A. Field of the Invention
The embodiments of the present invention relate to an electric vehicle charging system, and more particularly, the embodiments of the present invention relate to an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces.
B. Description of the Prior Art
The electric vehicle (“EV”) charging industry is coming of age. Currently, EV chargers can only service one parking spot at a time.
Referring now to
As EV market penetration increases so will the number of parking garage customers driving EVs. Garages having valet parking will have to be continuously moving EVs in order to service them from a single charger. In order to successfully charge multiple EVs with a single charger, a parking garage attendant will need to orchestrate the process. This person will be responsible for moving the first EV to be charged into the EVSE parking spot, connecting the EV charger to the EV, and activating the charger. Once charging is complete, the attendant will disconnect the EV charger from the EV, move the first EV to a different parking spot, move the second EV to be charged into the EVSE parking spot, and begin the process again.
There is only one alternative to this scenario currently available. Purchasing and installing additional EV chargers will allow the attendant to move an EV into one of several locations, thus minimizing operational complexity and time. Therefore, the bottleneck for an attendant to shuffle multiple EVs through a single charger could be significantly reduced and operational efficiencies gained. The cost of additional chargers and accompanying infrastructure costs, however, may not be economically feasible. Many of these chargers are likely to be level 3 chargers that are capable of charging an EV in a few minutes vs. an hour or more. Most level 3 chargers require a 60 amp 440 volt service or greater. Having multiple level 3 chargers will place significant stress on the facility electrical service. In addition to the cost of multiple chargers ($40-50 k each), the costs of running multiple conduits and wiring runs from the electrical panel box to chargers can add significant cost to installations. Furthermore, if the service to the panel and/or the panel box require(s) greater electrical capacity, the cost increases dramatically. Thus, there exists a need to have mobile charging stations that enable an operator to move efficiently from EV to EV so as to enable the charging infrastructure to be optimally used hence reducing the number of EV chargers and infrastructure required to support the EV throughput.
Numerous innovations for electric charging devices have been provided in the prior art, which will be described below in chronological order to show advancement in the art, and which are incorporated herein by reference thereto. Even though these innovations may be suitable for the specific individual purposes to which they address, nevertheless, they differ from the embodiments of the present invention in that they do not teach an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces.
(1) U.S. Pat. No. 5,323,099 to Bruni et al.
U.S. Pat. No. 5,323,099—issued to Bruni et al. on Jun. 21, 1994 in U.S. class 320 and subclass 108—teaches a curb-side battery charging system that provides a mechanism for transferring electrical power to an electric vehicle to recharge its battery. The battery charging system includes a housing that is disposed on a wall, or is slidably attached to a track mounted to a ceiling, for example. A retractable charging device is coupled to a power supply, and mates with a receptacle device disposed in the vehicle. A variety of charging devices can be employed in the battery charging system. Electronic circuitry controls power supplied to the vehicle from the power supply of the charging system. In addition, an interface circuit allows a user to enter a code to use the system, and which provides an identification for billing purposes, or a credit card type key that activates the system and performs the same functions. A fan is provided for cooling purposes that causes an air flow through the system. The battery charging system allows an electric vehicle to be charged without any type of conventional electrical plug. The battery charging system provides a mechanism for coupling power from a power source to an electric vehicle to recharge its battery.
(2) U.S. Pat. No. 5,548,200 to Nor et al.
U.S. Pat. No. 5,548,200—issued to Nor et al. on Aug. 20, 1996 in U.S. class 320 and subclass 109—teaches a method and apparatus for charging the battery of an electric vehicle. When the electric vehicle is connected to a charging station, it is interrogated to determine the nature of the charge controller that is onboard the vehicle. Logic decisions invoking the particular mode for charging the vehicle are made depending on the nature and type of charge controller that is onboard the vehicle. Thus, delivery of charging energy to the battery in the vehicle may be entirely under the control of a charge controller onboard the vehicle, or if the control module in the vehicle is less sophisticated, then delivery of charging energy will be under the control of a charging module within the charging station. Parameters of initial charging current and voltage are therefore set either by the onboard battery charging controller or the charge controller in the charging station. Alternatively, these parameters may be set manually or by insertion of a card into a data interface to establish initial charging conditions. Under controlled conditions, a plurality of vehicles may be charged at a single establishment having a plurality of charging stations, either sequentially or simultaneously, depending on the criteria to be established. The charging station may be privately owned so as to charge a fleet of vehicles, or there may be a plurality of charging stations at a publicly accessible service station.
(3) U.S. Pat. No. 5,780,991 to Brake et al.
U.S. Pat. No. 5,780,991—issued to Brake et al. on Jul. 14, 1998 in U.S. class 320 and subclass 112—teaches a charging apparatus with multiple charge stations. The apparatus includes a single power supply that operates under the control of a microprocessor to charge a plurality of battery packs disposed in respective charging stations. Associated with each charging station is a wiring harness assembly that includes an EEPROM memory chip having one or more stored charging algorithms for the type or types of battery packs to be charged at that charging station. The microprocessor reads the charging algorithm from a charging station's memory chip when a battery pack is inserted in the charging station. The microprocessor utilizes a feedback control loop including a resistor network to regulate the charging current and charging voltage supplied to each battery pack being charged. If a plurality of Li-Ion battery packs are disposed in respective charging stations, each pack is sequentially charged so that the voltage across the pack is raised to the rated output voltage of the pack. Then, all of the Li-Ion battery packs are charged in parallel until each is fully charged. The parallel charging reduces total charging time.
(4) U.S. Pat. No. 5,803,215 to Henze et al.
U.S. Pat. No. 5,803,215—issued to Henze et al. on Sep. 8, 1998 in U.S. class 191 and subclass 2—teaches a method and apparatus for charging batteries of a plurality of vehicles, which includes a power source converter connectable to a power source to receive electrical power, and for converting the electrical power to a selected voltage potential that is distributed on a distribution bus. A plurality of vehicle connecting stations are connected to the distribution bus. Each vehicle connecting station includes a station power converter for receiving electrical power from the power source converter for charging the battery, and a station controller to control electrical power flow to the vehicle battery.
(5) U.S. Pat. No. 5,847,537 to Parmley, Sr.
U.S. Pat. No. 5,847,537—issued to Parmley, Sr. on Dec. 8, 1998 in U.S. class 320 and subclass 109—teaches a charging station system of electric vehicles, which includes a building containing charging equipment, and may provide other auxiliary services. The system includes a T-bar extending from the building to provide charging stalls or locations spaced along the T-bar. The building is modular, and incorporates a standard ISO type configuration.
(6) U.S. Pat. No. 6,081,205 to Williams.
U.S. Pat. No. 6,081,205—issued to Williams on Jun. 27, 2000 in U.S. class 340 and subclass 932.2—teaches an electric vehicle recharging parking meter that includes a parking meter, a processor, a display interconnected to the processor for giving visual information to a user, and an input device interconnected to the processor. The input device enables the user to select the parking time and/or the recharging time for the electric vehicle. The processor is responsive to the user selection of recharge time, parking time, and recharge power requirements entered on the input device. A payment receptor for receiving payment for the parking and recharge time selected by the user is interconnected to the processor for indicating receipt of payment for parking time and recharge electricity. The processor enables a switch to close so that power is supplied to the vehicle from a power source. A connector is attached to a post or stand on which the meter is mounted, whereby the electric vehicle is interconnected to the power source. A power controller, operable in response to signals from the processor, is interconnected between the power source and the connector.
(7) U.S. Pat. No. 6,338,450 to Schwendinger.
U.S. Pat. No. 6,338,450—issued to Schwendinger on Jan. 15, 2002 in U.S. class 242 and subclass 388.9—teaches a cable manager having a support member and a bracket that mounts the support member to a ceiling joist of a golf cart shed. A first pulley wheel attaches to the top end of the support member, and a second pulley wheel attaches to a pulley mounting bracket. A coil spring entrained about the first pulley wheel has one end attached to the pulley mounting bracket and the other end attached to the bottom end of the support member. The second pulley wheel is suspended at a lower elevation than the first pulley wheel, and moves down against the force of the spring when the power cable entrained over it is pulled down to connect to a golf cart for recharging. While recharging occurs, the lower pulley is fixed to the support member by attaching its bracket to an S-hook that attaches the spring to the vertical support member. When the power cable is released, the pulley moves up, but its upward travel is limited by a cable bracket that captures the power cable and holds it in position for easy retrieval for the next use. The cable manager is suspended from the ceiling, above the tops of the golf carts, leaving the area floor free of obstructions for the golf cart.
United States Patent Application Publication Number 2008/0218121—published to Gale et al. on Sep. 11, 2008 in U.S. class 320 and subclass 109—teaches a method for charging an electric storage battery in a plug-in hybrid electric vehicle through a power supply circuit, which includes coupling the charger to the circuit, determining whether another appliance in the circuit other than the charger is drawing current, determining a maximum charge rate at which the battery can be charged using the charger, charging the battery at the maximum charge rate if no other appliance in the circuit is drawing current, and charging the battery at less than the maximum charge rate if another appliance in the circuit is drawing current.
It is apparent that numerous innovations for electric charging devices have been provided in the prior art, which are adapted to be used. Furthermore, even though these innovations may be suitable for the specific individual purposes to which they address, nevertheless, they would not be suitable for the purposes of the present invention as heretofore described, namely, an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces.
Thus, an object of the embodiments of the present invention is to provide an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces, which avoids the disadvantages of the prior art.
Briefly stated, another object of the embodiments of the present invention is to provide an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces. The system includes a rail, a pair of trolleys, a single EV battery charger, and apparatus for electrically connecting the single EV battery charger to a power source without impinging upon movement of the pair of trolleys along the rail. The rail mounts overhead of, and traverses, the pair of adjacent rows of side-by-side parking spaces. The pair of trolleys are movably mounted along the rail and reach the electric vehicles parked in the pair of adjacent rows of side-by-side parking spaces. The single EV battery charger is mounted to, and moves with, the pair of trolleys to charge the electric vehicles parked in the pair of adjacent rows of side-by-side parking spaces.
The novel features considered characteristic of the embodiments of the present invention are set forth in the appended claims. The embodiments of the present invention themselves, however, both as to their construction and to their method of operation together with additional objects and advantages thereof will be best understood from the following description of the specific embodiments when read and understood in connection with the accompanying figures of the drawing.
The figures of the drawing are briefly described as follows:
Referring now to the figures, in which like numerals indicate like parts, and particularly to
The overall configuration of the overhead mobile charger system 10 can best be seen in
The overhead mobile charger system 10 comprises a rail 16, a pair of trolleys 18, a single EV battery charger 20, and apparatus 22 for electrically connecting the single EV battery charger 20 to a power source 24 without impinging upon movement of the pair of trolleys 18 along the rail 16.
The rail 16 is for mounting overhead of, and for traversing, the pair of adjacent rows of side-by-side parking spaces 14 (
Ceiling mounts 26 are for mounting the rail 16 to a ceiling 28, overhead the pair of adjacent rows of side-by-side parking spaces 14 (
Trolley stops 30 are mounted to the rail 16 and are for limiting traversing of the pair of trolleys 18 on the rail 16 to the pair of adjacent rows of side-by-side parking spaces 14 (
The rail 16 is, preferably, an I-beam, and as such, further has a web 32 and a pair of flanges 34.
Each trolley 18 comprises a generally U-shaped body 36. The generally U-shaped body 36 of each trolley 18 depends from around a lowermost flange 34 of the rail 16.
Each trolley 18 further comprises two sets of wheels 38. The two sets of wheels 38 of each trolley 18 are rotatably mounted to the generally U-shaped body 36 of an associated trolley 18 by axles 40 and bearings 42, and ride on the lowermost flange 34 of the rail 16 so as to allow the pair of trolleys 18 to ride along the rail 16.
The pair of trolleys 18 comprise a mounting plate 44. The mounting plate 44 of the pair of trolleys 18 fixedly attaches the generally U-shaped body 36 of each trolley 18 to each other in a spaced relationship and in identical orientation to each other so as to allow the pair of trolleys 18 to operate as a single unit.
One trolley 18 has an electric motor 45. The electric motor 45 of the one trolley 18 is for electrically connecting to the power source 24 so as to cause the two sets of wheels 38 of the one trolley 18 to rotate and thereby allow the pair of trolleys 18 to traverse the rail 16 in either direction so as to be able to reach the electric vehicles 12 parked in the pair of adjacent rows of side-by-side parking spaces 14.
It is to be understood, however, that the electric motor 45 of the one trolley 18 can be eliminated and the pair of trolleys 18 can be pulled along the rail 16 manually.
The single EV battery charger 20 comprises a housing 46. The housing 46 of the single EV battery charger 20 is dependingly attached to the mounting plate 44 of, so as to move with, the pair of trolleys 18.
The single EV battery charger 20 further comprises a retractable charger cable 48. The retractable charger cable 48 of the single EV battery charger 20 selectively extends from, and retracts into, the housing 46 of the single EV battery charger 20, terminates in a EV charger handle 50 (
The EV charger handle 50 of the single EV battery charger 20 is for electrically connecting to the electric vehicles 12 parked in the pair of adjacent rows of side-by-side parking spaces 14.
The specific configuration of a collector shoe embodiment of the apparatus 22 can best be seen in
The apparatus 22 comprises a plurality of conductors 52. The plurality of conductors 52 of the apparatus 22 are rigid, uninsulated and thereby exposed, are parallel to each other, extend horizontally at one side of the web 32 of the rail 16 by insulated suspenders 54, and are for electrically connecting to the power source 24 so as to allow the plurality of conductors 52 of the apparatus 22 to be electrically hot and carry power from the power source 24.
The apparatus 22 further comprises a plurality of collector shoes 56. The plurality of collector shoes 56 of the apparatus 22 are electrically connected to the single EV battery charger 20 by a power cable 58, and slide freely along the plurality of conductors 52 of the apparatus 22 making electrical contact, therewith as they move therealong so as to allow the single EV battery charger 20 to slide along the rail 16, via the pair of trolleys 18, and remain electrically supported without impinging upon movement of the pair of trolleys 18 along the rail 16.
The specific configuration of a festoon embodiment of the apparatus 22 can best be seen in
The apparatus 22 comprises a unistrut 60. The unistrut 60 of the apparatus 22 extends horizontally at one side of the web 32 of the rail 16, outboard of the lowermost flange 34 of the rail 16, by rigid suspenders 62.
The apparatus 22 further comprises a plurality of rolling reels 64. The plurality of rolling reels 64 of the apparatus 22 are rollingly mounted, and move along, the unistrut 60 of the apparatus 22, at one side of the single EV battery charger 20.
The apparatus 22 further comprises a power cable 66. The power cable 66 of the apparatus 22 is electrically connected at one end 68 thereof to the single EV battery charger 20, reeves drapingly through the plurality of rolling reels 64 of the apparatus 22 so as to form slack, and is for electrically connecting at the other end 70 thereof to the power source 24 so as to allow the single EV battery charger 20 to slide along the rail 16, via the pair of trolleys 18, and remain electrically supported without impinging upon movement of the pair of trolleys 18 along the rail 16.
The power cable 66 of the apparatus 22 is insulated and flat so as to reeve more easily through the plurality of rolling reels 64 of the apparatus 22.
The specific configuration of the EV charger handle 50 of the single EV battery charger 20 can best be seen in
The EV charger handle 50 of the single EV battery charger 20 comprises a hand-fitting enclosure 72. The hand-fitting enclosure 72 of the EV charger handle 50 of the single EV battery charger 20 is rigid, ergonomic, and has a free distal end 74 for releasably engaging in the electric vehicles 12 parked in the pair of adjacent rows of side-by-side parking spaces 14 and a proximal end 76 electrically communicating with the retractable charger cable 48 of the single EV battery charger 20.
The EV charger handle 50 of the single EV battery charger 20 further comprises a pair of pushbuttons 78. The pair of pushbuttons 78 of the EV charger handle 50 of the single EV battery charger 20 are accessible via the hand-fitting enclosure 72 of the EV charger handle 50 of the single EV battery charger 20, and are in electrical communication with the electric motor 45 of the one trolley 18, via the retractable charger cable 48 of the single EV battery charger 20, and when one pushbutton 78 of the EV charger handle 50 of the single EV battery charger 20 is pressed, the pair of trolleys 18 traverse the rail 16 in one direction, and when the other pushbutton 78 of the EV charger handle 50 of the single EV battery charger 20 is pressed, the pair of trolleys 18 traverse the rail 16 in an opposite direction to, to thereby conveniently control movement of the single EV battery charger 20.
It will be understood that each of the elements described above or two or more together may also find a useful application in other types of constructions differing from the types described above.
While the embodiments of the present invention have been illustrated and described as embodied in an overhead mobile charger system for reaching and charging electric vehicles parked in a pair of adjacent rows of side-by-side parking spaces, nevertheless, they are not limited to the details shown, since it will be understood that various omissions, modifications, substitutions, and changes in the forms and details of the embodiments of the present invention illustrated and their operation, can be made by those skilled in the art without departing in any way from the spirit of the embodiments of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the embodiments of the present invention that others can by applying current knowledge readily adapt them for various applications without omitting features that from the standpoint of prior art fairly constitute characteristics of the generic or specific aspects of the embodiments of the present invention.
The instant non-provisional patent application claims priority from provisional patent application No. 61/399,490, filed on Jul. 13, 2010, for a CONTROL SYSTEM FOR ELECTRIC VEHICLE CHARGING SYSTEMS, and incorporated herein by reference thereto.
Number | Date | Country | |
---|---|---|---|
61399490 | Jul 2010 | US |