Suspended ceilings are used in interior spaces for several reasons. First, suspended ceilings may hide mechanical devices such as heating and cooling systems from view. Second, suspended ceilings may include acoustical panels to improve the sound quality within the interior space. Third, suspended ceilings may create a desirable aesthetic. Such suspended ceilings may include grid assemblies which include elongated support members to which the ceiling panels are attached. While some ceiling systems may require the elongated support members to be arranged in a perpendicular grid, other ceiling systems may require the elongated support members to be arranged obliquely relative to each other. Previously, different bracket members needed to be tooled and manufactured for use depending on the arrangement of the elongated support members. However, this requires maintaining several different components in inventory and fronting the costs for tooling of multiple different components. Thus, a need exists for an overhead grid assembly having a bracket member that can be used in all configurations of the elongated support members.
The present invention is directed to an overhead grid assembly for a suspended ceiling system and a bracket member thereof. The overhead grid assembly may include first and second support members that are arranged in an intersecting manner to form a grid. The first support member may be elongated along a first longitudinal axis and the second support member may be elongated along a second longitudinal axis. The bracket member may include a first part having a first channel and a second part having a second channel. The bracket member is arranged to maintain the first and second support members in a desirable orientation relative to each other. Thus, a portion of the first support member may nest within the first channel and a portion of the second support member may nest within the second channel. The first and second parts of the bracket assembly may be rotatable relative to one another to ensure the bracket assembly can be coupled to the first and second support members regardless of their relative orientation
In one aspect, the invention may be an overhead grid assembly for a suspended ceiling system, the overhead grid assembly comprising: a first support member comprising a first longitudinal axis; a second support member comprising a second longitudinal axis; a bracket member comprising a first part comprising a first channel and a second part comprising a second channel, wherein the bracket member is positioned so that a portion of the first support member nests within the first channel and a portion of the second support member nests within the second channel; and wherein the first and second parts of the bracket member are rotatable relative to one another to adjust an angle measured between the first and second longitudinal axes of the first and second support members.
In another aspect, the invention may be an overhead grid assembly for a suspended ceiling system, the overhead grid assembly comprising: a plurality of first support members arranged in a parallel configuration, each of the first support members comprising a first longitudinal axis; a plurality of second support members arranged in a parallel configuration, each of the second support members comprising a second longitudinal axis, the first and second support members arranged so that the first longitudinal axes of each of the first support members is oriented at a first angle relative to the second longitudinal axes of each of the second support members; a plurality of bracket members, each of the bracket members comprising a first channel comprising a first channel axis and a second channel comprising a second channel axis, wherein a portion of one of the first support members nests within the first channel and a portion of one of the second support members nests within the second channel; and wherein each of the bracket members is adjustable to modify a second angle measured between the first and second channel axes to match the second angle to the first angle.
In yet another aspect, the invention may be a bracket member for maintaining a relative position between a first support member and a second support member of an overhead grid assembly of a suspended ceiling system, the bracket member comprising: a first part comprising a first channel comprising a first channel axis; a second part comprising a second channel comprising a second channel axis; and wherein the first and second parts are rotatable relative to one another to adjust an angle measured between the first and second channel axes of the first and second channels.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The features of the exemplary embodiments of the present invention will be described with reference to the following drawings, where like elements are labeled similarly, and in which:
All drawings are schematic and not necessarily to scale. Parts given a reference numerical designation in one figure may be considered to be the same parts where they appear in other figures without a reference numerical designation for brevity unless specifically labeled with a different part number and described herein.
The features and benefits of the invention are illustrated and described herein by reference to exemplary embodiments. This description of exemplary embodiments is intended to be read in connection with the accompanying drawings, which are to be considered part of the entire written description. Accordingly, the disclosure expressly should not be limited to such exemplary embodiments illustrating some possible non-limiting combination of features that may exist alone or in other combinations of features.
In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “affixed,” “connected,” “coupled,” “interconnected,” and similar refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
Referring first to
The ceiling panels 200 may be acoustic panels in that they may comprise acoustic properties to improve the sound quality in the space within which the suspended ceiling system 1000 is being used. The ceiling panels 200 may also have a desired aesthetic. For example, in
The overhead grid assembly 100 comprises support members (also known as beams, which may include main beams and cross-tee beams) which are arranged in an intersecting grid-like pattern. However, the exact arrangement of the support members of the overhead grid assembly 100 may be modified in some embodiments in order to create a desired aesthetic with the ceiling panels 200. Again, a comparison of
Still referring to
In the exemplified embodiment, each of the plurality of first support members 110 is oriented perpendicular relative to each of the plurality of second support members 150. That is, the overhead grid assembly 100 is configured so that the plurality of first support members 110 are parallel to each other and perpendicular to the plurality of second support members 150, which are also oriented parallel to one another. Thus, the plurality of first and second support members 110, 150 define a plurality of square or rectangular shaped openings with the area of intersection between the first and second support members 110, 150 forming a corner of each of the openings.
Referring to
As noted above, in the exemplified embodiment the first support members 110 and the second support members 150 are structurally identical. In particular, the first and second support members 110, 150 are U-shaped members. That is, the first support members 110 comprise a floor 112 (see
Because the first support members 110 rest atop of the second support members 150, the first and second support members 110, 150 do not intersect in a traditional sense. That is, the first support members 110 are located on a first plane and the second support members 150 are located on a second plane that is at a different elevation within the space than the first plane. The first and second planes are parallel to one another and are oriented horizontally but at different heights or elevations within the space or room. Thus, the first and second support members 110, 150 and hence also the first and second longitudinal axes A-A, B-B lie in different planes that are parallel to one another. Thus, as used herein, the term “intersect” includes two structures or axes that cross over each other even though they are at different elevations. Stated another way, the first and second support members 110, 150 in
In addition to the first and second support members 110, 150 being coupled together with a fastener that extends through the openings, the overhead grid assembly 100 also comprises bracket member 300 that is configured to maintain the first and second support members 110, 150 in a particular arrangement and at a particular relative angle. Specifically, and as described in more detail below, the bracket member 300 comprises a first channel that receives a portion of the first support members 110 and a second channel that receives a portion of the second support members 150. Thus, the bracket member 300 helps to maintain the first and second support members 110, 150 in the perpendicular arrangement shown in
In particular, the bracket members 300 are capable of being modified or altered so that the same bracket members 300 can be used regardless of the desired relative orientation at which the first and second support members 110, 150 are to be positioned. Previously, different bracket members were needed depending on the orientation of the first support members 110 relative to the second support members 150. Such previous bracket members were fixed and not alterable so that the same bracket members were not able to be used with the first and second support members 110, 150 positioned in a perpendicular orientation relative to each other (see
Referring to
The hook members 206 also comprise hook portions 207 which are used to attach the ceiling panels 200 to the overhead grid assembly 100. In particular, in the exemplified embodiment the hook portions 207 all face the same direction. Thus, as shown in
Referring to
The suspended ceiling system 2000 comprises an overhead grid assembly 2100 and a plurality of ceiling panels 2200. The overhead grid assembly 2100 comprises a plurality of first support members 2110 that are arranged in a parallel configuration and a plurality of second support members 2150 that are arranged in a parallel configuration. However, in this embodiment the plurality of first support members 2110 are not oriented perpendicular to the plurality of second support members 2150. Rather, the plurality of first support members 2110 are oriented at an oblique angle relative to the plurality of second support members 2150. Thus, in this embodiment the openings formed by the first and second support members 2110, 2150 are in the shape of a rhombus. This different arrangement of the first and second support members 2110, 2150 (as compared to the arrangement of the first and second support members 110, 150 previously described) may allow for differently shaped ceiling panels to be attached thereto. Thus, as shown in
As noted above, the same bracket members 300 that are used with the overhead grid assembly 100 can also be used with the overhead grid assembly 2100. That is, because the channels of the bracket members 300 can be adjusted relative to one another in terms of their relative positioning or angle, the same bracket members 300 can be used to secure the first and second support members 110, 150 of the overhead grid assembly 100 together in the perpendicular arrangement and to secure the first and second support members 2110, 2150 of the overhead grid assembly 2100 together in the oblique arrangement.
Referring to
Referring to
The bracket member 300 comprises a bottom end 301 which is formed by the bottom of the first part 310, a top end 302 which is formed by a top of the second part 350, and a longitudinal axis C-C which extends in a direction from the bottom end 301 to the top end 302. When the bracket member 300 is assembled, the first and second parts 310, 350 thereof are rotatable relative to each other, which facilitates the ability of the bracket member 300 to be used with various overhead grid assemblies whereby the support members thereof are arranged at different relative orientations. The longitudinal axis C-C also forms a rotational axis of the bracket member 300 such that the first part 310 is rotatable relative to the second part 350 about the rotational axis C-C (or the second part 350 may be rotatable relative to the first part 310 about the rotational axis C-C).
The first part 310 of the bracket member 300 comprises an upper portion 311 and a lower portion 330. The upper portion 311 comprises a first hemispherical portion 312 and a second hemispherical portion 313 that are arranged in a spaced apart manner. Although the term “hemispherical” is used to describe the shapes of the first and second hemispherical portions 312, 313, it should be appreciated that in the exemplified embodiment they have flat top and bottom surfaces and are therefore not pure hemisphere shapes. Rather, in the exemplified embodiment he first and second hemispherical portions 312, 313 are in the shape of the letter D and have a thickness or height.
The first hemispherical portion 312 comprises an inner surface 314 and an outer surface 315, and the second hemispherical portion 313 comprises an inner surface 316 and an outer surface 317. The inner surfaces 314, 316 of the first and second hemispherical portions 312, 314 of the upper portion 311 of the first part 310 of the bracket member 300 face each other in a spaced apart manner so that a first channel 318 of the bracket member 300 is defined between the inner surfaces 314, 315 of the first and second hemispherical portions 312, 314. Thus, the first part 310 of the bracket member 300 comprises the first channel 318 in the exemplified embodiment. In the exemplified embodiment, the inner surfaces 314, 316 of the first and second hemispherical portions 312, 314 are planar surfaces that extend vertically and parallel to one another. This ensures that the inner surfaces 314, 316 of the first and second hemispherical portions 312, 314 abut against the outer surfaces of the first and second sidewalls 113, 114 of the first support members 100 when the bracket members 300 are coupled thereto as described herein. However, the inner surfaces 314, 316 need not be smooth and completely flat surfaces in all embodiments and they could include undulations, depressions, protrusions, or other features in other embodiments. Moreover, the inner surfaces 314, 316 may be inclined or angled rather than vertical in some embodiments.
Additionally, the first hemispherical portion 312 comprises a first locking tab 319 protruding from the inner surface 314 into the first channel 318 adjacent to the top end of the first part 310. The second hemispherical portion 314 comprises a second locking tab 320 protruding from the inner surface 316 into the first channel 318 adjacent to the top end of the first part 310. As shown in
In the exemplified embodiment, the outer surfaces 315, 317 of the first and second hemispherical portions 312, 314 of the first part 310 of the bracket member 300 are convex in shape (they each form part of a circle). This round/arcuate shape of the outer surfaces 315, 317 enables the first part 310 of the bracket member 300 to rotate relative to the second part 350 of the bracket member 300, as will be described in greater detail below. The outer surfaces 315, 317 of the first and second hemispherical portions 312, 314 of the first part 310 of the bracket member 300 comprise a first engagement feature 321. In the exemplified embodiment, the first engagement feature 321 comprises a plurality of first teeth 322 (or vertical ridges) extending from the outer surfaces 315, 317 of the first and second hemispherical portions 312, 314. Each of the first teeth 322 extends along a majority or entirety of a height of the first and second hemispherical portions 312, 314 of the first part in the exemplified embodiment, although they could have a reduced height in other embodiments. Each pair of adjacent ones of the first teeth 322 are spaced apart by a groove 323. In the exemplified embodiment, each of the first teeth 322 has a triangular shaped cross-section and the grooves 323 between adjacent ones of the first teeth 322 are also triangular-shaped. This enables the first engagement feature 321 (i.e., the plurality of first teeth 322 and grooves 323) to interact with a similarly shaped protuberance on the second part 350 of the bracket member 300 as described in greater detail below.
As noted above, the first part 310 of the bracket member 300 comprises the lower portion 330 in addition to the upper portion 311. In the exemplified embodiment, the lower portion 330 of the bracket member 300 comprises a first post 331 and a second post 332 which extend downwardly from the upper portion 311 to a bottom end of the first part 310. The first and second posts 331, 332 are spaced apart from one another as best seen in
The second part 350 of the bracket member 300 comprises a bottom end 351 which forms at least a portion of the bottom end 301 of the bracket member 300 when assembled and a top end 352 opposite the bottom end 351. The second part 350 of the bracket member 300 further comprises an outer surface 353 and an inner surface 354. The inner surface 354 defines a cavity 355 within which at least a portion of the first part 310 of the bracket member 300 nests when the bracket member 300 is assembled as shown in
The second part 350 of the bracket member 300 comprises an engagement feature 356 that protrudes from the inner surface 354 thereof inwardly towards the cavity 355. In the exemplified embodiment, the engagement feature 356 is a singular protuberance or ridge 357 that is elongated in a vertical direction. Furthermore, the protuberance or ridge 357 has a triangular shape similar to the teeth and grooves 322, 323 of the engagement feature 321 of the first part 310 of the bracket member 300. The engagement feature 356 on the inner surface 354 of the second part 350 of the bracket member 300 is configured to mate with the engagement feature 321 on the outer surface 315, 317 of the upper portion 311 of the first part 310 of the bracket member 300 to prevent the first and second parts 310, 350 from freely rotating relative to each other. It should be appreciated that while the first and second engagement features 321, 356 are desirable in some embodiments, they are not required and could be omitted in some alternative embodiments.
The second part 350 of the bracket member 300 comprises a second channel 360. In the exemplified embodiment, the second channel 360 is defined by a first opening 361 that extends through the second part 350 of the bracket member 300 from the outer surface 353 to the inner surface 354 and a second opening 362 that extends through the second part 350 of the bracket member 300 from the outer surface 353 to the inner surface 354. The first and second openings 361, 362 extend from the bottom end 351 of the second part 350 upwardly towards the top end 352 of the second part 350, although the first and second openings 361, 362 do not extend the full height of the second part 350. The first and second openings 361, 362, in combination with a portion of the cavity 355 of the second part 350 which spans between the first and second openings 361, 362, collectively forms the second channel 360. A portion of one of the support members 110, 150 can enter into the second channel 360 by lowering the second part 350 thereon so that the support member 110, 150 enters into the second channel 360 from the bottom end 351 of the second part 350.
As mentioned above, in the exemplified embodiment the first and second parts 310, 350 are prevented from freely rotating relative to each other due to the interaction between the first and second engagement features 321, 356. In particular, when the first part 310 nests within the cavity 355 of the second part 350, the second engagement feature 356 of the second part 350 mates with the first engagement feature 321 of the first part 310. In the exemplified embodiment, this means that the protuberance 357 of the second engagement feature 356 nests within the spaces 323 between adjacent ones of the teeth 322 of the first engagement feature 321, much like a ratchet mechanism. Thus, as the first part 310 is rotated relative to the second part 350, the protuberance 357 of the second engagement feature 356 moves along the teeth 322 of the first engagement feature 321 one at a time, making n audible clicking sound with each movement. In some embodiments, each ratcheting movement of the first part 310 relative to the second part 350 (i.e., each movement which causes the protuberance 357 to move from one groove 323 between two adjacent teeth 322 to an adjacent space 323 between two teeth 322) results in a 5° rotation of the first part 310 relative to the second part 350.
Referring again to
At the same time, the second support member 150 nests within the second channel 360 of the bracket member 300 which is defined by the second part 350 of the bracket member 300. The second support member 150 nests within the second channel 360 and protrudes through the first and second openings 361, 362 of the second channel 360. Thus, typically when assembling the overhead grid assembly 100, first the bracket assembly 300 is positioned over the second support member 150 so that the second support member 150 is made to nest within the second channel 360. Once the bracket member 300 is positioned over the second support member 150, the first support member 110 is placed over top of the second support member 150 and over top of the bracket member 300 to nest a portion of the first support member 110 within the first channel 318 of the bracket member 300. The first part 310 of the bracket member 300 may be rotated relative to the second part 350 of the bracket member 300 either before or after the first support member 110 is positioned within the first channel 318.
As seen in
Referring to
Referring to
As seen in
Moreover, as shown in
Referring to
The first part 410 of the bracket member 400 comprises a cylindrical body 411 comprising a bottom end 412, a top end 413, and an outer surface 414. The outer surface comprises a first engagement feature 415. In the exemplified embodiment, the first engagement feature 415 comprises a plurality of teeth 416 and a plurality of grooves 417 located between adjacent ones of the teeth 416. Moreover, the cylindrical body 411 of the first part 410 defines a first channel 420 that is configured to receive a portion of the first support member 110 of the overhead grid assembly 100 as shown in
In this embodiment, the first channel 420 comprises a first notch 421 extending upwardly from the bottom end 412 towards but not all the way to the top end 413 and a second notch 422 extending upwardly from the bottom end 412 towards but not all the way to the top end 413. Each of the first and second notches 421, 422 are open along the bottom end 412 of the cylindrical body 411 and along two opposing sides of the cylindrical body 411 so that the sidewalls 113, 114 of the first support member 110 can be received therein. As best seen in
The first part 410 comprises a fastener receiving opening 425 on the bottom end 412 thereof. In particular, the fastener receiving opening 425 is located on the bottom end 412 of the cylindrical body 411 along the central portion 415 thereof. The fastener receiving opening 425 is configured to receive a fastener (nut, bolt, screw, etc.) to couple the bracket member 400 to the first and/or second support members 110, 150.
The second part 450 of the bracket member 400 is identical to the second part 350 of the bracket member 300 described above. Thus, while a brief description of the features of the second part 450 of the bracket member 400 are provided herein, it should be appreciated that a more detailed description is available above with regard to the second part 350 of the bracket member 300.
The second part 450 of the bracket member 400 comprises a ring-shaped body 401 having a bottom end 451, a top end 452, an outer surface 453 and an inner surface 454. The inner surface 454 defines a cavity 455 within which a portion of the first part 410 nests when the bracket member 400 is assembled. Furthermore, the second part 450 comprises a second engagement feature 456 protruding from the inner surface 454 towards the cavity 455. The second engagement feature 456 is an elongated protuberance in the exemplified embodiment. The second part 450 also comprises a second channel 460 that is defined by a first opening 461, a second opening 462, and a portion of the cavity 455 which extends between the first and second openings 461, 462. When the bracket member 400 is coupled to the first and second support members 110, 150, a portion of the second support member 150 nests within the second channel 460 defined by the second part 450 of the bracket member 400. The second support member 150 then protrudes through the first and second openings 461, 462 of the second channel 460, as best seen in
As with the bracket member 300, the bracket member 400 is also alterable such that the first part 410 is configured to rotate relative to the second part 450 so that the bracket member 400 can be used with the first and second support members 110, 150 at different orientations/angles relative to each other. The first and second engagement features 415, 456 mate with each other to prevent the first part 410 from freely rotating relative to the second part 450. However, a user can apply a rotational force onto the first part 410 relative to the second part 450 to cause the first part 410 to rotate relative to the second part 450 as has been described herein. The degree of rotation and the angles that the first and second channels 420, 460 and also the first and second support members 110, 150 can be moved along is the same as that which was described above. Additional details of the bracket member 300 are applicable to the bracket member 400 as should be appreciated by persons of ordinary skill in the art.
Referring to
In this embodiment, the first part 510 of the bracket member 500 is identical to the first part 410 of the bracket member 400 described above. Thus, the first part 510 of the bracket member 500 comprises a cylindrical body 511 having an outer surface 514. A first engagement feature 515 (i.e., the teeth and grooves as described above) is formed on the outer surface 514 of the cylindrical body 511. Furthermore, the first part 510 of the bracket member 510 comprises a first channel 520 which is formed by a first notch 521 and a second notch 522. Because the first part 510 of the bracket member 500 is identical to the first part 410 of the bracket member 400, additional details of the first part 510 of the bracket member 500 will not be provided here in the interest of brevity.
The second part 550 is very similar to the second part 450 of the bracket member 400, except the second part 550 of the bracket member 500 has more of a rectangular shape rather than being fully rounded as with the second part 450 of the bracket member 400. The second part 550 comprises an inner surface 554 that defines a cavity 555 within which a portion of the first part 510 nests when the bracket member 500 is assembled. Although the exterior shape of the second part 550 is more of a rectangle than a circle, the inner surface 554 remains arcuate so that the first part 510 can still rotate relative to the second part 550 as has been described herein with regard to the previously described embodiments. A second engagement feature 456 is located on and projects from the inner surface 554 as with the embodiments previously described. Furthermore, the second part 550 comprises a second channel 560 configured to receive a portion of the second support member 150 as shown in
The first and second support members 110, 150 may be rotated relative to one another so that they are not perpendicular as shown in
Referring to
Finally, referring to
The first part 610 of the bracket member 600 comprises a top portion 611 and an annular, ring-like sidewall 612 extending downwardly from the top portion 612 to a distal end 613. The sidewall 612 comprises an inner surface 614 that surrounds a cavity 615 and an outer surface 616 opposite the inner surface 614. There is an opening into the cavity 615 at the distal end 613 of the sidewall 612. The opposite end of the cavity 615 is closed by the top portion 611.
The first part 610 comprises a pair of parallel interior walls 616, 617 extending downwardly from the top portion 611 in the same direction as the sidewall 612. The pair of parallel interior walls 616, 617 are located within the cavity 615 and divide the cavity 615 into a first cavity portion and a second cavity portion. There is a fastener receiving opening 618 formed at the distal ends of the parallel interior walls 616, 617 for receiving a fastener to couple the bracket member 600 to the first and/or second support members 110, 150 as has been described above and illustrated in
The first part 610 comprises a first channel 620 for receiving a portion of the first support member 110 in a similar manner to that which has been described above. In particular, the first channel 620 comprises a first notch 621 that extends upwardly along the sidewall 612 from the distal end 613 towards (but not to) the top portion 611 and a second notch 622 that extends upwardly along the sidewall 612 from the distal end 613 towards (but not to) the top portion 611. As best seen in
In this embodiment, there is a first engagement feature 630 located on the inner surface 614 of the sidewall 612 of the first part 610. In particular, the first engagement feature 630 comprises a plurality of teeth 631 and a plurality of grooves 632 that are arranged in an alternating manner. Thus, the first engagement feature 630 of the first part 610 of the first bracket member 600 is similar to the previously described first engagement features, except with regards to its location being on the inner surface 614 of the first part 610 whereas those previously described were located on the outer surface. The first engagement feature 630 interacts with an engagement feature on the second part 650 (described below and similar to the same features noted in the embodiments above) to prevent the first part 610 from freely rotating relative to the second part 650.
The second part 650 of the bracket member 600 comprises a base surface 651, a lower portion 652 extending downwardly from the base surface 651, and an upper portion 653 extending upwardly from the base surface 651. More specifically, the lower portion 652 comprises a first wall member 654 and a second wall member 655 that are spaced apart and that define a second channel 660. The first wall member 654 has an inner surface 665 and the second wall member 655 has an inner surface 666, with the inner surfaces 665, 666 of the first and second wall members 654, 655 facing each other. The second channel 660 is defined by the space between the inner surfaces 665, 666 of the first and second wall members 654, 655 of the lower portion 652. Furthermore, a first tab member 667 protrudes from the inner surface 665 of the first wall member 654 adjacent to the distal end thereof and a second tab member 668 protrudes from the inner surface 666 of the second wall member 655 adjacent to the distal end thereof. The first and second tab members 667, 668 form locking features that facilitate the coupling of the second part 650 of the bracket member 600 to the second support member 150. That is, the first and second tab members 667, 668 engage a distal surface of the first and second sidewalls 153, 154 of the second support member 150 when the second support member 150 is nesting within the second channel 660.
The upper portion 653 comprises a first upstanding wall 656 and a second upstanding wall 657 that are circumferentially spaced apart from each other. Furthermore, the first upstanding wall 656 comprises an inner surface 658 and an outer surface 659 and the second upstanding wall 657 comprises an inner surface 671 and an outer surface 672. The inner surfaces 658, 671 of the first and second upstanding walls 656, 657 are concave and the outer surfaces 659, 672 of the first and second upstanding walls 656, 657 are convex. The first and second upstanding walls 656, 657 form stoppers that prevent over-rotation of the first part 610 relative to the second part 650 as has been described above.
Furthermore, a second engagement feature 675 is located on the outer surfaces 659, 672 of each of the first and second upstanding walls 656, 657 (although the second engagement feature 675 is only depicted on the outer surface 659 of the first upstanding wall 656, it may also be located redundantly on the second upstanding wall 657). In the exemplified embodiment, the second engagement feature 675 comprises an elongated protuberance 676 that is configured to mate with the teeth 631 and grooves 632 of the first engagement feature 630 to prevent free rotation of the first part 610 relative to the second part 650 as has been described in detail herein.
When the bracket member 600 is assembled, the first and second upstanding walls 656, 657 of the second part 650 nest within the first and second portions of the cavity 615 of the first part 610 such that the outer surfaces 659, 672 of the first and second upstanding walls 656, 657 face the inner surface 614 of the sidewall 612 of the first part 610. Thus, the second engagement feature 675 faces and mates/interacts with the first engagement feature 630 to prevent free rotation of the second part 610 relative to the first part 650.
Once assembled, the bracket member 600 is configured to be coupled to the first and second support members 610, 650 as shown in
While the foregoing description and drawings represent exemplary embodiments of the present disclosure, it will be understood that various additions, modifications and substitutions may be made therein without departing from the spirit and scope and range of equivalents of the accompanying claims. In particular, it will be clear to those skilled in the art that the present invention may be embodied in other forms, structures, arrangements, proportions, sizes, and with other elements, materials, and components, without departing from the spirit or essential characteristics thereof. In addition, numerous variations in the methods/processes described herein may be made within the scope of the present disclosure. One skilled in the art will further appreciate that the embodiments may be used with many modifications of structure, arrangement, proportions, sizes, materials, and components and otherwise, used in the practice of the disclosure, which are particularly adapted to specific environments and operative requirements without departing from the principles described herein. The presently disclosed embodiments are therefore to be considered in all respects as illustrative and not restrictive. The appended claims should be construed broadly, to include other variants and embodiments of the disclosure, which may be made by those skilled in the art without departing from the scope and range of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
2882558 | Jacobson | Apr 1959 | A |
4438613 | Hintsa | Mar 1984 | A |
4548010 | Hintsa | Oct 1985 | A |
4744188 | Ahren | May 1988 | A |
5241799 | Jahn | Sep 1993 | A |
5279090 | Yamaguchi | Jan 1994 | A |
5349800 | Peng | Sep 1994 | A |
6318042 | Bloom | Nov 2001 | B1 |
6729096 | Ashmore | May 2004 | B1 |
6834467 | Gulbrandsen | Dec 2004 | B2 |
7770349 | Tedesco | Aug 2010 | B2 |
8046966 | Moore | Nov 2011 | B2 |
8443564 | Bankston, Jr. | May 2013 | B2 |
8596008 | Waters | Dec 2013 | B2 |
8813457 | Underkofler | Aug 2014 | B2 |
9745746 | Heesbeen | Aug 2017 | B2 |
9976303 | Gloftis | May 2018 | B2 |
20040065037 | See | Apr 2004 | A1 |
20080060306 | Platt | Mar 2008 | A1 |
20090000248 | Waters | Jan 2009 | A1 |
20150159375 | Waters | Jun 2015 | A1 |
20150211231 | Bergman | Jul 2015 | A1 |
20150233116 | Mayer | Aug 2015 | A1 |
Number | Date | Country |
---|---|---|
1170600 | May 1964 | DE |
0421255 | Apr 1991 | EP |
2014-214788 | Nov 2014 | JP |
10-2013-0063384 | Jun 2013 | KR |
10-2118545 | Jun 2020 | KR |
WO 2007012077 | Jan 2007 | WO |
WO 2019050946 | Mar 2019 | WO |
Entry |
---|
International Search Report for related International Application No. PCT/US2021/062399 dated Mar. 24, 2022. |
Number | Date | Country | |
---|---|---|---|
20220186494 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
63124253 | Dec 2020 | US |