example, 5-10 pounds less), the lifting systems permit the doors to be manually lifted with only minimal additional applied lifting force. Accordingly, such lift-assisted doors can be easily raised by a single person or by a conventional automatic door opener.
A typical sectional overhead door lifting system 10 is shown in
In such conventional door lift systems 10, the cable drums 24, 26 have a substantially constant diameter. As shown in
Because upward-acting sectional overhead doors have large surface areas, such doors can be vulnerable to high static or dynamic wind loads. Many modern international, state, and local building codes currently require upward-acting doors such as residential overhead garage doors to be capable of withstanding high transverse wind loadings such as those that may be experienced during hurricanes or other storms. For example, many building codes in wind-prone locales require overhead garage doors in newly constructed residential structures to comply with wind-load testing standards such as ASTM E 330-97. In order to comply with such regulations, overhead garage door manufacturers have developed reinforcement systems to bolster the strength and stiffness of sheet metal overhead garage doors. As shown in
Though such reinforcement struts 102 have proven to be highly effective in strengthening overhead doors 100 to withstand high transverse wind loads, these struts 102 also change the substantially linear weight-to-height door characteristic described above for doors with substantially uniform cross-sections and without reinforcement struts. A representation of a weight-to-height characteristic for a typical strut-reinforced door 100 is shown in
Conventional sectional overhead garage doors typically include four or more pivotally connected door sections. Some newer sectional overhead door designs, however, may include only three door sections, such as the overhead doors described in co-pending U.S. patent application Ser. No. 10/699,749, filed Nov. 3, 2003. Such three-section doors tend to have a height-to-weight relationship that is substantially non-linear when compared to the substantially linear height-to-weight relationship for four-panel doors. Especially when such three-panel doors are provided with one or more reinforcement struts like those described above, a substantially nonlinear door height/weight relationship like that shown in
Known substantially linear garage door lift systems like those described above are incapable of providing variable upward-acting forces to adequately counterbalance the non-linear change in door weight associated with changes in door elevation for wind-resistant, strut-reinforced doors overhead doors and/or doors comprised of three sections. Accordingly, there is a need for a door lift system that accommodates this non-linear variability in door lift forces such that a substantially constant applied vertical load is sufficient to raise such a door.
The present invention includes a counterbalance mechanism for a sectional overhead door of a type having a substantially non-linear lift-weight to lift-height characteristic. The mechanism is capable of applying different counterbalancing lift forces to the door at different intermediate door positions between a fully closed position and a fully open position. The difference between an intermediate lift weight of the door and a corresponding counterbalancing lift force at any intermediate door position is substantially constant.
The invention also includes a garage door cable drum for a sectional overhead door of a type having a substantially non-linear lift-weight to lift-height characteristic. The drum includes a generally spiral cable groove having a variable minor radius. The groove minor radius at any intermediate point along the groove is sized to provide a lift-cable moment arm that yields a corresponding cable lift force that is slightly less than an instantaneous lift weight of the garage door at any intermediate door elevation.
The invention further includes a counterbalance mechanism for a sectional overhead door having a maximum lift weight and a non-linear lift-weight to lift-height characteristic, wherein the mechanism applies a maximum counterbalancing lift force to the door when the door is in a fully closed position and applies a minimum counterbalancing lift force to the door when the door is in a fully open position. The mechanism is configured to apply variable intermediate counterbalancing lift forces to the door when the door is raised to intermediate elevations between the fully open and fully closed positions. The difference between an applied counterbalancing lift force and a corresponding intermediate lift weight of the door at any intermediate lift position is substantially equal to the difference between the maximum suspended weight of the door and the maximum lift load.
The invention also includes a cable winding drum comprising a drum body having a longitudinal axis and a generally spiral cable groove therearound. The cable groove includes a plurality of successive turns around the drum body. Each of the turns includes at least one groove radius that is larger than at least one other groove radius of each adjacent turn.
The invention further includes a cable winding drum that includes a body having a longitudinal axis, a first end, a second end, and a substantially continuous cable groove. The groove generally spirally extends around the body from the first end to the second end in a plurality of successive turns. The cable groove is characterized by substantially continuously varying groove radii along its length from the first end to the second end of the drum, the groove radii being measured from the longitudinal axis of the body to points along a bottom of the groove, wherein a first minor radius at a first location between the first and second ends is larger than a second minor radius at a second location between the first location and the first end, and wherein the first minor radius at the first location is larger than a third minor radius at a third location between the first location and the second end.
These and other aspects of the invention can be better understood from a reading of the following detailed description together with the drawings.
A door lift system 200 according to the invention is shown in
Details of a right-end cable drum 224 are shown in
As shown in
T=M/Rm
Accordingly, for a given applied torsional load M, the resultant tension T in the cable 320 is inversely proportional to the minor radius Rm of the drum (i.e., the effective moment arm) at the point “a” where the cable 320 leaves the winding drum 300. In other words, for a given applied torque M, the larger the minor radius of the drum, the smaller the tension T in the cable 320. Conversely, for a given applied torque M, the larger the minor radius of the drum, the smaller the tension T in the cable 320.
In the embodiment of the cable drum 200 shown in
By matching the desired tensile load in the cable 220 with the non-linear weight-to-height characteristic of a particular door 210 (like that shown in
The above descriptions of embodiments of the invention are for the purpose of illustration only, and are not intended to limit the scope of the invention thereto. Persons of ordinary skill in the art will recognize that certain modifications can be made to the embodiments described above without departing from the invention. For example, although the embodiments of the door lift system and cable drum described above are described in association with a one or more coil torsion springs, other types of springs capable of applying variable torsional loads to a torsion bar also may be used. All such modifications are intended to be within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2007552 | Vetterlein | Jul 1935 | A |
2314015 | Parsons | Mar 1943 | A |
2680004 | Herker | Jun 1954 | A |
2722273 | Taylor | Nov 1955 | A |
2855162 | Schacht, Jr. | Oct 1958 | A |
3095922 | Frazier | Jul 1963 | A |
3311159 | Stansberry | Mar 1967 | A |
3756585 | Mihalcheon | Sep 1973 | A |
4034932 | Ferch | Jul 1977 | A |
4071205 | Wieschel | Jan 1978 | A |
4165053 | Konig | Aug 1979 | A |
4483496 | Weinlich | Nov 1984 | A |
4519556 | Timoschuk | May 1985 | A |
4882806 | Davis | Nov 1989 | A |
5103890 | Cloutier | Apr 1992 | A |
5239777 | Husselton | Aug 1993 | A |
5259433 | Cloutier | Nov 1993 | A |
5335883 | Mawer | Aug 1994 | A |
5400721 | Greene | Mar 1995 | A |
5803149 | Halley et al. | Sep 1998 | A |
5829736 | Harken | Nov 1998 | A |
5829737 | Gersemsky | Nov 1998 | A |
5865235 | Krupke et al. | Feb 1999 | A |
6019353 | Atfield | Feb 2000 | A |
6134835 | Krupke et al. | Oct 2000 | A |
6164014 | McDowell et al. | Dec 2000 | A |
6374543 | Bishai | Apr 2002 | B1 |
6401793 | Martin | Jun 2002 | B1 |
6408925 | Dorma | Jun 2002 | B1 |
6442897 | Mullet | Sep 2002 | B1 |
6561256 | Mullet | May 2003 | B2 |
6601794 | Brutschin | Aug 2003 | B2 |
6616091 | Priest et al. | Sep 2003 | B2 |
20020066231 | Hormann | Jun 2002 | A1 |
20020157797 | Mullet | Oct 2002 | A1 |
20030062441 | Priest et al. | Apr 2003 | A1 |
20030192254 | Brookbank et al. | Oct 2003 | A1 |