This invention relates generally to overhead doors and in particular, to an overhead door with a lintel seal.
Rolling Steel Doors are metal slatted overhead coiling doors that roll up to store in coil above the opening. They are used to provide security against entry or to provide weather protection at exterior and interior openings in industrial, commercial, institutional and other buildings. They are also called overhead coiling doors or service doors.
Although they are sometimes considered to be interchangeable there are dramatic differences between Rolling Steel and Sectional Doors. Some of these differences are based on material, with Rolling Steel doors generally having heavier duty, sustainable construction. Also, Rolling Steel Doors have mounting advantages that make them uniquely suitable for specific applications.
Rolling Steel Doors have many fewer parts than sectional doors with less risk for damage and inoperability making them a better solution for facilities that cannot afford opening downtime. Sectional garage doors have 30 to 40 moving parts that are all exposed and subject to dirt, debris and damage. Any of these parts if faulty or damaged will cause the door to become completely inoperable and/or pose a serious life safety risk.
Rolling steel doors have a heavy duty steel curtain that coils upon a counterbalance shaft. Their heavy duty springs are protected and sealed inside the counterbalance shaft and heavily coated with grease to eliminate the possibility of rust or freezing.
Coiling doors are mounted to the face of the wall and supported by vertical guide assemblies. They require no connection to the ceiling or roof structure. Sectional garage doors are typically mounted to the vertical face of the wall, but a horizontal track must be supported from the ceiling or roof structure.
With any door design, if there is passage of air or water between the door and the structure, damage to the structure interior and its contents may result. Heating and cooling costs may also be adversely affected. To prevent these problems various barriers have been designed. One such design sandwiches a relatively rigid sheet between two rows of bristles, all of equal length. However, this design of equal length bristles has proven to be less than effective.
Accordingly, there is still a continuing need for improved designs to eliminate the overhead door lintel and guide assembly—building structure gap. The present invention fulfills this need and further provides related advantages.
The overhead door using a lintel seal interface assembly described below is a novel design to help reduce or prevent outside air, wind, rain, or snow from passing through the door—structure interface without adversely affecting door operation.
In a preferred embodiment an overhead coiling door includes a lintel seal interface assembly comprising a mounting bracket and a seal material sandwiched between a top and bottom row of brush bristles, the top row of bristles being shorter than the bottom row. This interface assembly geometry provides relative rigidity to the flexible seal material and maintains greater cycle life.
Further described are novel insulating material placement used to seal the building structure—door gaps. In one preferred design, a hinged guide cover has a first leg geometry to engage the structure and a second leg geometry to engage the guide assembly to effectively seal gaps created by various amounts of guide assembly setback.
The hinged guide cover offers some distinct advantages, for example, it acts as a trim piece to close off the guide assemblies from the exterior using fasteners for positive attachment to the guide assemblies and the wall; it thermally breaks the guide assemblies from the outside temperature to reduce temperature transfer into the building preventing the guide assemblies from sweating/frosting depending on the outside temperature; it provides the ability to have a slide in seal for the guide assemblies; and it is more robust than solely applying foam, making inadvertent loss of insulation less likely.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The accompanying drawings are included to provide a further understanding of the present invention. These drawings are incorporated in and constitute a part of this specification, illustrate one or more embodiments of the present invention, and together with the description, serve to explain the principles of the present invention.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiments, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
As required, detailed embodiments of the present invention are disclosed; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various forms. The figures are not necessary to scale, and some features may be exaggerated to show details of particular components. Therefore, specific structural and functional details disclosed are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention. Where possible, like reference numerals have been used to refer to like parts in the several alternative embodiments of the present invention described herein.
For purposes of this disclosure the term “operator” is meant to comprise both motorized and non-motorized assemblies that provide turning force to the counterbalance shaft.
Turning now to the figures,
A lintel seal interface assembly 12 is mounted to the door lintel 14. For purposes of this specification, the term lintel refers to a horizontal structural member over an opening which carries the weight of the wall above it. The components of the lintel seal interface assembly 12 comprise a bracket 16 and a brush assembly 18 (
Depicted in
When the door is closed, the shorter top set of bristles 24 allow the EPDM sheet to contact and conform to any irregularity in the door curtain 6 to provide a more effective seal than that provided by top and bottom bristles of equal length. It was found that top bristles and bottom bristles of equal length interfered with the seal material contacting the curtain. Top and bottom bristles of the same length prevented the EPDM sheet from effectively sealing to the curtain. The sealing failure prevented a door from meeting the Air Infiltration Standard (IECC 2012) of 1.0 cfm/sq ft., incorporated by reference. When a lintel seal interface assembly 12 comprising the novel design of a shorter top set of bristles was incorporated into the door the requirements of Air Infiltration Standard (IECC 2012) were unexpectedly met.
Turning now to
In installing the Z shaped bracket 28 field cuts as needed are made to the bracket 28 to produce cutout area 34 to allow for the guide assembly setback and pack-off. With either bracket design, 28, 30 mounting holes 36 are utilized to mount the bracket 28, 30 to the header/lintel 14 with a fastener 40, for example a screw or bolt. Preferably the mounting holes 36 are spaced a maximum of about 24 inches apart. With Z bracket 28 the mounting holes 36 are preferably positioned about equally between the front edge of the header/lintel 14 and the back edge of the bracket 28. With L bracket 30 the mounting holes 36 are preferably positioned about equally between the front and the back edges of the bracket 30. Mounting angle 32 is fixed to L bracket 30 with fastener 44.
The brush assembly 18 is fixed to the bracket 28 or mounting angle 32, for example by inserting brush assembly key 26 into keyway 42. As shown in
The brush assembly 18 is mounted and positioned such that the seal material 20 contacts the closed curtain 6 with the bristles 22, 24 pushed to a predetermined angle, for example about a 55 degree to about a 35 degree angle, preferably about a 45 degree angle. The shorter top set of bristles 24 are faced upward towards the operator counterbalance shaft 10. A sealant 38, for example silicone, may be applied.
In addition to the novel brush configuration, optionally, sealing materials, for example, foam block 46, pressure sensitive seal tape 48, and/or caulking 50 may be placed between the guide assembly 8 and the structure wall 52 to further reduce or prevent air and/or water infiltration as depicted in
During door installation it is not uncommon that the guide assemblies 8 are set back from the structure opening as depicted in
Once in place as depicted in
Although the present invention has been described in connection with specific examples and embodiments, those skilled in the art will recognize that the present invention is capable of other variations and modifications within its scope. These examples and embodiments are intended as typical of, rather than in any way limiting on, the scope of the present invention as presented in the appended claims.
This application is a division of and claims benefit of U.S. application Ser. No. 14/312,206 filed Jun. 26, 2014 which claims benefit of U.S. Provisional Application No. 61/839,987 filed Jun. 27, 2013.
Number | Date | Country | |
---|---|---|---|
61839987 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14312206 | Jun 2014 | US |
Child | 15041531 | US |